高地应力环境下乌鞘岭深埋长隧道软弱围岩流变规律实测与数值分析研究
- 格式:pdf
- 大小:298.79 KB
- 文档页数:7
隧道围岩大变形阶段报告1.概述深埋隧道通过软岩和断层带时,在高的地应力和富水条件下通常产生大变形.这种隧道围岩变形量大,而且位移速度也很大,一般可以达到数十厘米到数米,如果不支护或支护不当,收敛的最终趋势是隧道将被完全封死,如果发生在永久衬砌构筑以前,往往表现为初期支护严重破裂、扭曲,挤出面侵入限界.这种大变形危害巨大,严重影响施工工期或者线路正常运营,而且整治费用高昂.在国内外相继出现了大量的隧道围岩大变形工程实例,并且在治理这些问题中取得了很多经验.日本的岩手隧道,长25.8km,采用新奥法施工.地质条件为凝灰岩与泥岩互层,单轴抗压强度为2~6MPa.施工中净空位移和拱顶沉降都是很大的,上断面的净空位移100~400mm,最大到411mm;下断面的净空位移最大为200mm,拱顶下沉为10~100mm.日本惠那山隧道,长8.635km,围岩以花岗岩为主,其中断层破碎带较多,局部为粘土,岩体节理发育、破碎,岩石的抗压强度为 1.7~3.0MPa,隧道埋深为400~450m,原始地应力为10~11MPa.施工时产生了大变形,在地质最差的地段,拱顶下沉达到930mm,边墙收敛达到1120mm,有600cm2面积的喷射混凝土侵入模筑混凝土净空.最后采用9.0m和13.5m的长锚杆,并重新喷护20cm厚的钢纤维混凝土后,结构才得以基本稳定.陶恩隧道长6400m,开挖断面面积90-105m2,位于显著变质的岩带内,如片岩、千枚岩等,主要岩层为绢云母、千枚岩夹绿泥石,抗压强度,洞内无地下水活动,隧道埋深为600-1000m,原始地应力为16.0-27.0 MPa,侧压力系数近似为1.0,围岩强度比为.陶恩隧道采用台阶法施工,在设计时,由于对在挤压性围岩隧道施工缺乏经验,采用的初期支护参数较小,导致拱顶发生1.2m的位移.而后把锚杆改为6m,并初次采用纵向伸缩缝,缝宽20cm,间隔3m,支撑也是可缩的,并在隧道底部增加了隧底锚杆,喷射混凝土厚度保持25cm不变.上述补强措施对大变形起到了一定的控制作用,但已完成段,其洞壁已严重侵入二次衬砌净空,只能采取扩挖的办法处理,增加了施工的难度,同时又具有一定的危险性.此时的净空收敛大约是20-25cm.要再大时,要增打9m以上长度的锚杆.奥地利阿尔贝格隧道隧道长13980m,开挖断面面积90-103m2,岩石主要为千枚岩、片麻岩,局部为含糜棱岩的片岩、绿泥岩,岩石强度为1.2~1.9 MPa,隧道的埋深平均为350m,最大埋深为740m,原始地应力为13.0 MPa,围岩强度比为0.1~0.2.隧道采用自上而下的分布开挖法,先开挖弧形导坑,施作初期支护,然后再开挖台阶<分左、右两次分别进行>,最后检底.由于阿尔贝格隧道是在陶恩隧道之后施工的,该隧道设计时的初期支护就比较强,喷射混凝土厚20~25cm,锚杆长6.0m,同时安设了可缩刚架.但是由于岩层产状不利,锚杆的长度仍不够,施工中支护产生了很大变形,拱顶下沉量达到15~35cm,最大水平收敛达70cm,变形速度达11.5cm/d,后来采取将锚杆的长度增加到9.0~12.0m的办法,才是变形得到了控制,变形速度降为5.0cm/d,变形收敛时间为100~150d.家竹箐隧道隧道全长4990m.隧道位于盘关向斜东翼,属单斜构造,岩层产状N20°~35°E/18°~30°NW.由于距向斜轴部较远,故皱褶、断层不发育,只在隧道中部煤系地层中发育有一正断层F1,其破碎带宽15~20 m. 隧道横穿家竹箐煤田.隧道南段为玄武岩,北段为灰岩,北段为灰岩,中部3890 m为砂、泥岩与为钙质、泥质胶结的砂岩夹泥岩的煤系地层.隧道掘进进入分水岭之下的地层深部后,在接近最大埋深<404m>的煤系地层地段,由于高地应力的作用,锚喷支护相继发生严重变形.在一般地段,拱顶下沉为50-80cm,侧壁内移50-60cm,底部隆起50-80cm;在变形最严重地段,拱顶下沉达到240cm,底部隆起达到80-100cm,侧壁内移达到160cm.为整治病害具体措施如下:①设置特长锚杆加固地层;②改善隧道断面形状,加大边墙曲率;③采用先柔后刚、先放后抗的支护措施;④加大预留变形量;⑤提高二次衬砌的刚度;⑥加强仰拱.大变形得到迅速整治,衬砌施工后,结构完好,未出现任何开裂现象,经预埋的应力、应变计测试,有足够的安全储备.木寨岭隧道全长1710m,穿越地层围岩主要为二叠系炭质板岩夹砂岩与硅质砂板岩.存在的主要构造体系是山字型构造体系.属地应力集中区,隧道穿越区为沟谷侧,原始地应力难以释放.隧道主要地质为炭质板岩夹泥岩,局部泥化软弱,呈灰黑色,围岩层理呈褶皱状扭曲变形严重,大部分地段围岩较破碎,洞身渗涌水频繁,部分地段呈股流.隧道在高地应力大变形地段,严重处拱顶累计下沉达155cm.经研究主要采取的处理措施有:①开挖总体采用双侧壁法;②初期支护钢架与临时支撑采用I22型工字钢、自进式锚杆,超前支护小导管,拱脚两侧增设小导管锁脚.导坑开挖时预留变形;③修改原设计仰拱;④二次衬砌采用双层钢筋网,与仰拱预留钢筋焊接;⑤对需换拱段与开挖后变形较大的地段,除施作长的自进式锚杆外,再采用小导管进行双液注浆.2.发生围岩大变形的地质条件与隧道围岩大变形发生机理大变形目前还没有一个统一的定义,目前有的学者提出根据围岩变形是否超支护的预留变形量来定义大变形,即在隧道,如果初期支护发生了大于25 cm<单线隧道> 和50cm<双线隧道>的位移,则认为发生了大变形.姜云、李永林等将隧道围岩大变形定义为:隧道与地下工程围岩的一种具有累进性和明显时间效应的塑性变形破坏,它既区别于岩爆运动脆性破坏,又区别于围岩松动圈中受限于一定结构面控制的坍塌、滑动等破坏.同时将隧道围岩大变形分为受围岩岩性控制、受围岩结构构造控制和受人工采掘扰动影响三个大的类型.2.1大变形发生的地质条件发生大变形的隧道一般具有以下地质特征:〔1〕隧道围岩条件.发生大变形的围岩主要有:①显著变质的岩类,如片岩、千枚岩等;②膨胀性凝灰岩;③软质粘土层和强风化的凝灰岩;④凝灰岩和泥岩分互层;⑤泥岩破碎带和矿化变质粘土等.这类围岩的凝聚强度c值较低,内摩擦角 值很小,单轴抗压强度较低.〔2〕隧道处于高应力区,且大变形地段的隧道一般埋深在100m以上.〔3〕隧道围岩的天然含水量大.2.2隧道围岩大变形发生的机理人们通常把大变形机制分为两大类:〔1〕大变形的原因之一,是开挖形成的应力重分布超过围岩强度而发生塑性变化.如果发生缓慢就属于挤出〔如果是立刻发生就属于岩爆〕.〔2〕大变形的原因之二,是岩石中的某些矿物成分和水反应而发生膨胀.发生膨胀变形的围岩在开挖时一般有较高的强度,变形主要发生在隧道运营过程中,一般表现为底部鼓起,而隧道顶部和边墙保持较好的工作状态.在隧道通过炭质板岩和断层带时,引起大变形的原因主要为第一条.同时国内外学者也认为,软岩隧道的大变形可以描述为一种以挤出为主、膨胀为辅的水-力耦合过程.而对于第一条原因目前国内外学者认为围岩挤出是开挖引起的应力重分布超过岩体强度时屈服的结果,并且通过一些列的研究将围岩挤出的力学机制分为以下三大类:〔1〕完全剪切的破坏〔如图1a〕.在连续的塑性岩体与含有大开裂度裂隙的非连续岩体中会发生这种破坏.〔2〕弯曲破坏〔如图1b〕.一般发生在千枚岩与云母片岩等变质岩或泥岩、油页岩、泥质砂岩与蒸发岩等薄层状塑性沉积岩中.〔3〕剪切和滑动破坏〔如图1c〕.发生于相对厚层的沉积岩中,包括沿层面的滑动和完整岩石的剪切两种破坏形式.〔a 〕完全剪切的破坏 〔b 〕弯曲破坏 〔c 〕剪切和滑动破坏图1 挤出性围岩隧道失稳形式分类3.大变形的预测研究现状隧道的大变形给隧道施工和运营造成了很大的困难,国内外学者对隧道大变形的预测进行了大量的研究.目前在预测隧道变形的方法中具有代表性的有C&C 法,这种方法由Egger 〔1973〕、Kastner 〔1974〕和Hoek 、Brown 〔1980〕提出,并逐步完善.这种方法基于以下假设:〔1〕圆形隧道;〔2〕课题可以概化为二维平面应变问题;〔3〕均质各向同性介质;〔4〕弹-塑性材料;〔5〕现场地应力属于静水压力场;〔6〕均匀的径向支护压力.其计算公式如下:〔1〕弹性状态下的围岩位移〔i u 〕011()i i u P P r μκ+=-〔1〕 其中,μ、κ分别为岩石的泊松比和杨氏模量;0P 、1P 分别为地静压力和支护压力;i r 为隧道半径.〔2〕塑性状态下的位移〔j u 〕Hoek-Brown 方法:1j j u r ⎡=-⎢⎣ 〔2〕 式中当e j r r <,2ln e j r R D r ⎡⎤=⋅⎢⎥⎢⎥⎣⎦;e jr r >, 1.1R D = 式中,r m 、r s 为破碎岩石的常数;e r 、e u 、re σ分别为弹性和塑性边界处的半径、位移和径向应力.此外还有Egger 和Kastner 也提出了相应的塑性状态向的围岩位移预测方法.4.大变形的一般治理措施根据国内外的施工经验,对大变形的治理措施归纳如下:〔1〕加强稳定掌子面的辅助措施① 正面喷混凝土和打锚杆;② 打超前锚杆或钢筋.〔2〕加强基脚的措施,这是基本的,即首先要把底鼓和侧壁的挤入控制住,包括:① 向底部地层注浆加固;②向两侧打底部锚杆;③支撑加底部与加劲肋;④设底部横撑或临时仰拱.〔3〕防止断面挤入的措施①增打加长锚杆,主要在两侧,锚杆长度一定要深入到围岩塑性区一定X围才有效果;②设底部横撑,打底部锚杆,修筑仰拱,这是极为重要的工程措施;③缩短台阶长度,与早闭合;④下半断面、仰拱同时施工;⑤设纵向伸缩缝,采用可缩性支撑〔4〕防止衬砌开裂的措施①采用湿喷钢纤维混凝土;②设加强钢筋;③设纵向伸缩缝.〔5〕设立日常量测管理体制与管理基准①监测初期位移速度;②最终位移值的预测;③建立控制基准值;〔6〕加强施工地质预报①预测和预报掌子面前方的地质状态;②建立地质数据库,与时反馈;③各种岩类的特性试验数据的测试.这些措施是综合的,是相互补充的,应视具体情况采用.这些措施也是一般性的,当条件变化很大时,还要采用一些特殊的辅助施工措施,如注浆加固,改良岩体等措施.5.郎洞断层束破碎带地质概况5.1二郎洞断裂带〔F3〕该断层位于二郎洞附近,西起阿尔扎沟以西,向南经果可沟沟脑、二郎洞、肯德隆沟、茶卡北山以北,延伸长度约130km.该断裂是北侧南祁连海西期地槽和南侧南秦岭印支期地槽的分界断层,沿断裂带岩浆活动强烈,断层两侧岩层破碎,沿断裂有一系列与之近于平行的断裂,共同组成断层束,断层两侧岩层产状较乱,多拖拉现象和挠曲.地貌上主要表现为一系列断层谷地、垭口和洼陷地带,航、卫片上线性影像明显.断层形成于华力西期,在印支期以来仍有活动.断层产状:N40°~70°W/40°~80°N,属逆断层,主断层破碎带宽100~500m,断层西段发生过6级地震,东段可见第四系中更新统地层中的断坎,未见第四系全新统地层错动,该断层在隧道通过附近主要表现为断层负地形,未见新活动迹象,属晚更新世活断层.隧于DK303+611~DK304+071,通过长度460 m ,由断层泥砾与碎裂岩组成,Ⅴ级-Ⅵ级围岩.由于该断裂为区域性深大断裂,断层规模大,并且未来还有发生中强地震的可能性,因此对工程影响较大.5.2围岩情况隧道在二郎洞断裂带附近,岩性主要为石炭系片岩、##岩、志留系变质砂岩夹板岩,受地质构造影响较严重,岩体节理、裂隙较发育.其中软岩占主体.5.3涌水情况该区地下水类型主要为基岩裂隙水、构造裂隙水,岩层富水性较差,为弱富水区.根据地表测流,本区地下水径流模数M=563.72 m3/d·km2,水化学类型属HCO3-Ca·Na型水,矿化度小于1g/L,地下水无侵蚀性.双线同时施工时参数常涌水量为3825.12m3/d,最大涌水量为7650.24m3/d.5.4地应力根据场址与邻近地区的震源机制解和区域水平运动与构造应变场特征,可以看出本区域构造应力场主压应力优势方位为北东向.根据实测结果,隧道部位最大主应力方向为N33°E~ N43°E,平均为N38°E,和隧道轴线〔线路走向N54°E〕的夹角为21°~11°,平均为16°.根据3个孔地应力的实测结果分析,最大水平主应力的最大值为22.04 MPa,DSZ-8孔最大水平主应力测值明显高于DSZ-1孔、DSZ-7孔,而DSZ-8孔位于f17断层附近〔F3断裂带内〕,说明,随着钻孔所处构造部位的不同,所反映的构造应力强度差异也较大,在断裂带附近存在应力集中现象.根据《工程岩体分级标准》〔GB50218—94〕、岩体物理力学参数与弹性力学公式,在3个孔共19个测段中,Rc/σmax<4的极高地应力占全部测段的15.8%,4<Rc/σmax<7高地应力占全部测点的10.5%,极高和高地应力占全部测点的26.1%.经综合分析,岭脊埋深较大的石炭系变质砂岩与片岩段可能存在高地应力问题.5.5结论根据2.1大变形发生的地质条件,并结合实测的地应力结果和隧道区工程地质、水文地质特征,软弱围岩〔主要指断层破碎带与一定影响X围内〕存在发生较大变形的可能. 6.关角隧道F3断层影响带大变形治理建议与注意事项结合中国中铁隧道集团通过对乌鞘岭隧道千枚岩大变形的研究,引用其控制大变形的快速施工指导思想:〔1〕开挖支护、仰拱作业区,上下断面与仰拱的各工序在时间和空间上优化组合,实现稳步有序作业,平行交叉作业.〔2〕分秒必抢,将围岩暴露时间和结构不利受力状态压缩至最短,使初期支护结构与早、快速封闭成环,从而有效控制变形.〔3〕超前支护、钻爆、锚杆、锚索、注浆、立拱等关键工序实行标准化作业.〔4〕石变我变,主动支护,步步为营,稳中求快.6.1治理建议结合以往隧道围岩施工的成功经验建议如下措施:〔1〕措施一6.乌鞘岭隧道控制大变形经验与和关角隧道F3断层影响段比较6.1乌鞘岭隧道变形情况治理经验乌鞘岭隧道设计为两座单线隧道,隧道长20050m,隧道洞身最大埋深1100m左右.隧道所经过地层岩性复杂,分布主要受区域断裂构造控制.主要有第四系、第三系、白垩系、三叠系、志留系、奥陶系等,并伴有加里东晚期的侵入.隧道施工中,在辅助坑道和正洞均发生过较为严重的变形,在高地应力下隧道发生极其严重变形,出现支护裂损、钢架扭曲,净空侵限明显等现象.乌鞘岭隧道在穿越岭脊复杂地段时出现了软岩挤压大变形问题,尤其是F7断层带,变更设计前左线隧道最大拱顶下沉1053 mm<DK177+495>,平均下沉30~35 mm/d,一般在500~600 mm左右;左线隧道内轨上1. 5 m收敛值最大1034 mm<DK177+590>,一般为700mm左右,拱脚最大978mm,一般为300~700mm;右线隧道最大拱顶下沉227 mm<YDK177+610>,一般在100~200 mm左右;右线隧道内轨4m收敛值最大548 mm<YDK177+590>,一般为300~400 mm 左右.由于施工中发生严重变形,乌鞘岭隧道在大变形段均采用钻爆法施工、台阶法开挖,台阶长度4-5m,人工手持风钻上下台阶分部钻眼、装药、连线与同时进行光面微差控制爆破;立I20或H175钢拱架3榀/2m,拱部设φ42超前小导管,长度4m,环向间距25m,注水泥水玻璃双液浆,全断面喷射C20钢纤维砼,厚度25cm,径向采用φ42注浆锚管,间距0.8×0.8m,锚管长度拱部4m,边墙6m,梅花布置,拱墙设φ8钢筋网,网格间距25×25cm.循环进尺一般为1.4 m 或2.0m.通过以上措施控制了变形,顺利通过了大变形地段.乌鞘岭特长隧道位于兰新铁路##西至##南端增建第二线乌鞘岭越岭段,隧道长20050m,在施工过程中出现了软岩大变形,在工程人员的努力下,通过一系列的工程措施顺利的通过了大变形段,取得了较好的工程经验,现就对关角隧道F3断层附近和乌鞘岭隧道发生大变形段的工程概况进行比较〔见表1〕表1 关角隧道F3断层附近和乌鞘岭隧道发生大变形段工程概况比较表从乌鞘岭隧道成功控制带变形的经验值得借鉴.乌鞘岭隧道隧道产生大变形除了地质因素以外,还有以下几点原因:①初期支护强度不足.由于F7断层的影响,本段围岩内富存高地应力.在隧道开挖后,强大的地应力将作用到初期支护上,若初期支护强度和刚度不足将无法抵抗强大的地应力作用,就会产生大变形.②施工工序间距太长.由于施工工序间距太长,未能与时形成封闭的支护体系,致使初期支护在无约束下产生无限制性的变形,最终必然出现大变形.因此,施工工序间距太长,未能与时封闭也是本段发生大变形的直接原因之一.③掌子面刚度不足.在隧道开挖过程中,掌子面前方的变形特性是围岩变形响应的真正原因,又由于本段为四条区域性大断层组成的宽大"挤压构造带〞,岩体的的高地应力强挤压作用非常明显,这就更加剧了掌子面的挤出, 若不采取合适的强化措施保证掌子面的稳定,就会导致前方围岩的变形响应.因此,掌子面刚度不足是隧道洞壁产生大变形的关键原因.中国中铁隧道集团通过对乌鞘岭隧道千枚岩大变形的研究得出以下控制大变形的快速施工指导思想:〔1〕开挖支护、仰拱作业区,上下断面与仰拱的各工序在时间和空间上优化组合,实现稳步有序作业,平行交叉作业.〔2〕分秒必抢,将围岩暴露时间和结构不利受力状态压缩至最短,使初期支护结构与早、快速封闭成环,从而有效控制变形.〔3〕超前支护、钻爆、锚杆、锚索、注浆、立拱等关键工序实行标准化作业.〔4〕石变我变,主动支护,步步为营,稳中求快.。
高地应力软岩大变形机理及防治措施研究现状作者:何欣来源:《卷宗》2019年第32期摘要:随着我国基础设施建设的不断发展,在各种复杂地质环境下修建的隧道会越来越多,特别是在围岩软弱,高地应力存在的隧道中。
在这种隧道的施工期间,隧道周边支护结构受力不断增加,受力时间长,变形增大。
最终导致支护结构变形破坏,严重影响正常施工。
为了有效的给出防治措施,就必须先弄清楚高地应力下软岩大变形的机理。
关键词:高地应力;大变形机理;防治措施1 引言近年来,我国的经济建设取得了巨大的进步,基础设施的建设发展迅速。
隧道的建设在我国的基础设施建设中有着举足轻重的地位。
目前隧道建设过程中隧道埋深越来越大,初始应力越来越高。
隧道周边也存在许多软弱围岩,软弱围岩一般认为是强度不高、表面风化严重、流变作用明显、破碎的具有这一类特质的岩石的总称。
在这种环境下修建隧道时,流变大、位移大等问题不断涌现。
基于这种情况,对其变形机理和防治措施研究成为了工程工作者的研究重点。
2 高地应力隧道大变形机理及防治措施研究该怎么定义高地应力呢?陶振宇[1]认为高地应力环境是指上部岩体总的质量小于岩体水平应力分量时。
目前对软岩的定义大致可以分为三种,分别是工程定义、指标化定义和描述性定义。
何满潮根据软岩的塑性机理和强度变化特征,把软岩划分为了四种,分别是高应力软岩、膨胀性软岩、复合型软岩、节理化软岩。
对于变形的产生,Terzaghi[2]根据大变形产生的原因将大变形划分为了两类。
第一类是挤出变形。
是指隧道开挖后岩体应力重新分布,造成部分岩体受力超过限制而产生变形。
第二类是膨胀变形,指围岩中的一些膨胀性矿物质与水发生反应而变形破坏。
除此之外,Anagnostou[3]认为大变形可以在任意岩层中产生,这是因为大变形主要取决于地应力的初始状态和岩层强度。
2.1 下面将列举二个例子分析高地应力软岩大变形机理及防治措施研究2.1.1 榴桐寨隧道[4,5]榴桐寨隧道是成都到兰州铁路线上一个必经隧道,它位于茂县与龙塘之间,修建时采取的是左线和又线分开修建的方案,其中左线和右线间距为30-40m。
第二章乌鞘岭F7断层隧道工程简介本章重要简介乌鞘岭隧道旳基本工程状况,地应力旳分布状况,以及工程软岩旳概念,讨论在F7断层中使用旳施工措施。
第一节工程概况2.1.1概述兰新铁路兰州~武威南增建第二线线路起于兰州西站,沿黄河二级阶地西行经河口南站跨黄河后沿溯庄浪河而上,在既有线兰武段打柴沟站与龙沟车站之间以专长隧道穿越乌鞘岭后沿龙沟河、古浪河峡谷而下,进入河西走廊与既有线并行引入武威南站。
乌鞘岭专长隧道位于既有兰新线兰武段打柴沟车站和龙沟车站之间、设计为两座单线隧道,左、右线隧道长0m,隧道出口段线路位于半径为1200m曲线上,右、左线缓和曲线伸入隧道68.384及127.29m,隧道其他地段均位于直线上,线间距为40m,两座隧道线路纵坡相似,重要为11‰旳单面下坡,右线隧道较左线隧道高0.56-0.73m。
隧道进口位于天祝县打柴沟镇赵家庄附近,地形开阔、施工条件和弃渣条件好,右线轨面设计高程2663.36m,出口位于古浪县龙沟乡旳沙沟台,地形较窄,施工场地和地形条件较差,右线轨面设计高程2447.32m。
交通便利,隧道最大埋深1100m左右。
本隧道所有采用钻爆法施工。
右线隧道总工期为32个月,隧道于2月1日动工,其中施工准备1个月,主体工程于4月30日主体竣工,计26个月;弹性整体道床2个月,铺轨及四电3个月,施工工期比较紧迫。
为此,为加紧施工进度,全隧道除在4个洞口掘进施工外,右线设8个斜井、1个竖井,左线设5个斜井、1个竖井及1个横洞,合计16个辅助坑道20个工作面。
2.1.2 地形地貌乌鞘岭隧道洞身横穿祁连褶皱系旳北祁连优地槽褶皱带和走廊过渡段两个次级构造单元,褶皱和断裂发育,本段通过加里东期褶皱带和海西—印支期褶皱带。
共有四条区域性大断裂,毛毛山南缘断层(F4)出露宽度200m~500m,大柳树沟—黑马圈河断层(F5)出露宽度80m~260m,毛毛山岭中断层(F6)出露宽度40m~80m,毛毛山—老虎山断层(F7)出露宽度400m~800m,局部不小于1000m,区域资料显示,全新世以来F7断层仍有活动迹象。
高地应力软岩隧道大变形特征与处治技术作者:覃子秀林志严远方冯万林吴秋军来源:《西部交通科技》2023年第11期摘要:文章結合依托工程对高地应力软岩隧道大变形特征与处治技术展开研究,得出如下结论:(1)大变形灾害严重程度与地应力等级、围岩软弱程度高度相关,地应力越高、围岩越软弱,大变形越严重;(2)大变形灾害具有变形量大、持续时间长以及空间分布不均的特点;(3)大变形灾害处治应遵循“抗放结合、共同承载、动态控制”的原则,采取多项主动支护措施,降低灾害影响。
关键词:高地应力;隧道;大变形;施工技术;灾害处治0引言近年来,我国公路路网向地质条件与地质环境更为复杂的中西部延伸,配套的隧道工程也因地质条件等因素逐渐向大埋深、地质因素更复杂的方向发展,复杂的工程条件带来诸多影响隧道结构稳定性的问题。
目前,学者们针对高地应力软岩大变形灾害开展了大量研究工作,深入地认识了大变形特征与变形控制技术。
赵瑜等[1-2]结合数值模拟手段,对高地应力软岩隧道大变形特征进行了分析。
朱朝佐等[3]结合分段施工工艺,提出了采用格栅纵向连接形式以提高支护结构纵向整体性的方法。
张宏亮等[4]分析比对了武都西隧道大变形多种施工方案,认为应力释放至一定程度后及时施作二衬可有效解决大变形问题。
卢阳[5]结合文笔山隧道大变形处治成功案例,提出了“因隧制策,动态调整”的施工原则。
另外,也有学者认为高地应力软岩隧道施工应采取“强支护”措施对抗围岩变形,但这并不适用于所有等级的大变形灾害,容易对现场施工产生误导。
本文根据高地应力软岩隧道大变形特征,结合依托工程,对变形控制技术进一步探索与研究,以期形成成套处治技术,解决高地应力软岩隧道大变形控制技术难题。
1 高地应力软岩隧道大变形特征1.1 工程背景木寨岭特长隧道全长15 km,最大埋深为629.1 m,穿越木寨岭,沟通西南地区与甘肃及西北地区。
隧址区地质环境极其复杂,地处秦岭构造带,工程开展极具挑战,在建设期间发生了强烈的大变形灾害。
乌鞘岭隧道弹性支承块式无砟轨道病害整治研究的开题报告一、选题背景乌鞘岭隧道位于中国四川省宜宾市北岸山区,全长15.8公里,是成昆铁路的重要组成部分。
隧道施工始于上世纪50年代,建设条件恶劣,地质构造复杂,施工困难大。
为了满足列车运行的要求,隧道采用了块式无砟轨道技术作为轨道基础,获得了非常好的运营效果。
然而,在日常维护和操作中,乌鞘岭隧道的轨道出现了一些病害问题,如轨枕锁死、道岔跳动、轨道减震支座损坏等,严重影响了列车的安全稳定运行。
二、研究内容本文旨在研究乌鞘岭隧道弹性支承块式无砟轨道病害整治问题。
具体工作内容如下:1. 分析乌鞘岭隧道弹性支承块式无砟轨道的结构形式、运行状态。
2. 探究影响乌鞘岭隧道弹性支承块式无砟轨道运行的主要因素和机理。
3. 综合运用现代轨道技术和先进的轨道维护设备,对乌鞘岭隧道弹性支承块式无砟轨道进行全面评估和维护。
4. 针对乌鞘岭隧道弹性支承块式无砟轨道的常见病害问题,提出治理和根本解决的对策和建议。
三、研究意义本文的研究,一方面能够为乌鞘岭隧道弹性支承块式无砟轨道的正常运行提供保障,另一方面能够促进块式无砟轨道技术在铁路运输中的应用和发展,提高我国铁路运输的安全和效率。
四、研究方法本文将采用资料收集分析、实验模拟、场地观测等方式,结合专家讨论和实践经验进行研究,归纳总结经验教训,提出可行的建议和决策。
五、预期成果本文预期能够针对乌鞘岭隧道弹性支承块式无砟轨道的病害问题进行深入探讨和综合分析,为其整治提供依据和对策,推动块式无砟轨道技术的在铁路运输中的应用和发展。
同时,能够促进本领域的研究和学术交流,提高创新能力和实践技能。
高应力软岩公路隧道大变形机理及工程应用研究摘要:随着我国高等级公路建设的发展,近年来复杂地质条件下的长大隧道不断涌现,这些隧道地质环境恶劣,围岩软弱,且往往伴随较高的地应力,给高速公路长大隧道的设计和施工带来了巨大的挑战。
高地应力软岩隧道工程的共同特点是围岩软弱、地应力高、地应力与围岩强度比值高、变形剧烈且持续时间较长,软岩隧道工程的难点体现在结构强度的设计、施工工法和后期维护。
关键词:高应力软岩公路隧道,大变形机理,工程应用研究前言:随着我国西部大开发的深入,我国的铁路,公路建设将穿越更多更长的高应力软岩地段。
而对于我国的资源开采,水电建设。
也会遇到更多的高应力软岩情况。
但是由于我国目前所掌握的理论知识。
还无法对高应力软岩的力学行为做出合理的解释,因此目前高应力软岩隧道支护失败的例子相当多。
所以对高应力软岩开展研究具有一定的工程应用价值。
由于我国西部地区地形条件复杂,公路建设中将会遇到更多的问题,但是我国对西部地区的公路建设需求量又相当大,因此,在西部地区复杂地质条件下。
公路建设所应对的高应力软岩事件越来越多。
给复杂条件下公路隧道的设计和施工带来了巨大的挑战。
一、高应力软岩公路隧道:高应力软岩是指在较高应力水平条件下不才发生显著变形的中高强度的工程答体,其地质特征是泥质成分较少,但有一定含量,砂质成分较多,如泥岩、泥质砂岩等。
工程特点是在深度不大时表现为更岩的变形特征,当深度加大至一定值时就表现为软岩的变形特性。
在山区公路建设中,隧道不断涌现,而由于山区所在的地形地质条件复杂,所以隧道所处的复杂地形条件建设过程中容易出现高应力软岩情况。
这也就使得隧道建设过程中会遇见一些常见的地质灾害和高应力所引发的地质灾害。
因此,在隧道建设过程中,对高应力软岩情况所造成的地质灾害这里是相当重要的问题。
而且在隧道建设过程中,对高应力软岩情况的应对也成为了世界性难题之一。
引起了国际隧道工程界的广泛重视。
从上世纪60年代开始,国际研究界对高应力软岩的概念一直存在争议,目前仍未形成统一的认识。
隧道软弱围岩施工及初期支护大变形的认识与探讨孟祥马河北路桥集团有限公司摘要:近几年来隧道施工中常有围岩或初期支护发生大变形的事例,每次造成的损失少则数十万元多则上百万元,加强对这一现象的认识与探讨,预防发生大变形事故,是隧道施工人员需认真面对的课题。
文章收集整理了一些相关资料,对初支变形的原因、应对措施等作了一些简要介绍,希望能为类似工程防变形施工提供一点参考。
关键词:软弱围岩施工;大变形;原因;应对措施;认识与探讨一、变形情况隧道围岩大变形主要发生于低级变质岩、断层破碎带及煤系地层等低强度围岩中,一般具有变形量大、径向变形显著及危害巨大等特点,19世纪中叶就已经出现并引起人们的关注。
据悉国外著名的有辛普伦I线隧道、奥地利陶恩(Tauem)、阿尔贝格(Arlberg)及日本惠那山(Enasan)等公路隧道,海代尔(Maneri hvdel)、苏特来季(sutlei)、哑木那(Yamuna)及楼克塔克(IJ0ktak)等水工隧洞;国内有宝中铁路大寨岭隧道、青藏铁路关角隧道、南昆铁路家竹箐隧道及宝兰复线乌鞘岭隧道、宜万线堡镇隧道等铁路隧道,凉风垭隧道、华蓥山隧道、国道212线木寨岭隧道等公路隧道,都曾经发生过围岩或初期支护大变形,每次造成的损失少则数十万多元则匕百万元。
兰新线乌鞘岭隧道全长20 050 m,设计为两座单线隧道,线间距为40 m,隧道最大埋深l 100 m左右。
某单位施工的F7断层(DKl77+867~+050)长达817 m,埋深800 m左右,在施工中初期支护发生了连续大变形:墙腰最大收敛36.7 cm,拱顶下沉21.2 cm,最大日变形量5.2 cm,导致初期支护破坏侵入净空而拆换;+720~+150段改为圆型断面施工,也发生了大面积变形:墙腰最大变形69 cm拱顶最大变形62 cm,最大日变形量21 cm,导致第二次初支破坏,也进行了拆换处理。
泰井线碧溪隧道左洞zK41+730。
隧道方面的自然基金项目摘要1批准号50078002项目名称:隧道工程信息化设计与智能分析方法研究项目类别:面上项目申请代码:E0807项目负责人:乔春生负责人技术职:称教授依托单位:北京交通大学资助年限:01/01/2001 - 01/12/2003 资助经费17(万元) 中文摘要:以新奥法为基础的隧道工程信息化设计思想已提出了几十年,但目前我国隧道设计仍然以工程类比法为主。
这主要是由于信息化设计的各个环节严重脱节,缺乏功能齐全、使用方便、形象直观的计算与分析工具。
针对这一问题,本项目通过理论分析和试验研究,重点进行了隧道工程三维可视化快速仿真方法研究及计算机程序开发、隧道工程监控量测数据智能处理方法和隧道变形预测的智能方法研究。
对有限元求解器进行了改进,使计算速度和效率明显提升;提出了新的地下工程可视化三维建模方法和计算结果的三维可视化方法,以此为基础编写了岩土工程三维有限元可视化仿真程序;首次将以统计学习理论为基础的机器学习新方法- - 支持向量机回归算法引入隧道工程设计,在传统支持向量机一元回归算法基础上,提出了支持向量机多元回归算法和隧道位移反分析与位移预测的智能方法,解决了传统反分析方法需要事先假设围岩力学模型的难题,与人工神经元网络相比,可以较好地解决局部优化、样本数量不足等问题。
通过对浅埋单线电气化铁路隧道的应用证明,这种新的智能分析方法计算误差小,使用方便,可满足现场使用要求。
研究成果将有利于提高我国的隧道建设水平。
中文主题词:隧道工程,可视化计算,支持向量机,反分析,变性预测英文摘要:The informative design iedr of tunnel based on the New Austrilian Tunnel Method has been propsed for decades, but the tunnels of our country is generally designed based on the engineering experience and the performance of existing tunnels in similar ground at present. This is mainly because of disconnect of links for NATM and lack multiple functional, easy to use, computation and analyze tools. In order to improve the actuality mentioned above, some experiments in situ and analytical studies about visual simulation method and software can beused to tunnel engineering as well as intelligent prediction method of tunnel deformation were carried out.A fast three-dimensional finite element simulation method and a visual computing program which can be used to simulate procedures of the tunnel excavation and support was developed. The complex three-dimensional shape models can be built up easily using the program. A new intelligence method for displacement back analysis and prediction of tunnel deformation as well as the design of tunnel shotcrete-bolting support parameters based on support vector machine (SVM) was proposed. It has stronger generalization ability because the SVM theory is based on the minimization of structure risk principle. The algorithm of SVM is a convex quadratic optimization problem, therefore the solution is certainly the global optimum. Different from the classical support vector regression (SVR) algorithm which can only solve the single output variable problem, an improved SVR algorithm is proposed to resolve problemwith multiple output variable regression; the corresponding code is developed in MATLAB. The maximums of relative errors for convergences prediction of the tunnel were not greater than 6.5% and can meet the demands of tunnel engineering. It was found that the Bspline kernel function has better effectiveness compared with the RBF kernel function for prediction of tunnel convergence. Compared with BP network, the improved SVR algorithm makes great improvement in the precision of the design results, and can be employed to the similar engineering situations, the support vector machine is applicable to estimation of tunnel deformation.英文主题词:tunnel engineering;visualized scientific computing;support vector machines;displacement back analysis;deformation prediction2项目编号 50978019项目名称承载地层中隧道开挖影响分区与支护荷载分布的力学机制和计算模型研究项目类型面上项目申报学科1 (E080506) 研究性质资助金额 35.00万元开始日期 2010年1月1日完成日期 2012年12月31日项目摘要在承受附加荷载的地层中开挖隧道是城市地下空间开发过程中的一种常见情况。
高地应力施工图片及说明(乌鞘岭深埋长隧道)说明:在高地应力环境下的软弱围岩中修建深埋长隧道,软弱围岩流变是个突出的工程地质问题。
位于兰州铁路上的乌鞘岭深埋长隧道工程在穿越宽达785米的断层F7时软弱围岩发生了显著的流变,围岩最大收敛变形超过1m,对支护结构造成严重破坏。
首先,在对乌鞘岭深埋长隧道进行长期围岩收敛变形的基础上,分析乌鞘岭深埋长隧道左、右主洞的收敛变形规律,,其研究结果表明左线主洞的收敛变形均大于右线主洞,这是由于进行右线主洞施工时吸取了左线施工的经验。
(高地应力条件下的硬岩地下工程)说明:针对深埋硬岩隧洞围岩脆性破坏分析时传统硬力指标的局限性和相应的防护措施理论研究不足的特点,在数值分析中应用反映高地应力下硬岩脆性破坏特点的RDM本构模型。
结合局部能量放率评价指标分析硬岩脆性破坏过程中能量释放的强弱,对深埋洞开挖过程中防止围岩脆性破坏的设计及施工措施进行综合性研究。
首先,通过评价隧道洞群洞间距、施工进度等设计方案对围岩能量释放的影响,提出预防岩爆发生的区域性对策。
然后,针对能量释放的时空演化规律,本着减压泄能的原则,给出支护时期、支护类型和参数的设计建议。
(川藏公路二郎山隧道)说明:川藏二郎山隧道位于国道348线上,其轴线分水岭海拔为2948m,随址海拔22000m,最大埋深748m。
该隧道洞长4176m,埋深最深、海拔最高、地应力最大吗,地质条件极为复杂的特长山岭公路隧道,其采用新奥尔法施工,复合式衬砌,同时,开展了高地应力与围岩稳定性的专题研究。
施工过程中采取“打眼释放应力,短进尺、多循环,光面爆破,掌子面喷水,自进式长锚杆”等施工方法,减少了岩爆危害,避免了灾害性事故的发生。
乌鞘岭特长隧道软弱围岩大变形特性研究乌鞘岭特长隧道软弱围岩大变形特性研究摘要乌鞘岭特长隧道全长20050m,是我国目前正在修建的国内最长的单线铁路隧道。
隧道施工中发生了严重的围岩大变形,主要表现为隧道中部岭脊地段P4—F7断层构成的“挤压构造带”在深埋高地应力条件下的软弱围岩大变形,拱顶最大下沉及侧壁最大水平收敛变形量均达1 000mm以上,导致初期支护开裂破坏并严重侵入衬砌净空等,不得不将初期支护全部或部分拆除重做,再施作二次衬砌。
文章对隧道区域工程地质环境、软弱围岩变形力学特性及初期支护破坏规律、围岩变形的影响因素等进行了分析研究,并讨论了隧道围岩加固、初期支护预留变形量与二次衬砌施作时机等问题。
关键词乌鞘岭隧道软弱围岩变形力学特性影响因素预留变形量破坏规律中图分类号:U451’.2 文献标识码:A1 工程概况我国正在修建的国内最长的乌鞘岭特长隧道全长20 050m,位于改建铁路兰新线兰武段打柴沟车站和龙沟车站之间,隧道洞身最大埋深1 lOOm。
设计为两座单线隧道,线间距40m。
两座隧道除出口段线路位于半径为1 200m的曲线上,右、左线缓和曲线分别伸人隧道68.79m、127.29m处,其余地段均为直线。
两座隧道纵坡相同,大部分为11%。
的单面下坡。
右线隧道较左线隧道高0.56—0.73 m,进、出口右线轨面设计高程分别为2 662.84 m、2 446.8 m。
由于工程艰巨,工期十分紧迫,设计采取“长隧短打”措施,增设了13个斜井、一个竖井,共14个辅助坑道,总长20 383 m,与两个单线隧道合计总长60483 m。
均设计为复合衬砌,钻爆法施工。
隧道自2003年3月开工至2004年8月底,已完成右线正洞成洞11 497 m,占设计总量的57.3%;完成左线(平导)开挖14 012 m(折合成洞8 522m),占设计总量的70%(42.5%);完成辅助坑道19 637 m,占设计总量的96.3%。