高三数学单元测试卷三
- 格式:docx
- 大小:65.96 KB
- 文档页数:14
山东省济宁市2024届高三下学期三模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则中元素的个数为( )A. 1 B. 2C. 3D. 4【答案】B 【解析】【分析】根据分式不等式解集合B ,结合交集的概念与运算即可求解.【详解】由,得且,解得,即,所以,有2个元素.故选:B2. 的展开式中的系数为( )A. B. C. 120 D. 160【答案】A 【解析】【分析】求出二项式展开式的通项公式,再由给定幂指数求解即得.【详解】二项式展开式的通项为,由,得,所以的展开式中的系数为.故选:A{}22,1,1,2,01x A B x x ⎧⎫+=--=≤⎨⎬-⎩⎭A B ⋂201x x +≤-(2)(1)0≤x x +-10x -≠21x -£<{21}B x x =-≤<{2,}1A B ⋂=--262()x x-3x 160-120-262(x x-261231662C ()()(2)C ,N,6r rr r r r r T x x r r x--+=-=-∈≤1233r -=3r =262()x x-3x 336(2)C 160-=-3. 若随机变量,随机变量,则( )A. 0 B.C.D. 2【答案】B 【解析】【分析】利用正态分布的两个参数就是随机变量的期望和方差,再利用两个线性随机变量之间的期望和方差公式,即,就可以求出结果.【详解】由可知:,又因为,所以,,则,故选:B.4. 已知数列中,,则( )A. B. C. 1D. 2【答案】C 【解析】【分析】利用数列的递推公式求出数列的周期,即可求解.【详解】由,得,,,,,,()2~32X N ,1(3)2Y X =-()1()1E Y D Y +=+1245()()(),E Y E kX b kE X b =+=+()2()()D Y D kX b k D X =+=()2~32X N ,()3,()4E X D X ==1(3)2Y X =-()131333()(0222222E Y E X E X =-=-=-=()131()(1224D Y D X D X =-==()1011()1112E Y D Y ++==++{}n a ()*1211212n n n a a a a a n n +-===-≥∈N ,,,2024a=2-1-()*12112,1,2,n n n a a a a a n n +-===-≥∈N3211a a a =-=-4322a a a =-=-4531a a a ==--6541a a a =-=7652a a a =-=8761a a a ==-则是以6为周期的周期数列,所以.故选:C5. 已知抛物线的焦点为,过且斜率为的直线交抛物线于,两点,若,则( )A.B. 1C.D. 2【答案】D 【解析】【分析】设,,,联立抛物线方程,利用韦达定理和抛物线的定义建立关于的方程,解之即可求解.【详解】由题意知,,设,联立直线与抛物线得,消去,得,所以.由抛物线的定义知.而,故,解得.故选:D.{}n a 20243376221a a a ⨯+===2:2(0)C y px p =>F F 2l C A B ||5AB =p =1232:22p l y x ⎛⎫=-⎪⎝⎭()11,A x y ()22,B x y p ,02p F ⎛⎫⎪⎝⎭()()1122:2(),,,,2p l y x A x y B x y =-22()22p y x y px⎧=-⎪⎨⎪=⎩y 22460x px p -+=1232x x p +=1212352222p p AB AF BF x x x x p p p p ⎛⎫⎛⎫=+=+++=++=+= ⎪ ⎪⎝⎭⎝⎭5AB =552p =2p =6. 已知函数,若在区间上的值域为,则实数的取值范围是( )A. B. C. D. 【答案】D 【解析】【分析】利用二倍角公式、辅助角公式化简函数,再借助正弦函数的图象与性质求解即得.【详解】依题意,函数,当时,,显然,且正弦函数在上单调递减,由在区间上的值域为,得,解得,所以实数的取值范围是.故选:D7. 已知函数为偶函数,当时,,则曲线在点处的切线方程是( )A. B. C. D. 【答案】A 【解析】【分析】利用偶函数的性质求出的解析式,再利用导数的几何意义求出切线方程.【详解】函数为偶函数,当时,,则当时,,求导得,则,而,所以曲线在点处的切线方程是,即.故选:A1()cos )cos 2f x x x x =+-()f x π[,]4m -[m ππ[,62ππ[,62π7π[,612π7π,612⎡⎤⎢⎥⎣⎦()f x 211π()cos cos 2cos 2sin(2226f x x x x x x x =+-=+=+π[,]4x m ∈-πππ2[,2]636x m +∈-+π4ππsin(sin 1332-===sin y x =π4π[,]23()f x π[,]4m -[ππ4π2263m ≤+≤π7π612m ≤≤m π7π,612⎡⎤⎢⎥⎣⎦()f x 0x <2()ln()f x x x =-+()y f x =(1,(1))f 320x y --=320x y +-=320x y ++=320x y -+=0x >()f x 0x <2()ln()f x x x =-+0x >2()()ln f x f x x x =-=+1()2f x x x'=+(1)3f '=(1)1f =()y f x =(1,(1))f 13(1)y x -=-320x y --=8. 已知双曲线的左、右焦点分别为,根据双曲线的光学性质可知,过双曲线上任意一点的切线平分.直线过交双曲线的右支于A ,B 两点,设的内心分别为,若与的面积之比为,则双曲线的离心率为( )A.B.C.D..【答案】C【解析】【分析】利用切线长定理求得直线的方程,再借助双曲线的切线方程求出点的横坐标,结合面积关系求解即得.【详解】令圆切分别为点,则,,令点,而,因此,解得,又,则点横坐标为,同理点横坐标为,即直线方程为,设,依题意,直线的方程分别为:,,联立消去得:,整理得,令直线的方程为,于是,即点的横坐标为,因此,所以双曲线的离心率.故选:C的2222:1(00)x y C a b a b-=>>,12,F F C ()00,P x y 0022:1(0,0)x x y yl a b a b-=>>12F PF ∠1l 2F C 12121,,AF F BF F ABF 12,,I I I 12II I 212F I I 35C 325312I I I 1I 1212,,AF AF F F ,,P Q T 1122||||,||||,||||AP AQ F P FT F Q F T ===121212||||||||||||2FT F T F P F Q AF AF a -=-=-=0(,0)T x 12(,0),(,0)F c F c -00()()2x c c x a ----=0x a =112I T F F ⊥1I a 2I a 12I I x a =1122(,),(,)A x y B x y ,AI BI 11221x x y y a b -=22221x x y y a b -=y 122122(1)(1)x x x x y y a a -=-2211221()a y y x x y x y -=-AB x my c =+22211221()()()a y y a x my c y my c y c -==+-+I 2a c12212235II I F I I a a S a c S c a c -===- C 53c e a ==【点睛】方法点睛:求解椭圆或双曲线的离心率的三种方法:①定义法:通过已知条件列出方程组,求得得值,根据离心率定义求解离心率;②齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;③特殊值法:通过取特殊值或特殊位置,求出离心率.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分.9. 已知复数,则下列说法中正确的是( )A. B. C. “”是“”的必要不充分条件 D. “”是“”的充分不必要条件【答案】AC 【解析】【分析】根据复数加法、乘法、乘方运算,结合复数的几何意义计算,依次判断选项即可.【详解】A :设,则,所以,则,故A 正确;B :设,则,所以,,则,故B 错误;C :由选项A 知,,,又,所以,不一定有,即推不出;的,a c e ,a c e 12,z z 1212z z z z =⋅1212z z z z +=+12z z ∈R 12z z =12=z z 2212z z =12i,i(,,,)z a b z c d a b c d =+=+∈R 12(i)(i)()()i z z a b c d ac bd ad bc =++=-++12z z ===1212z z z z =12i,i(,,,)z a b z c d a b c d =+=+∈R 12()()i z z a c b d +=+++1z +=12z z +=1212z z z z +≠+12(i)(i)()()i z z a b c d ac bd ad bc =++=-++2i z c d =-12z z ∈R 0ad bc +=a cb d =⎧⎨=-⎩12z z =由,得,则,则,即,所以“”是“”的必要不充分条件,故C 正确;D :设,则,若,则,即,若,则,得,所以“”是“”的既不充分也不必要条件,故D 错误.故选:AC10. 已知数列的前项和为,且满足,数列的前项和为,且满足,则下列说法中正确的是( )A. B. 数列是等比数列C. 数列是等差数列 D. 若,则【答案】BC 【解析】【分析】由数列的前项和为求出判断B ;由递推公式探讨数列的特性判断C ;求出判断A ;由求出,再利用裂求和法求解即得.【详解】由,得,,当时,,满足上式,因此,数列是等比数列,B 正确;由,得,,解得,,A 错误;当时,,两式相减得,于是,两式相加得,整理得,因此数列是等差数列,C 正确;12z z =i i a b c d +=-a cb d=⎧⎨=-⎩0ad bc +=12z z ∈R 12z z ∈R 12z z =12i,i(,,,)z a b z c d a b c d =+=+∈R 22222212()2i,()2i z a b ab z c d cd =-+=-+12=z z =2222+=+a b c d 2212z z=2222()2i ()2i a b ab c d cd -+=-+222222a b c d ab cd⎧-=-⎨=⎩12=z z 2212z z ={}n a n n S 1233n nS +=-{}n b n n T 112n n T b n =+113=a b {}n a {}n b 23b =101319log 10na n nb ==∑{}n a n n S n a {}n b 1b 23b =n b 1233n nS +=-113322n n S +=⋅-113a S ==2n ≥111(33)32n nn n n n a S S +-=-=-=13a =3n n a ={}n a 112n n T b n =+2n n n T b n =+111112b T b ==+12b =113a b ≠2n ≥11112n n n T b n ---=+-121122n n n n b b ---+=11122n n n n b b +-=+112211222n n n n n n b b b -+---=+112n n n b b b -+=+{}n b当时,等差数列的公差为1,通项,,所以,D 错误.故选:BC11. 如图,在直三棱柱中,,,分别是棱,上的动点(异于顶点),,为的中点,则下列说法中正确的是( )A. 直三棱柱体积的最大值为B. 三棱锥与三棱锥的体积相等C. 当,且时,三棱锥外接球的表面积为D. 设直线,与平面分别相交于点,,若,则的最小值为【答案】BCD 【解析】【分析】A 选项:根据三棱柱体积公式,结合三角函数值域可得最值;B 选项:根据等体积转化可判断;C 选项:结合正弦定理确定正三角形外心,进而确定球心及半径;D选项:根据相似及基本不等式可得最值.【详解】A 选项:由已知可得,又,所以,即体积的最大值为,A 选项错误;B 选项:如图所示,23b ={}n b 1n b n =+31111log (1)1n a n b n n n n ==-++10131111111111011log 22391010111111na n nb ==-+-++-+-=-=∑ 111ABC A B C -2AB BC ==13AA =D E 1AA 1CC 1AD C E =F 11B C 111ABC A B C -1B DEF -A DEF -60ABC ∠=︒123AD AA =D ABC -28π3DF EF ABC P Q 1cos 4ABC ∠=AP CQ +111111sin 6sin 2ABC A B C ABC V S AA BA BC ABC AA ABC -=×=××Ð×=Ð()0,ABC π∠∈(]sin 0,1ABC ∠∈6由点为的中点,则,设点到平面的距离为,则,,又,所以,所以,B 选项正确;C 选项:如图所示,由已知为正三角形,设外接球球心为,中心为,中点为,则平面,且,,即,所以外接球半径为,外接球表面积为,C 选项正确;D 选项:如图所示,取中点,可知在的延长线上,在的延长线上,F 11B C 111B DEF C DEF F C DE V V V ---==F 11AA C C h 11113B DEF F C DE C DE V V S h --==×13B DEF F ADE ADE V V S h --==×1ADC E =1ADE C DE S S = 1F C DE F ADE V V --=ABC O ABC 1O AD M 1OO ⊥ABC 1111123OO AD AA ===12sin AB O A ACB ==∠1O A =R ==228π4π3R =BC N P NA Q BC则,即,设,,易知,,则,,则,,,所以,当且仅当,即时取等号,故D 选项正确;故选:BCD.三、填空题:本题共3小题,每小题5分,共15分.12. 已知函数则____________.【解析】【分析】利用已知分段函数,可先求,再求.【详解】因为,所以.所以..13. 甲和乙两个箱子中各装有6个球,其中甲箱子中有4个红球、2个白球,乙箱子中有2个红球、4个白球,现随机选择一个箱子,然后从该箱子中随机取出一个球,则取出的球是白球的概率为____________.【答案】##05的.22212coc 4122144AN BA BN BA BN ABC =+-⋅⋅∠=+-⨯⨯⨯=2AN =11AD C E AA λ==()0,1λ∈PAD PNF 1QCE FC E PA AD PN NF =11QC CEFC C E=()()2PA PN PA AN PA λλλ==+=+21PA λλ=-111QC FC λλλλ--==211AP CQ λλλλ-+=+≥-211λλλλ-=-1λ=410()2log 0xx f x x x ⎧⎛⎫⎪ ⎪=⎨⎝⎭⎪>⎩,,,…12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭11(22f =-1122f f f ⎛⎫⎛⎫⎛⎫=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭410()2log 0xx f x x x ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩,,,44111log =log 2222f ⎛⎫=-=- ⎪⎝⎭11221112222f f f -⎛⎫⎛⎫⎛⎫⎛⎫=-=== ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭12【解析】【分析】把所求概率的事件分拆成两个互斥事件的和,再利用互斥事件的概率公式及相互独立事件的概率公式求解即得.【详解】依题意,取出的球是白球的事件是取甲箱并取白球的事件与取乙箱并取白球的事件的和,显然事件与互斥,,,所以.故答案为:14. 已知,则的最小值为____________.【解析】【分析】根据平面向量的模求出数量积,利用向量的几何意义和运算律计算可得与点的距离之和,作出图形,确定的最小值,结合图形即可求解.【详解】由,得,即,解得.,与点的距离之和.如图,点关于x轴的对称点为,连接,A1A2A 1A2A1121()266P A=⨯=2141()263P A=⨯=121()()()2P A P A P A=+=126a a b=-=11()()23f x xa b xa b x=-+-∈Ra b⋅()f x=(,0)P x1111(,(,)2233A B----PA PB+6,a a b=-=222218a b a a b b-=-⋅+=1823618a b-⋅+=18a b⋅=-11()23f x ax b ax b=-+-=====(,0)P x1111(,(,)2233A B----A11(,)22A'-A B'则,当且仅当三点共线时等号成立,所以的最小值为与点的距离之和,结合图形,确定(当且仅当三点共线时等号成立).四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15. 产品重量误差是检测产品包装线效能的重要指标.某食品加工厂为了检查一条新投入使用的全自动包装线的效能,随机抽取该包装线上的20件产品作为样本,并检测出样本中产品的重量(单位:克),重量的分组区间为.由此得到样本的频率分布直方图(如图),已知该产品标准重量为500克.(1)求直方图中的值;(2)若产品重量与标准重量之差的绝对值大于或等于5,即判定该产品包装不合格,在上述抽取的20件PA PB PA PB A B +=+≥=='',,A P B '()f x (,0)P x 1111(,(,)2233A B ----PA PB PA PB A B ++'=≥',,A P B '(485,490],(490,495],,(505,510] a产品中任取2件,求恰有一件合格产品的概率;(3)以样本的频率估计概率,若从该包装线上任取4件产品,设为重量超过500克的产品数量,求的数学期望和方差.【答案】(1)0.05; (2); (3),.【解析】【分析】(1)利用频率分布直方图中小矩形面积和为1求出的值.(2)求出抽取的20件产品中的不合格件数,再利用古典概率计算即得.(3)求出样本中,重量超过500克的产品数量及对应概率,利用二项分布的期望、方差公式计算得解.【小问1详解】依题意,,解得,所以直方图中的值是0.05.【小问2详解】样本中不合格产品数量为,记事件表示“在上述抽取的20件产品中任取2件,恰有一件合格产品”则,所以在上述抽取的20件产品中任取2件,恰有一件合格产品的概率为.小问3详解】根据该样本频率分布直方图,重量超过500克的产品数量为,则从包装线上任取一件产品,其重量超过500克的概率为所以,随机变量,因此,.16. 图1是由正方形ABCD 和两个正三角形组成的一个平面图形,其中,现将沿AD 折起使得平面平面,将沿CD 折起使得平面平面,连接EF ,BE ,BF ,如图2.【Y Y 4895652125a (0.010.060.070.01)51a ++++⨯=0.05a =a 20(0.010.060.01)58⨯++⨯=A 11812220C C 48()C 95P A ==489520(0.050.01)56⨯+⨯=632010=3~(4,)10Y B 36()4105E Y =⨯=3321()4(1)101025D Y =⨯⨯-=,ADE CDF △△2AB =ADE V ADE ⊥ABCD CDF CDF ⊥ABCD(1)求证:平面;(2)求平面与平面夹角的大小.【答案】(1)证明见解析; (2).【解析】【分析】(1)取的中点,利用面面垂直的性质,结合平行四边形的性质、线面平行的判定推理即得.(2)以为原点建立空间直角坐标系,求出平面的法向量,利用面面角的向量求法求解即得.【小问1详解】分别取棱的中点,连接,由是边长为2正三角形,得,又平面平面,平面平面,平面,则平面,同理平面,于是,即四边形为平行四边形,,而平面平面,所以平面.【小问2详解】//EF ABCD ADE BCF π6,CD AD ,O P O BCF ,CD AD ,O P ,,OF PE OP CDF ,OF CD OF ⊥=CDF ⊥ABCD CDF ⋂ABCD DC =OF ⊂CDF OF ⊥ABCD PE ⊥,ABCD PE =//,OF PE OF PE =OPEF //OP EF OP ⊂,ABCD EF ⊄ABCD //EF ABCD取棱的中点,连接,由四边形为正方形,得,以为坐标原点,的方向分别为轴的正方向,建立空间直角坐标系,则,,设平面的一个法向量为,则,令,得,由,平面平面,平面平面平面,得平面,则为平面的一个法向量,设平面与平面的夹角为则,解得,所以平面与平面的夹角为.17. 在△ABC 中,角A ,B ,C 所对的边分别为,已知.(1)求证:;(2)若,求面积的取值范围.【答案】(1)证明见解析 (2)【解析】【分析】(1)根据两角和差的正弦公式、二倍角的余弦公式化简计算可得,结合诱导公式计算即可证明;(2)由(1)得且,根据正弦定理、三角形的面积公式和三角恒等变换化简可得,结合正切函数的性质即可求解.【小问1详解】,,,又,则,,AB Q OQ ABCD OQ CD ⊥O ,,OQ OC OF,,x y z (2,1,0),(0,1,0),(0,1,0)B C F D -(2,0,0),(0,CB CF ==-BCF (,,)n x y z = 200n CB x n CF y ⎧⋅==⎪⎨⋅=-=⎪⎩1z =n =CD AD ⊥ADE ⊥ABCD ADE ,ABCD AD CD =⊂ABCD CD ⊥ADE (0,2,0)DC =ADE ADE BCF θ||cos |cos ,|||||DC n DC n DC n θ⋅=〈〉===π(0,]2θ∈π6θ=ADE BCF π6a b c ,,(1cos 2)(sin 1)cos sin 20C A A C -+-=π2B C =+ππ4,,86a C ⎛⎫=∈⎪⎝⎭ABC (4,2sin (sin cos )0C C B +=π22A C =-ππ64A <<4tan 2ABC S C = (1cos 2)(sin 1)cos sin 20C A A C -+-=sin 1cos 2sin cos 2cos sin 20A C A C A C +---=sin cos 21sin(2)0A C A C -+-+=πA CB +=-sin()cos 21sin()0BC C B C +-+--=2sin cos sin cos 12sin 1sin cos sin cos 0B C C B C B C C B +-++-+=,即,又,所以,即,又,所以;【小问2详解】由(1)知,,得,由,得,由正弦定理得,得,所以,又,所以,又在上单调递增,则,所以,即的面积我取值范围为.18. 已知椭圆的左焦点为,上顶点为,离心率,直线FB 过点.(1)求椭圆的标准方程;(2)过点的直线与椭圆相交于M ,N 两点(M 、N 都不在坐标轴上),若,求直线的方程.【答案】(1);(2).【解析】【分析】(1)根据给定条件,求出即得椭圆的标准方程.(2)根据给定条件,借助倾斜角的关系可得,设出直线的方程,与椭圆方程联立,利用韦达定理结合斜率的坐标公式求解即得.【小问1详解】22sin 2sin cos 0C C B +=2sin (sin cos )0C C B +=sin 0C >sin cos 0C B +=πcos sin cos()2B C C =-=+0π,0πB C <<<<π2B C =+π2B C =+πA B C ++=π22A C =-ππ86C <<ππ64A <<sin sin a c A C=sin sin 4sin πsin cos 2sin(2)2a C a C Cc A C C ===-2211sin π1sin 4sin 2sin 4sin()4cos 4tan 222cos 222cos 2cos 2ABC C C CS ac B C C C C C C==⨯⨯+=⨯⨯== ππ86C <<ππ243C <<tan y x =ππ(,22-tan 2C ∈4tan 2C ∈ABC (4,2222:1(0)x y E a b a b +=>>F B e =(1,2)P E F l E MPF NPF =∠∠l 2212x y +=550x y ++=,,a b c E 1MP NP k k ⋅=l令,由,得,则直线的斜率,由直线过点,得直线的方程为,因此所以椭圆的标准方程为.【小问2详解】设,直线的倾斜角为,直线的倾斜角为,由直线的斜率知直线的倾斜角为,于是,即有,显然均不等于,则,即直线的斜率满足,由题设知,直线的斜率不为0,设直线的方程为,由,消去x 并整理得,,显然,设,则,由,得,即,则,整理得,即,于是,而,解得,,所以直线的方程为,即.【点睛】关键点点睛:本题第2问,由,结合直线倾斜角及斜率的意义求得(,0)F c -c e a ==,a b c ==FB 1k =FB (1,2)P FB 1y x =+1,b c a ===C 2212x y +=MPF NPF θ∠=∠=MP βNP αFP 1k =FP π4ππ,44αθβθ=+=+π2αβ+=,αβπ2πsin()sin 2tan tan 1πcos cos()2αααβαα-=⋅=-,MP NP 1MP NP k k ⋅=l l 1,1x my m =-≠22122x my x y =-⎧⎨+=⎩22(2)210m y my +--=0∆>1122(,),(,)M x y N x y 12122221,22m y y y y m m +==-++1MP NP k k ⋅=121222111y y x x --⋅=--1212(1)(1)(2)(2)0x x y y -----=1212(2)(2)(2)(2)0my my y y -----=21212(1)(22)(0)m y y m y y ---+=2221(22)2022m m m m m --⋅--=++25410m m --=1m ≠15m =-l 115x y =--550x y ++=MPF NPF =∠∠是解题之关键.19. 已知.(1)判断在上的单调性;(2)已知正项数列满足.(i )证明:;(ii )若的前项和为,证明:.【答案】(1)单调递减;(2)(i )证明见解析;(ii )证明见解析.【解析】【分析】(1)求出函数的导数,再判断时,导数值的正负即可得解.(2)(i )利用(1)的结论,结合分析法可得,再利用分析法推理,构造函数借助导数确定单调性即可得;(ii )利用(i )的结论,借助放缩法及等比数列求和即得.【小问1详解】函数的定义域为,求导得,令,求导得,当时,,函数在上单调递减,则,即所以在上单调递减.【小问2详解】(i )首先证明:,即证明,即证明,即证明,由及(1)知,,所以;要证明,即证,只需证,而,则只需证,,令,则,由,知,则,1MP NP k k ⋅=()(2)e x f x x x =--()f x (0,)+∞{}n a 1*1)1,e e 1(n n a a n a a n +=⋅=-∈N *112()n n n a a a n ++<<∈N {}n a n n S *112()2n n S n -≥-∈N ()f x 0x >1n n a a +<12n n a a +<()f x R ()(1)e 1x f x x '=--()(1)e 1x g x x =--()e x g x x '=-,()0x ∈+∞()0g x '<()g x (0,)+∞()(0)g x g <()0f x '<()f x (0,)+∞1n n a a +<1ee n na a +<e 1e n na a na -<(1e 10)n a n a --<0n a >((1)e 0)1n an n g a a =--<1n n a a +<12n n a a +<112n n a a +<112e e n n a a n n a a +<1*e e 1()n n a a n a n +⋅=-∈N 12e e 1n n aa na ⋅<-12e n a t =2ln n a t =111,n n a a a +=<01n a <≤t ∈只需证,即证,令,求导得,于是函数在上单调递减,,即,因此,所以.(ii )由(i )可知,,则当且时,,当时,,所以.【点睛】思路点睛:数列是一类特殊的函数某些数列问题,,准确构造相应的函数,借助函数导数研究其单调性是解题的关键,背景函数的条件,应紧扣题中的限制条件.22ln 1t t t ⋅<-12ln ,t t t t<-∈1()2ln (),h t t t t t =--∈222222121(1)()10t t t h t t t t t-+--'=--==-<()ht t ∈()(1)0h t h <=12ln t t t<-12n n a a +<112n n n a a a ++<<1213243231111111,,,222222a a a a a a a =>=>>>>541411111,,2222n n n a a a a -->>>> 2n ≥*n ∈N 1232111111112*********n n nn n S a a a a ---=++++>++++==-- 1n =11S =*112()2n n S n -≥-∈N。
2016年某某某某市平罗中学高考数学三模试卷(理科)一.选择题:(本大题共12小题,每小题5分,共60分.在每小题所给的四个答案中有且只有一个答案是正确的.把正确选项涂在答题卡的相应位置上.)1.若集合P={x||x|<3,且x∈Z},Q={x|x(x﹣3)≤0,且x∈N},则P∩Q等于()A.{0,1,2} B.{1,2,3} C.{1,2} D.{0,1,2,3}2.若复数z=sinθ﹣+(cosθ﹣)i是纯虚数,则tanθ的值为()A.B.﹣ C.D.﹣3.设命题p:若x,y∈R,x=y,则=1;命题q:若函数f(x)=e x,则对任意x1≠x2都有>0成立.在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是()A.①③ B.①④ C.②③ D.②④4.已知向量满足•(+)=2,且||=1,||=2,则与的夹角为()A.B.C.D.5.若随机变量X~N(μ,σ2)(σ>0),则下列如下结论:P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974,某班有48名同学,一次数学考试的成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数均为()A.32 B.16 C.8 D.246.公元263年左右,我国数学家X徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”X徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用X徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:≈1.732,s in15°≈0.2588,sin7.5°≈0.1305)A.12 B.24 C.36 D.487.设S n是数列{a n}(n∈N+)的前n项和,n≥2时点(a n﹣1,2a n)在直线y=2x+1上,且{a n}的首项a1是二次函数y=x2﹣2x+3的最小值,则S9的值为()A.6 B.7 C.36 D.328.某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.4cm3B.6cm3C.D.9.双曲线E:﹣=1(a,b>0)的右焦点为F(c,0),若圆C:(x﹣c)2+y2=4a2与双曲线E的渐近线相切,则E的离心率为()A.B.C.D.10.数列{a n}满足a1=1,对任意的n∈N*都有a n+1=a1+a n+n,则=()A.B.C.D.11.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC 为球O的直径,且SC=2,则此棱锥的体积为()A.B.C.D.12.定义在R上的函数f(x),f′(x)是其导数,且满足f(x)+f′(x)>2,ef(1)=2e+4,则不等式e x f(x)>4+2e x(其中e为自然对数的底数)的解集为()A.(1,+∞)B.(﹣∞,0)∪(1,+∞)C.(﹣∞,0)∪(0,+∞)D.(﹣∞,1)二、填空题:(本大题共4小题,每小题5分,共20分)13.若(2x﹣1)dx=6,则二项式(1﹣2x)3m的展开式各项系数和为.14.记集合,构成的平面区域分别为M,N,现随机地向M中抛一粒豆子(大小忽略不计),则该豆子落入N中的概率为.15.已知点A(0,2),抛物线C1:y2=ax(a>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若|FM|:|MN|=1:,则a的值等于.16.给出下列命题:①命题“若方程ax2+x+1=0有两个实数根,则a≤”的逆命题是真命题;②“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”是“a=1”的必要不充分条件;③函数f(x)=2x﹣x2的零点个数为2;④幂函数y=x a(a∈R)的图象恒过定点(0,0)⑤“向量与的夹角是钝角”的充分必要条件是“•<0”;⑥方程sinx=x有三个实根.其中正确命题的序号为.三、解答题(本大题共计70分,解答应写出说明文字、证明过程或演算步骤).17.已知f(x)=2sin(Ⅰ)若,求f(x)的值域;(Ⅱ)在△ABC中,A为BC边所对的内角若f(A)=2,BC=1,求的最大值.18.自2016年1月1日起,我国全面二孩政策正式实施,这次人口与生育政策的历史性调整,使得“要不要再生一个”“生二孩能休多久产假”等成为千千万万个家庭在生育决策上避不开的话题.为了解针对产假的不同安排方案形成的生育意愿,某调查机构随机抽取了200户有生育二胎能力的适龄家庭进行问卷调查,得到如下数据:产假安排(单位:周)14 15 16 17 18有生育意愿家庭数 4 8 16 20 26(1)若用表中数据所得的频率代替概率,面对产假为14周与16周,估计某家庭有生育意愿的概率分别为多少?(2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择.①求两种安排方案休假周数和不低于32周的概率;②如果用ξ表示两种方案休假周数和.求随机变量ξ的分布及期望.19.如图,空间几何体ABCDE中,平面ABC⊥平面BCD,AE⊥平面ABC.(1)证明:AE∥平面BCD;(2)若△ABC是边长为2的正三角形,DE∥平面ABC,且AD与BD,CD所成角的余弦值均为,试问在CA上是否存在一点P,使得二面角P﹣BE﹣A的余弦值为.若存在,请确定点P的位置;若不存在,请说明理由.20.已知椭圆C: +=1(a>b>0)过点A(﹣,),离心率为,点F1,F2分别为其左右焦点.(1)求椭圆C的标准方程;(2)若y2=4x上存在两个点M,N,椭圆上有两个点P,Q满足,M,N,F2三点共线,P,Q,F2三点共线,且PQ⊥MN.求四边形PMQN面积的最小值.21.设函数,(a>0)(Ⅰ)当时,求函数f(x)的单调区间;(Ⅱ)若f(x)在内有极值点,当x1∈(0,1),x2∈(1,+∞),求证:.(e=2.71828…)【选考题】请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,答题时用2B铅笔在答题卡上把所选题目的题号涂黑.请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一题计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.[选修4-1:几何证明选讲] 22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BE•BD﹣AE•AC.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,设倾斜角为α的直线(t为参数)与曲线(θ为参数)相交于不同两点A,B.(1)若,求线段AB中点M的坐标;(2)若|PA|•|PB|=|OP|2,其中,求直线l的斜率.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣1|+|x﹣2|.(1)画出函数y=f(x)的图象;(2)若不等式|a+b|+|a﹣b|≥|a|f(x),(a≠0,a、b∈R)恒成立,某某数x的X围.2016年某某某某市平罗中学高考数学三模试卷(理科)参考答案与试题解析一.选择题:(本大题共12小题,每小题5分,共60分.在每小题所给的四个答案中有且只有一个答案是正确的.把正确选项涂在答题卡的相应位置上.)1.若集合P={x||x|<3,且x∈Z},Q={x|x(x﹣3)≤0,且x∈N},则P∩Q等于()A.{0,1,2} B.{1,2,3} C.{1,2} D.{0,1,2,3}【考点】交集及其运算.【分析】化简集合P、Q,求出P∩Q即可.【解答】解:P={x||x|<3,且x∈Z}={x|﹣3<x<3,x∈Z}={﹣2,﹣1,0,1,2},Q={x|x(x﹣3)≤0,且x∈N}={x|0≤x≤3,且x∈N}={0,1,2,3},∴P∩Q={0,1,2}.2.若复数z=sinθ﹣+(cosθ﹣)i是纯虚数,则tanθ的值为()A.B.﹣ C.D.﹣【考点】复数的基本概念.【分析】复数z=sinθ﹣+(cosθ﹣)i是纯虚数,可得si nθ﹣=0,cosθ﹣≠0,可得cosθ,即可得出.【解答】解:∵复数z=sinθ﹣+(cosθ﹣)i是纯虚数,∴sinθ﹣=0,cosθ﹣≠0,∴cosθ=﹣.则tanθ==﹣.故选:B.3.设命题p:若x,y∈R,x=y,则=1;命题q:若函数f(x)=e x,则对任意x1≠x2都有>0成立.在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是()A.①③ B.①④ C.②③ D.②④【考点】复合命题的真假.【分析】命题p:y=0时, =1不成立,即可判断出真假;命题q:由于函数f(x)在R 上单调递增,即可判断出真假.再利用复合命题真假的判定方法即可得出.【解答】解:命题p:若x,y∈R,x=y,则=1,y=0时不成立,因此是假命题;命题q:若函数f(x)=e x,由于函数f(x)在R上单调递增,则对任意x1≠x2都有>0成立,是真命题.因此在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是②④.故选:D.4.已知向量满足•(+)=2,且||=1,||=2,则与的夹角为()A.B.C.D.【考点】平面向量数量积的运算.【分析】根据条件求出向量•的值,结合向量数量积的应用进行求解即可.【解答】解:∵•(+)=2,∴•+2=2,即•=﹣2+2=2﹣1=1则cos<,>==,则<,>=,故选:D5.若随机变量X~N(μ,σ2)(σ>0),则下列如下结论:P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974,某班有48名同学,一次数学考试的成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数均为()A.32 B.16 C.8 D.24【考点】正态分布曲线的特点及曲线所表示的意义.【分析】正态总体的取值关于x=80对称,位于70分到90分之间的概率是0.6826,位于80分到90分之间的概率是位于70分到90分之间的概率的一半,得到要求的结果.【解答】解:∵数学成绩近似地服从正态分布N(80,102),P(|x﹣u|<σ)=0.6826,∴P(|x﹣80|<10)=0.6826,根据正态曲线的对称性知:位于80分到90分之间的概率是位于70分到90分之间的概率的一半∴理论上说在80分到90分的人数是(0.6826)×48≈16.故选:B.6.公元263年左右,我国数学家X徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”X徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用X徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)A.12 B.24 C.36 D.48【考点】程序框图.【分析】列出循环过程中S与n的数值,满足判断框的条件即可结束循环.【解答】解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:B.7.设S n是数列{a n}(n∈N+)的前n项和,n≥2时点(a n﹣1,2a n)在直线y=2x+1上,且{a n}的首项a1是二次函数y=x2﹣2x+3的最小值,则S9的值为()A.6 B.7 C.36 D.32【考点】二次函数的性质.【分析】先根据数列的函数特征以及二次函数的最值,化简整理得到{a n}是以为2首项,以为公差的等差数列,再根据前n项公式求出即可.【解答】解∵点(a n﹣1,2a n)在直线y=2x+1上,∴2a n=2a n﹣1+1,∴a n﹣a n﹣1=,∵二次函数y=x2﹣2x+3=(x﹣1)2+2,∴a1=2,∴{a n}是以为2首项,以为公差的等差数列,∴a n=2+(n﹣1)=n+当n=1时,a1=n+=2成立,∴a n=n+∴S9=9a1+=9×2+=36故选:C8.某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.4cm3B.6cm3C.D.【考点】由三视图求面积、体积.【分析】根据几何体的三视图,得出该几何体是三棱锥与三棱柱的组合体,由此求出它的体积即可【解答】解:根据几何体的三视图,得该几何体是上部为三棱锥,下部为三棱柱的组合体,三棱柱的每条棱长为2cm,三棱锥的高为2cm,∴该组合体的体积为V=×2×2×2+××2×2×2=cm2,选:C.9.双曲线E:﹣=1(a,b>0)的右焦点为F(c,0),若圆C:(x﹣c)2+y2=4a2与双曲线E的渐近线相切,则E的离心率为()A.B.C.D.【考点】双曲线的简单性质.【分析】求得双曲线的渐近线方程,圆的圆心和半径,运用直线和圆相切的条件:d=r,计算即可得到b=2a,由a,b,c的关系和离心率公式,计算即可得到所求值.【解答】解:双曲线E:﹣=1(a,b>0)的渐近线方程为y=±x,圆C:(x﹣c)2+y2=4a2的圆心为(c,0),半径为2a,由直线和圆相切的条件可得,=b=2a,可得c==a,即有e==.故选:C.10.数列{a n}满足a1=1,对任意的n∈N*都有a n+1=a1+a n+n,则=()A.B.C.D.【考点】数列递推式.【分析】利用累加法求出数列的通项公式,得到.再由裂项相消法求得答案.【解答】解:∵a1=1,∴由a n+1=a1+a n+n,得a n+1﹣a n=n+1,则a2﹣a1=2,a3﹣a2=3,…a n﹣a n﹣1=n(n≥2).累加得:a n=a1+2+3+…+n=(n≥2).当n=1时,上式成立,∴.则.∴=2=.故选:B.11.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC 为球O的直径,且SC=2,则此棱锥的体积为()A.B.C.D.【考点】棱柱、棱锥、棱台的体积.【分析】根据题意作出图形,利用截面圆的性质即可求出OO1,进而求出底面ABC上的高SD,即可计算出三棱锥的体积.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1==,∴OO1=,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,∴S△ABC=,∴V=××=,故选:A.12.定义在R上的函数f(x),f′(x)是其导数,且满足f(x)+f′(x)>2,ef(1)=2e+4,则不等式e x f(x)>4+2e x(其中e为自然对数的底数)的解集为()A.(1,+∞)B.(﹣∞,0)∪(1,+∞)C.(﹣∞,0)∪(0,+∞)D.(﹣∞,1)【考点】利用导数研究函数的单调性.【分析】构造函数g(x)=e x f(x)﹣2e x,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解.【解答】解:设g(x)=e x f(x)﹣2e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)﹣2e x=e x[f(x)+f′(x)﹣2],∵f(x)+f′(x)>2,∴f(x)+f′(x)﹣2>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>2e x+4,∴g(x)>4,又∵g(1)=ef(1)﹣2e=4,∴g(x)>g(1),∴x>1,故选:A.二、填空题:(本大题共4小题,每小题5分,共20分)13.若(2x﹣1)dx=6,则二项式(1﹣2x)3m的展开式各项系数和为﹣1 .【考点】二项式系数的性质;定积分.【分析】由于(2x﹣1)dx==6,化简解得m.令x=1,即可得出二项式(1﹣2x)3m展开式各项系数和.【解答】解:∵(2x﹣1)dx==6,化为:m2﹣m﹣(1﹣1)=6,m>1,解得m=3.令x=1,则二项式(1﹣2x)3m即(1﹣2x)9展开式各项系数和=(1﹣2)9=﹣1.故答案为:﹣1.14.记集合,构成的平面区域分别为M,N,现随机地向M中抛一粒豆子(大小忽略不计),则该豆子落入N中的概率为.【考点】几何概型.【分析】平面区域M、N,分别为圆与直角三角形,面积分别为π,,利用几何概型的概率公式解之即可.【解答】解:集合构成的平面区域M、N,分别为圆与直角三角形,面积分别为π,,随机地向M中抛一粒豆子(大小忽略不计),则该豆子落入N中的概率为=.答案为:.15.已知点A(0,2),抛物线C1:y2=ax(a>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若|FM|:|MN|=1:,则a的值等于 4 .【考点】抛物线的简单性质.【分析】作出M在准线上的射影,根据|KM|:|MN|确定|KN|:|KM|的值,进而列方程求得a.【解答】解:依题意F点的坐标为(,0),设M在准线上的射影为K,由抛物线的定义知|MF|=|MK|,∴|KM|:|MN|=1:,则|KN|:|KM|=2:1,k FN==﹣,k FN=﹣=﹣2∴=2,求得a=4,故答案为:4.16.给出下列命题:①命题“若方程ax2+x+1=0有两个实数根,则a≤”的逆命题是真命题;②“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”是“a=1”的必要不充分条件;③函数f(x)=2x﹣x2的零点个数为2;④幂函数y=x a(a∈R)的图象恒过定点(0,0)⑤“向量与的夹角是钝角”的充分必要条件是“•<0”;⑥方程sinx=x有三个实根.其中正确命题的序号为②.【考点】命题的真假判断与应用.【分析】①根据逆命题的定义结合方程根的关系进行判断.②根据三角函数的周期公式以及充分条件和必要条件的定义进行判断.③根据函数与方程的关系进行判断.④根据幂函数的定义和性质进行判断.⑤根据向量夹角和数量积的关系进行判断.⑥构造函数,判断函数的单调性即可.【解答】解:①命题“若方程ax2+x+1=0有两个实数根,则a≤”的逆命题是若a≤,则方程ax2+x+1=0有两个实数根,当a=0时,方程等价为x+1=0,则x=﹣1,此时方程只有一个根,故①错误;②f(x)=cos2ax﹣sin2ax=cos2ax,若“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”,则,则|a|=1,则a=±1,则充分性不成立,反之成立,即“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”是“a=1”的必要不充分条件正确,故②正确,③由f(x)=2x﹣x2=0得2x=x2,作出两个函数y=2x和y=x2的图象如图,由图象知两个函数交点个数为3个,故③错误;④幂函数y=x a(a∈R)的图象恒过定点(0,0),错误,当a<0时,函数的图象不过点(0,0),故④错误,⑤“向量与的夹角是钝角”的充分必要条件是“•<0”且≠λ,λ<0;故⑤错误,⑥设f(x)=sinx﹣x,则函数的导数f′(x)=cosx﹣1≤0,则函数f(x)是奇函数,∵f(0)=sin0﹣0=0,∴f(x)=0的根只有一个0,解集方程sinx=x有一个实根.故⑥错误,故正确的是②,故答案为:②三、解答题(本大题共计70分,解答应写出说明文字、证明过程或演算步骤).17.已知f(x)=2sin(Ⅰ)若,求f(x)的值域;(Ⅱ)在△ABC中,A为BC边所对的内角若f(A)=2,BC=1,求的最大值.【考点】平面向量数量积的运算;三角函数中的恒等变换应用.(Ⅰ)根据二倍角的正余弦公式,和两角和的正弦公式即可化简f(x)=,【分析】而由x的X围可以求出x+的X围,从而可得出f(x)的值域;(Ⅱ)由f(A)=2即可求得A=,从而由余弦定理和不等式a2+b2≥2ab可求得|AB||AC|≤1,根据向量数量积的计算公式便可得出的最大值.【解答】解:(Ⅰ);∵;∴;∴;∴f(x)的值域为[1,2];(Ⅱ)∵f(A)=2,∴;在△ABC中,∵0<A<π,∴;∴;∴|AB||AC|=|AB|2+|AC|2﹣1≥2|AB||AC|﹣1;∴|AB||AC|≤1;∴;∴的最大值为.18.自2016年1月1日起,我国全面二孩政策正式实施,这次人口与生育政策的历史性调整,使得“要不要再生一个”“生二孩能休多久产假”等成为千千万万个家庭在生育决策上避不开的话题.为了解针对产假的不同安排方案形成的生育意愿,某调查机构随机抽取了200户有生育二胎能力的适龄家庭进行问卷调查,得到如下数据:产假安排(单位:周)14 15 16 17 18有生育意愿家庭数 4 8 16 20 26(1)若用表中数据所得的频率代替概率,面对产假为14周与16周,估计某家庭有生育意愿的概率分别为多少?(2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择.①求两种安排方案休假周数和不低于32周的概率;②如果用ξ表示两种方案休假周数和.求随机变量ξ的分布及期望.【考点】离散型随机变量的期望与方差;列举法计算基本事件数及事件发生的概率;离散型随机变量及其分布列.【分析】(1)由表某某息可知,利用等可能事件概率计算公式能求出当产假为14周时某家庭有生育意愿的概率和当产假为16周时某家庭有生育意愿的概率.(2)①设“两种安排方案休假周数和不低于32周”为事件A,由已知从5种不同安排方案中,随机地抽取2种方案选法共有10种,由此利用列举法能求出其和不低于32周的概率.②由题知随机变量ξ的可能取值为29,30,31,32,33,34,35.分别求出相应的概率,由此能求出ξ的分布列和E(ξ).【解答】解:(1)由表某某息可知,当产假为14周时某家庭有生育意愿的概率为;当产假为16周时某家庭有生育意愿的概率为…(2)①设“两种安排方案休假周数和不低于32周”为事件A,由已知从5种不同安排方案中,随机地抽取2种方案选法共有(种),其和不低于32周的选法有14、18、15、17、15、18、16、17、16、18、17、18,共6种,由古典概型概率计算公式得…②由题知随机变量ξ的可能取值为29,30,31,32,33,34,35.,,,因而ξ的分布列为ξ29 30 31 32 33 34 35P 0.1 0.1 0.2 0.2 0.2 0.1 0.1所以E(ξ)=29×0.1+30×0.1+31×0.2+32×0.2+33×0.2+34×0.1+35×0.1=32,…19.如图,空间几何体ABCDE中,平面ABC⊥平面BCD,AE⊥平面ABC.(1)证明:AE∥平面BCD;(2)若△ABC是边长为2的正三角形,DE∥平面ABC,且AD与BD,CD所成角的余弦值均为,试问在CA上是否存在一点P,使得二面角P﹣BE﹣A的余弦值为.若存在,请确定点P的位置;若不存在,请说明理由.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(1)过点D作直线DO⊥BC交BC于点O,连接DO.运用面面垂直的性质定理,可得DO⊥平面ABC,又直线AE⊥平面ABC,可得AE∥DO,运用线面平行的判定定理,即可得证;(2)连接AO,运用线面平行和线面垂直的性质,求得OA,OB,OD两两垂直,以O为坐标原点,OA,OB,OD所在直线分别为x轴,y轴,z轴,建立空间直角坐标系.求得O,A,B,E的坐标,假设存在点P,连接EP,BP,设=λ,求得P的坐标,求得平面PBE,ABE 的法向量,运用向量的夹角公式,计算可得P的位置.【解答】解:(1)证明:如图,过点D作直线DO⊥BC交BC于点O,连接DO.因为平面ABC⊥平面BCD,DO⊂平面BCD,DO⊥BC,且平面ABC∩平面BCD=BC,所以DO⊥平面ABC,因为直线AE⊥平面ABC,所以AE∥DO,因为DO⊂平面BCD,AE⊄平面BCD,所以直线AE∥平面BCD;(2)连接AO,因为DE∥平面ABC,所以AODE是矩形,所以DE⊥平面BCD.因为直线AD与直线BD,CD所成角的余弦值均为,所以BD=CD,所以O为BC的中点,所以AO⊥BC,且.设DO=a,因为BC=2,所以,所以.在△ACD中,AC=2.所以AC2=AD2+CD2﹣2AD•CD•cos∠ADC,即,即.解得a2=1,a=1;以O为坐标原点,OA,OB,OD所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系.则.假设存在点P,连接EP,BP,设=λ,即有=+λ(﹣),则.设平面ABE的法向量为={x,y,z},由=(0,0,1),=(,﹣1,0),则,即,取x=1,则平面ABE的一个法向量为.设平面PBE的法向量为={x,y,z},则,取x=1+λ,则平面PBE的一个法向量为=(1+λ,﹣λ,﹣2λ),设二面角P﹣BE﹣A的平面角的大小为θ,由图知θ为锐角,则cosθ===,化简得6λ2+λ﹣1=0,解得λ=或(舍去),所以在CA上存在一点P,使得二面角P﹣BE﹣A的余弦值为.其为线段AC的三等分点(靠近点A).20.已知椭圆C: +=1(a>b>0)过点A(﹣,),离心率为,点F1,F2分别为其左右焦点.(1)求椭圆C的标准方程;(2)若y2=4x上存在两个点M,N,椭圆上有两个点P,Q满足,M,N,F2三点共线,P,Q,F2三点共线,且PQ⊥MN.求四边形PMQN面积的最小值.【考点】直线与圆锥曲线的综合问题.【分析】(1)由椭圆的离心率公式和点满足椭圆方程及a,b,c的关系,解方程,即可得到椭圆方程;(2)讨论直线MN的斜率不存在,求得弦长,求得四边形的面积;当直线MN斜率存在时,设直线方程为:y=k(x﹣1)(k≠0)联立抛物线方程和椭圆方程,运用韦达定理和弦长公式,以及四边形的面积公式,计算即可得到最小值.【解答】解:(1)由题意得:,a2﹣b2=c2,得b=c,因为椭圆过点A(﹣,),则+=1,解得c=1,所以a2=2,所以椭圆C方程为.(2)当直线MN斜率不存在时,直线PQ的斜率为0,易得,.当直线MN斜率存在时,设直线方程为:y=k(x﹣1)(k≠0)与y2=4x联立得k2x2﹣(2k2+4)x+k2=0,令M(x1,y1),N(x2,y2),则,x1x2=1,|MN|=•.即有,∵PQ⊥MN,∴直线PQ的方程为:y=﹣(x﹣1),将直线与椭圆联立得,(k2+2)x2﹣4x+2﹣2k2=0,令P(x3,y3),Q(x4,y4),x3+x4=,x3x4=,由弦长公式|PQ|=•,代入计算可得,∴四边形PMQN的面积S=|MN|•|PQ|=,令1+k2=t,(t>1),上式=,所以.最小值为.21.设函数,(a>0)(Ⅰ)当时,求函数f(x)的单调区间;(Ⅱ)若f(x)在内有极值点,当x1∈(0,1),x2∈(1,+∞),求证:.(e=2.71828…)【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(Ⅰ)求出f(x)的导数,解关于导函数的不等式,从而求出函数的单调区间即可;(Ⅱ)求出f(x)的导数,令g(x)=x2﹣(a+2)x+1,根据函数的单调性得到:;,作差得到新函数F(n)=2lnn+n ﹣,(n>e),根据函数的单调性求出其最小值即可证明结论成立.【解答】解:(Ⅰ)函数f(x)的定义域为(0,1)∪(1,+∞),当时,,…令f′(x)>0,得:或,所以函数单调增区间为:,,令f′(x)<0,得:,所以函数单调减区间为:,…(Ⅱ)证明:,令:g(x)=x2﹣(a+2)x+1=(x﹣m)(x﹣n)=0,所以:m+n=a+2,mn=1,若f(x)在内有极值点,不妨设0<m<,则:n=>e,且a=m+n﹣2>e+﹣2,由f′(x)>0得:0<x<m或x>n,由f′(x)<0得:m<x<1或1<x<n,所以f(x)在(0,m)递增,(m,1)递减;(1,n)递减,(n,+∞)递增当x1∈(0,1)时,;当x2∈(1,+∞)时,,所以:=,n>e,设:,n>e,则,所以:F(n)是增函数,所以,又:,所以:.【选考题】请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,答题时用2B铅笔在答题卡上把所选题目的题号涂黑.请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一题计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.[选修4-1:几何证明选讲] 22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BE•BD﹣AE•AC.【考点】与圆有关的比例线段.【分析】(1)连接AD,利用AB为圆的直径结合EF与AB的垂直关系,通过证明A,D,E,F 四点共圆即可证得结论;(2)由(1)知,BD•BE=BA•BF,再利用△ABC∽△AEF得到比例式,最后利用线段间的关系即求得AB2=BE•BD﹣AE•AC.【解答】证明:(1)连接AD,因为AB为圆的直径,所以∠ADB=90°,又EF⊥AB,∠AFE=90°,则A,D,E,F四点共圆∴∠DEA=∠DFA(2)由(1)知,BD•BE=BA•BF,又△ABC∽△AEF∴,即AB•AF=AE•AC∴BE•BD﹣AE•AC=BA•BF﹣AB•AF=AB•(BF﹣AF)=AB2[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,设倾斜角为α的直线(t为参数)与曲线(θ为参数)相交于不同两点A,B.(1)若,求线段AB中点M的坐标;(2)若|PA|•|PB|=|OP|2,其中,求直线l的斜率.【考点】参数方程化成普通方程;直线的斜率;直线与圆的位置关系.【分析】(1)把直线和圆的参数方程化为普通方程,联立后根据根与系数的关系求出两交点中点的横坐标,待入直线方程再求中点的纵坐标;(2)把直线方程和圆的方程联立,化为关于t的一元二次方程,运用直线参数方程中参数t的几何意义,结合给出的等式求解直线的倾斜角的正切值,则斜率可求,【解答】解:(1)当时,由,得,所以直线方程为,由,得曲线C的普通方程为,设A(x1,y1),B(x2,y2)再由,得:13x2﹣24x+8=0,所以,,所以M的坐标为(2)把直线的参数方程代入,得:,所以,由|PA|•|PB|=|t1t2|=|OP|2=7,得:,所以,,所以,所以.所以直线L的斜率为±.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣1|+|x﹣2|.(1)画出函数y=f(x)的图象;(2)若不等式|a+b|+|a﹣b|≥|a|f(x),(a≠0,a、b∈R)恒成立,某某数x的X围.【考点】分段函数的解析式求法及其图象的作法.【分析】本题考查的是分段函数的解析式求法以及函数图象的作法问题.在解答时对(1)要先将原函数根据自变量的取值X围转化为分段函数,然后逐段画出图象;对(2)先结和条件a≠0将问题转化,见参数统统移到一边,结合绝对值不等式的性质找出f(x)的X围,通过图形即可解得结果.【解答】解:(1)(2)由|a+b|+|a﹣b|≥|a|f(x)得又因为则有2≥f(x)解不等式2≥|x﹣1|+|x﹣2|得。
北大附中广州实验学校2008—2009高三第一轮复习“数列”单元测试题一、选择题:(每小题5分,计50分)1. n 285(A)4 (B)5 (C)6 (D)72.(2008福建理)设{a n }是公比为正数的等比数列,若11=a ,a 5=16,则数列{a n }前7项的和为( )A.63B.64C.127D.1283.(2007辽宁文、理)设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( )A .63B .45C .36D .274、(2008海南、宁夏文、理)设等比数列{}n a 的公比2q =, 前n 项和为n S ,则42S a =( ) A. 2B. 4C. 152D. 1725.(1994全国文、理)某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过3个小时,这种细菌由1个可繁殖成-( )A.511个B.512个C.1023个D.1024个6.(2001天津、江西、山西文、理)若S n 是数列{a n }的前n 项和,且,2n S n =则}{n a 是( ) (A )等比数列,但不是等差数列 (B )等差数列,但不是等比数列 (C )等差数列,而且也是等比数列 (D )既非等比数列又非等差数列7.(2003全国文、天津文、广东、辽宁)等差数列{}n a 中,已知31a 1=,4a a 52=+,33a n =,则n 为( )(A )48 (B )49 (C )50(D )518.(2006北京文)如果-1,a,b,c ,-9成等比数列,那么( )(A )b =3,ac =9 (B)b =-3,ac =9 (C)b =3,ac =-9 (D)b =-3,ac =-99.(2004春招安徽文、理)已知数列}{n a 满足01a =,011n n a a a a -=+++ (1n ≥),则当1n ≥时,n a =( ) (A )2n (B )(1)2n n + (C )12-n (D )12-n10.(2006江西文)在各项均不为零的等差数列{}n a 中,若2110(2)n n n a a a n +--+=≥,则214n S n --=( ) A.2-B.0C.1D.211.(2007北京文)若数列{}n a 的前n 项和210(123)n S n n n =-= ,,,,则此数列的通项公式为 .12.(2006重庆理)在数列{a n }中,若a 1=1,a n +1=2a n +3 (n ≥1),则该数列的通项a n =_________.13.(2007江西理)已知数列{a n }对于任意p ,q ∈N *,有a p +a q =a p+q ,若a 1=91,则a 36= .14.(2004春招上海)根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图中有_____ _________________个点.三、解答题:(15、16题各12分,其余题目各14分)15.(2008浙江文)已知数列{}n x 的首项13x =,通项2n n x p nq =+(,,n N p q *∈为常数),且145,,x x x 成等差数列,求: (Ⅰ),p q 的值; (Ⅱ)数列{}n x 的前n 项的和n S 的公式。
安徽省安庆市高三数学第三次模拟考试卷理(扫描版)2013年安庆市高三模拟考试(三模) 数学试题(理科)参考答案及评分标准一、选择题 题号 1 2 3 4 5 67 8 9 10 选项 B A C C DD C C A C1.解析:∵i i i i8)2()1()11(366=-=-=+,故选B 。
2.解析:x x x x g 2cos )22sin(]3)12(2sin[)(=+=++=πππ,故选A 。
3.解析:3lg lg lg 963=++a a a ⇒10101063363963=⇒=⇒=a a a a a ,∴10026111==a a a ,故选C 。
4.解析:当 x 为直线, y 、 z 为平面时,x 可能在平面y ;故A 错; 当 x 、 y 、 z 为平面时,x , y 可能相交; 当 x 、 y 为直线, z 为平面时, x ∥ y 当 x 、 y 、 z 为直线时,x , y 可能相交也可能异面; 故选C 。
5.解析:由100111≤<⇒≥-⇒≥x xx x ,100)1ln(<≤⇒≤-x x , 故选D 。
6.解析:4(4x tt y t=⎧⎪⎨=⎪⎩为参数),03=+-⇒y x ,ρθ=⇒2)2(22=-+y x ,∴圆心到直线的距离为2223<-=d故选D 。
7.解析:∵021=⋅PF PF ,∴21PF PF ⊥,不妨设点P 在右支上,∴22121222212||||2||||4||||b PF PF aPF PF c PF PF =⇒⎩⎨⎧=-=+,∴221||||2121b PF PF S F PF ==∆,故选C 。
8.解析:由12123)(23++-=x x x x f 2133)('2+-=⇒x x x f21036)(''=⇒=-=⇒x x x f ,∴1)21(=f ,∴)(x f 的对称中心为)1,21(,∴2)()1(=+-x f x f ,∴2013)20142013()20142()20141(=+++f f f ,故选C 9.解析:74cos72cos 7cos πππ⋅⋅=S 817sin878sin 7sin 274cos 72cos 7cos 7sin233-==⋅⋅=πππππππ,故选A 。
2024年高考第三次模拟考试数学(理科)·全解全析(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,6【答案】A【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得.【详解】由260x x -≥,即()60x x -≥,解得6x ≥或0x ≤,所以{}(][)260,06,B x x x ∞∞=-≥=-⋃+,又{}24A x x =-≤≤,所以[]2,0A B ⋂=-.故选:A 2.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .14【答案】C【分析】运用复数代数运算及两复数相等的性质求解即可.【详解】由题意知,22231(i)i=i2422z a a=+=-+,所以23142a⎧-=⎪⎪=,解得12a=.故选:C.3.如图,已知AM是ABC的边BC上的中线,若AB a=,AC b=,则AM等于()A.()12a b-B.()12a b--C.()12a b+D.()12a b-+【答案】C【分析】根据平面向量线性运算法则计算可得.【详解】因为AM是ABC的边BC上的中线,所以12CM CB=,所以12AM AC CM AC CB=+=+()()()111222AC A CB A AC aBA b=+-=+=+.故选:C4.已知函数()()πtan0,02f x xωϕωϕ⎛⎫=+><<⎝⎭的最小正周期为2π,直线π3x=是()f x图象的一条对称轴,则()f x的单调递减区间为()A.()π5π2π,2πZ66k k k⎛⎤-+∈⎥⎝⎦B.()5π2π2π,2πZ33k k k⎛⎤--∈⎥⎝⎦C.()4ππ2π,2πZ33k k k⎛⎤--∈⎥⎝⎦D.()π2π2π,2πZ33k k k⎛⎤-+∈⎥⎝⎦【答案】B【分析】根据()()πtan0,02f x xωϕωϕ⎛⎫=+><<⎝⎭的最小正周期确定ω的值,根据函数的对称轴求出ϕ,结合正切函数的单调性,列出不等式,即可求得答案.【详解】由于()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的图象是将()tan y x ωϕ=+的图象在x 轴下方部分翻折到x 轴上方,且()tan y x ωϕ=+π0,02ωϕ⎛⎫><<⎪⎝⎭仅有单调递增区间,故()()tan f x x ωϕ=+和()tan y x ωϕ=+的最小正周期相同,均为2π,则π12π,2ωω=∴=,即()1tan 2f x x ϕ⎛⎫=+ ⎪⎝⎭,又直线π3x =是()f x 图象的一条对称轴,则1π1π,Z 232k k ϕ⋅+=∈,即1ππ,Z 26k k ϕ=-∈,结合π02ϕ<<,得π3ϕ=,故()1πtan 23f x x ⎛⎫=+ ⎪⎝⎭,令π1πππ,Z 223k x k k -<+≤∈,则5π2π2π2π,Z 33k x k k -<≤-∈,即()f x 的单调递减区间为()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦,故选:B5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件【答案】A【分析】根据充分性、必要性的定义,结合直线的斜率是否存在进行判断即可.【详解】当直线的斜率等于0时,直线的方程为1y =,代入方程224x y +=中,得x =,显然CD =;当直线的不存在斜率时,直线的方程为1x =,代入方程224x y +=中,得y =CD =因此是必要而不充分条件,故选:A6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种【答案】B【分析】根据题意,分2种情况讨论:①丙是最后一名,则丁可以为第二、三、四名,剩下的三人安排在其他三个名次,②丙不是最后一名,丙丁需要排在第二、三、四名,剩下的三人安排在其他三个名次,由加法原理计算可得答案.【详解】根据题意,丙丁都没有得到冠军,而丁不是最后一名,分2种情况讨论:①丙是最后一名,则丁可以为第二、三、四名,即丁有3种情况,剩下的三人安排在其他三个名次,有33A 6=种情况,此时有1863=⨯种名次排列情况;②丙不是最后一名,丙丁需要排在第二、三、四名,有23A 6=种情况,剩下的三人安排在其他三个名次,有33A 6=种情况,此时有6636⨯=种名次排列情况;则一共有361854+=种不同的名次情况,故选:B .7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.【答案】C【分析】先求出函数的定义域和奇偶性,排除BD ,再求出特殊点的函数值,得到答案.【详解】()πln sin ln cos 2x x x x f x x x⎛⎫⋅- ⎪⋅⎝⎭==定义域为()(),00,∞-+∞U ,且()()()ln cos ln cos x x x x f x f x x x-⋅-⋅-==-=--,所以函数()f x 是奇函数,图象关于原点中心对称,排除B 、D .又()ln 2cos 2202f ⋅=<,故A 错误.故选:C .8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α,则平面α与半球底面之间的几何体的体积是()A .3π24R B .3π24R C .3π12R D .3π12R 【答案】C 【分析】分别求得面α截圆锥时所得小圆锥的体积和平面α与圆柱下底面之间的部分的体积,结合祖暅原理可求得结果.【详解】 平面α截圆柱所得截面圆半径2r =,∴平面α截圆锥时所得小圆锥的体积2311ππ3212V r R R =⋅=,又平面α与圆柱下底面之间的部分的体积为232πV R R R =根据祖暅原理可知:平面α与半球底面之间的几何体体积33321πππ21212V V V R R R =-=-=.故选:C.9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<【答案】B【分析】用定义证明函数()f x 的奇偶性及在()0,1上的单调性,利用函数()f x 的奇偶性及单调性,对数函数ln y x =的性质及对数运算可得结果.【详解】因为函数()f x 的定义域为{}0x x ≠,又()()ln ln f x x x f x -=-==,所以()f x 为偶函数,当01x <<时,任取12x x >,()()12121221ln ln ln ln ln ln 0f x f x x x x x x x -=-=-=-<,即()()12f x f x <,所以()f x 在()0,1上为减函数,因为31ln2ln02>>>,所以()()()113ln ln2ln2ln2ln 22a f f f f f c-⎛⎫⎛⎫===-=<= ⎪ ⎪⎝⎭⎝⎭,即a c <,设3401,1x x <<<,则()4444ln ln ln f x x x x ===,()3333ln ln ln f x x x x ===-,若()()34f x f x =,则34ln ln x x -=,所以341x x =,因为2e ln 2ln212=->,所以22e 11ln e 22ln2ln 2b f f f ⎛⎫ ⎪⎛⎫⎛⎫=== ⎪ ⎪⎪-⎝⎭⎝⎭ ⎪ ⎪⎝⎭,又()21ln21ln202ln22ln2--=>--,即11ln202ln2>>>-,所以()1ln22ln2f f ⎛⎫< ⎪-⎝⎭,即b a <,故选:B.10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a=,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个【答案】B 【分析】由81a=,利用递推关系,分类讨论逆推出1a 的不同取值,进而可得答案.【详解】若81a =,又1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,根据上述运算法进行逆推,可得72a =,64a =,所以58a =或51a =;若58a =,则4316,32a a ==或35a =;当332a =时,2164,128a a ==或121a =;若35a =时,2110,20a a ==或13a =;当51a =,则4322,4,8a a a ===或21a =;当28a =时,116a =;当21a =时,12a =,故81a=时,1a 的所有可能的取值集合{}2,3,16,20,21,128M =即集合M 中含有6个元素.故选:B11.如图,已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为C 的离心率是()AB .32CD .3【答案】B【分析】根据斜率及双曲线的对称性得12BF F △为等边三角形,再根据同角间关系求解三角函数值,进而用正弦定理求出121410,33AF c AF c ==,由双曲线定义可得423c a =,从而得到离心率.【详解】由题意,直线1BF12π3BF F ∴∠=,又12BF BF =,所以12BF F △为等边三角形,故12122BF BF F F c ===,2112π2π,33BF F F F A ∠=∠=,在12AF F △中,21tan 0F F A ∠>,则21F F A ∠为锐角,则212111sin 14F F A F F A ∠=∠=,212πsin sin 3A F F A ⎛⎫=+∠= ⎪⎝⎭由正弦定理,12121221sin sin sin F F AF AF AF F AF F A==∠∠,=∴121410,33AF c AF c ==,由122AF AF a -=,得423c a =,32c e a ∴==.故答案选:B .12.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑【答案】D【分析】利用赋值法结合题目给定的条件可判断AC ,取()()2π2πsin,cos 33f x xg x x ==可判断B ,对于D ,通过观察选项可以推断()f x 很可能是周期函数,结合()()()(),f x g y g x f y 的特殊性及一些已经证明的结论,想到令1y =-和1y =时可构建出两个式子,两式相加即可得出()()()11f x f x f x ++-=-,进一步得出()f x 是周期函数,从而可求()20231n f n =∑的值.【详解】解:对于A ,令0x y ==,代入已知等式得()()()()()000000f f g g f =-=,得()00f =,故A错误;对于B ,取()()2π2πsin,cos 33f x xg x x ==,满足()()()()()f x y f x g y g x f y -=-及()()210f f -=≠,因为()3cos 2π10g ==≠,所以()g x 的图象不关于点()3,0对称,所以函数()21g x +的图象不关于点()1,0对称,故B 错误;对于C ,令0y =,1x =,代入已知等式得()()()()()11010f f g g f =-,可得()()()()110100f g g f ⎡⎤-=-=⎣⎦,结合()10f ≠得()100g -=,()01g =,再令0x =,代入已知等式得()()()()()00f y f g y g f y -=-,将()00f =,()01g =代入上式,得()()f y f y -=-,所以函数()f x 为奇函数.令1x =,1y =-,代入已知等式,得()()()()()21111f f g g f =---,因为()()11f f -=-,所以()()()()2111f f g g =-+⎡⎤⎣⎦,又因为()()()221f f f =--=-,所以()()()()1111f f g g -=-+⎡⎤⎣⎦,因为()10f ≠,所以()()111g g +-=-,故C 错误;对于D ,分别令1y =-和1y =,代入已知等式,得以下两个等式:()()()()()111f x f x g g x f +=---,()()()()()111f x f x g g x f -=-,两式相加易得()()()11f x f x f x ++-=-,所以有()()()21f x f x f x ++=-+,即:()()()12f x f x f x =-+-+,有:()()()()()()11120f x f x f x f x f x f x -+=++--+-+=,即:()()12f x f x -=+,所以()f x 为周期函数,且周期为3,因为()11f =,所以()21f -=,所以()()221f f =--=-,()()300f f ==,所以()()()1230f f f ++=,所以()()()()()()()2023111232023202311n f n f f f f f f ===++++===∑ ,故D 正确.故选:D.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.【答案】3【分析】根据n S 求得n a ,再结合对勾函数的单调性,即可求得结果.【详解】因为2n S n n =+,则当2n ≥时,()()221112n n n a S S n n n n n -=-=+----=,又当1n =时,112a S ==,满足2n a n =,故2n a n =;则9n n S a +29191222n n n n n ++⎛⎫==++ ⎪⎝⎭,又9y x x=+在()1,3单调递减,在()3,+∞单调递增;故当3n =时,9n n+取得最小值,也即3n =时,9n n S a +取得最小值.故答案为:3.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.【答案】9542ω≤≤【分析】根据给定条件,利用辅助角公式化简函数()f x ,再利用正弦函数的性质求解即得.【详解】依题意,函数π()2sin(13f x x ω=+-,由()0f x =,得π1sin()32x ω+=,则ππ2π36x k ω+=+或π5π2π,Z 36x k k ω+=+∈,由[0,2π]x ∈,得πππ[,2π333x ωω+∈+,由()f x 在[0,2π]上恰有5个零点,得29ππ37π2π636ω≤+<,解得935412ω≤<,由3ππ22πx ω+≤-≤,得5ππ66x ωω-≤≤,即函数()f x 在5ππ[,66ωω-上单调递增,因此5ππ[,]ππ[,]41566ωω-⊆-,即45π6πω≤--,且π6π15ω≥,解得502ω<≤,所以正实数ω的取值范围为9542ω≤≤.故答案为:9542ω≤≤15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)【答案】15【分析】根据条件,两边求导得到12342345415(23)2345x a a x a x a x a x +=++++,再取=1x -,即可求出结果.【详解】因为52345012345(23)x a a x a x a x a x a x +=+++++,两边求导可得12342345415(23)2345x a a x a x a x a x +=++++,令=1x -,得到23454115(23)2345a a a a a -=-+-+,即12345234515a a a a a -+-+=,故答案为:15.16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数②(0,),()0x f x ∃∈+∞>③41(1)e f >④0x ∀>时,41()e xf x <【答案】②③【分析】根据构造函数的规律由令()()4e xg x f x =,再结合奇函数的性质可得①,求导分析单调性和极值可得②③④.【详解】令()()4e x g x f x =,则()()()()()4444e e e 4x x x g x f x f x f x f x '''=+=+⎡⎤⎣⎦,若()f x 是奇函数,则()()f x f x -=-,取0x =时,即()00f =,但(01f =),故①错误;因为4e 0,(0,)x x >∈+∞恒成立,且()4()0f x f x '+>,所以()0g x '>恒成立,()g x 在(0,)+∞上为单调递增函数,所以()()()()()44110e 101e g g f f f >⇒>⇒>,故②正确;由②可知,③正确;因为()g x 在(0,)+∞上为单调递增函数,所以当0x >时有()()()()0,001g x g g f >==,所以()()441e 1e x xf x f x >⇒>,故④错误;故答案为:②③三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC 的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.【答案】(1)35;(2)4.【详解】(1)由()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =-- 垂直,得0m n ⋅=,...............1分即sin (5sin 6sin )(5sin 5sin )(sin sin )0B B C A C C A -++-=,整理得2226sin sin sin sin sin 5B C A B C +-=,...............2分在ABC 中,由正弦定理得22265b c a bc +-=,...............3分由余弦定理得2223cos 25b c a A bc +-==,所以cos A 的大小为35................5分(2)由(1)知,在ABC 中,3cos 5A =,则4sin 5A ==,...............6分由22265b c a bc +-=,得22266482555a b c bc bc bc bc ==+-≥-=,即10bc ≤,...................................................................................................8分当且仅当b c =时取等号,...................................................................................................9分因此ABC 的面积12sin 425ABC S bc A bc ==≤ ,..........................................................11分所以ABC 的面积的最大值是4.....................................................12分18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k 2.706 3.841 6.63510.828【答案】(1)列联表见解析,有99%的把握认为在此社区内“关注流行语与性别有关”;(2)35【详解】(1)依题意,关注流行语居民人数为81410638+++=,不关注流行语居民人数为81422+=,...................................................................................................2分所以22⨯列联表如下:男女合计关注流行语30838不关注流行语101222合计4020602K 的观测值2260(3012108)7.03 6.63540203822K ⨯-⨯=≈>⨯⨯⨯,................................................................4分所以有99%的把握认为在此社区内“关注流行语与性别有关”...................5分(2)依题意,男居民选出406660⨯=(人),.......................................6分记为a b c d ,,,,女居民选出2人,记为,E F ,从6人中任选3人的样本空间{,,,,,,,,,,abc abd abE abF acd acE acF adE adF aEF Ω=,,,,,,,,,}bcd bcE bcF bdE bdF bEF cdE cdF cEF dEF ,共20个,.................................9分选出的3人为2男1女的事件{,,,,,,,,,,,}A abE abF acE acF adE adF bcE bcF bdE bdF cdE cdF =,共12个,...........11分所以选出的3人为2男1女的概率123()205P A ==......................................12分19.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.【答案】(1)证明见解析(2)存在;4AP =-【详解】(1)证明:如图,设,M N 分别为,EF AB 边的中点,连接,,MN DM CN ,..1分因为⊥AE 平面,,5,4,3ABC AE CD BF AE CD BF ===∥∥,所以42AE BFMN CD +===,//MN BF ,进而MN CD ∥,即四边形CNMD 为平行四边形,可得MD CN ∥,......................................3分在底面正三角形ABC 中,N 为AB 边的中点,则CN AB ⊥,......................................4分又⊥AE 平面ABC ,且CN ⊂平面ABC ,所以AE CN ⊥.由于⋂=AE AB A ,且AE AB ⊂、平面ABFE ,所以CN ⊥平面ABFE ......................5分因为,MD CN CN ⊥∥平面ABFE ,则MD ⊥平面ABFE ,又MD ⊂平面DEF ,则平面DEF ⊥平面AEFB .......................................6分(2)如图,以点A为坐标原点,建立空间直角坐标系,则()())0,0,5,0,2,4,E D F .设点()0,0,P t,则)()()1,1,0,2,1,0,2,4DF DE DP t =--=-=--..................8分设平面PDF 的法向量为()1111,,n x y z = ,平面EDF 的法向量为()2222,,n x y z =.由题意知110,0,n DF n DP ⎧⋅=⎪⎨⋅=⎪⎩即()111110,240,y z y t z --=-+-=⎪⎩令12z =,则114,y t x =-=14,2n t ⎫=-⎪⎭ ,......................................9分220,0,n DF n DE ⎧⋅=⎪⎨⋅=⎪⎩即222220,20,y z y z --=-+=⎪⎩取22z =,则)22n = ,...............................10分由121212π1cos ,cos 32n n n n n n ⋅===,28290t t +-=,解得:4t =±-,由于点P 为线段AE 上一点,故05t ≤≤,所以4t =-,......................................11分当4t =-时,二面角P DF E --所成角为锐角,即存在点P 满足,此时4AP =.......................................12分20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.【答案】(1)22143x y +=(2)(ⅰ)证明见解析;(ⅱ)4【详解】(1)点31,2P ⎛⎫⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴,则有()1,0F 设椭圆C 的焦距为()20c c >,则1c =,.......................................................................1分点31,2P ⎛⎫ ⎪⎝⎭代入椭圆方程,有()222219191441a b a a +=+=-,解得2a =,则222413b a c =-=-=,所以椭圆C 的方程为22143x y +=...................................................................................3分(2)(ⅰ)设直线l 的方程为y kx m =+,由22143y y k x x m =+⎧⎪⎨⎪+⎩=,消去y ,整理得()2223484120kxkmx m +++-=,因为l 交椭圆C 于,A B 两点,所以()22Δ48430k m =-+>,设()()1122,,,A x y B x y ,所以21212228412,3434km m x x x x k k -+=-=++, (5)分因为直线AF 和直线BF 关于PF 对称,所以()()()()12121212121212220111111AF BF kx x m k x x my y kx m kx m k k x x x x x x +-+-+++=+=+==------所以()()()21212224128222203434m kmkx x m k x x m k m k m k k --+-+-=⨯+-⨯-=++所以222282488860km k km k m mk m --+--=解得4m k =-................................................................................................................7分所以直线l 的方程为()44y kx k k x =-=-,所以直线l 过定点()4,0................................,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,.......8分(ⅱ)设直线l 的方程为4x ny =+,由224143x ny x y =+⎧⎪⎨+=⎪⎩,消去x ,整理得()223424360n y ny +++=,因为l 交椭圆C 于,A B 两点,所以()()()222Δ241443414440n n n =-+=->,解得24n >,........................................................................................................9分1212222436,3434n y y y y n n +=-=++,所以12y y -=所以121331822ABFS y y =⨯-=⨯⨯ .............................10分令()24,0n t t -=>则18184ABC S ==≤,当且仅当163t =时取等号,所以ABF △面积的最大值为4......................................................................12分21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.【答案】(1)单调递增区间为:(0,1),单调递减区间为:(,0)-∞和(1,)+∞;极大值21(1)f e =,极小值(0)0f =;(2)(]0,2e 【详解】(1)当2a =时,()22=exx f x ()()2222222e e 22(1)=e e x x xxx x x x f x ⋅-⋅⋅--'=......................................2分令()=0f x ',解得0x =或1x =,......................................3分所以()()x f x f x '、、的关系如下表:x(,0)-∞0(0,1)1(1,)+∞()f x '-+-()f x 单调递减0单调递增21e 单调递减所以函数()f x 的单调递增区间为:(0,1),单调递减区间为:(,0)-∞和(1,)+∞;......................................4分极大值21(1)f e=,极小值(0)0f =;......................................5分(2)[]222()cos ln ()ln 4cos ln 2ln 4e eaa x xx x f x f x a x x a x x ⎛⎫-≥-⇔-≥- ⎪⎝⎭ln 2e 2(ln 2)cos(ln 2)0a x x a x x a x x -⇔----≥......................................6分令()e 2cos t g t t t =--,其中ln 2a x x t -=,设l (2)n a x x F x =-,0a >2()2a a x x xF x --='=令()0F x '>,解得:02ax <<,......................................8分所以函数()F x 在0,2a ⎛⎫ ⎪⎝⎭上单调递增,在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减,max ()ln 22a a F x F a a ⎛⎫==- ⎪⎝⎭,且当0x +→时,()F x →-∞,所以函数()F x 的值域为,ln 2a a a ⎛⎤-∞- ⎥⎝⎦;......................................9分又()e 2sin t g t t '=-+,设()e 2sin t h t t =-+,,ln 2a t a a ⎛⎤∈-∞- ⎥⎝⎦,则()e cos t h t t '=+,当0t ≤时,e 1,sin 1t t ≤≤,且等号不同时成立,即()0g t '<恒成立;当0t >时,e 1,cos 1t t >≥-,即()0h t '>恒成立,所以()h t 在(0,)+∞上单调递增,又(0)1g '=-,(1)e 2sin10g '=-+>,所以存在0(0,1)t ∈,使得0()0g t '=,当00t t <<时,()0g t '<,当0t t >时,()0g t '>,所以函数()g t 在0(,)t -∞上单调递减,在0(,)t +∞上单调递增,且(0)0g =......................................11分当ln 02aa a -≤即02e a <≤时,()0g t ≥恒成立,符合题意;当ln02a a a ->即2e a >时,取10min ln ,2a t a a t ⎧⎫=-⎨⎬⎩⎭,必有1()0g t <,不符合题意.综上所述:a 的取值范围为(]0,2e ......................................12分(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.(10分)在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C 与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.【答案】(1)C 的普通方程为()2214x y -+=,l 直角坐标方程为30x y -+=.(2)存在,坐标为33,,4444⎛⎛--- ⎪ ⎪⎝⎭⎝⎭【详解】(1)由题设曲线C 的参数方程,消参得()2214x y -+=,............................2分由cos ,sin x y ρθρθ==,且)πsin sin cos 4ρθρθρθ⎛⎫-=-=⎪⎝⎭y =30x y -+=,......................................4分∴C 的普通方程为()2214x y -+=,l 直角坐标方程为30x y -+=...............................5分(2)当0y =时,()33,0x A =-⇒-,易知()12cos ,2sin B a a +,设(),M x y ,可得()()3,,2cos 1,2sin AM x y MB a x a y =+=-+-,......................................6分32cos 1cos 1,2sin sin x a x x a AM MB y a y y a +=-+=-⎧⎧=⇒⎨⎨=-=⎩⎩(a 是参数),消参得方程为()2211,x y ++=......................................8分且1,2,1,3E C C E C E r r r r r r ==-=+=,则圆心距离2,d ==得C E C E r r d r r -<<+,则两圆相交,故两圆存在公共点,联立方程组()()22221114x y x y ⎧++=⎪⎨-+=⎪⎩,解得34x y ⎧=-⎪⎪⎨⎪=⎪⎩或34x y ⎧=-⎪⎪⎨⎪=⎪⎩,故坐标为33,,44⎛⎛--- ⎝⎭⎝⎭......................10分选修4-5:不等式选讲23.(10分)已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.【答案】(1)113x x x ⎧⎫≤≥⎨⎬⎩⎭或(2)证明见解析【详解】(1)()2122f x x x x =-+-+,当0x <时,532x -+≥,解得0x <,......................................1分当102x ≤<时,332x -+≥,解得103x ≤≤,......................................2分当112x ≤<时,12x +≥,解得x ∈∅,......................................3分当1x ≥时,532x -≥,解得1x ≥,......................................4分综上所述,()2f x ≥的解集为13x x ⎧≤⎨⎩或}1≥x .......................................5分(3)由已知可得()5301330211<12531x x x x f x x x x x -+<⎧⎪⎪-+≤≤⎪=⎨⎪+≤⎪⎪->⎩,所以当12x =时,()f x 的最小值为32...............................................................................................6分1a b ∴+=,211,24a b a b ab +⎛⎫+=∴≤= ⎪⎝⎭,当且仅当12a b ==取等,......................................8分令t ab =,则104t <≤,211()212225224a b ab a b ab ab t a b ab ab ab t +-⎛⎫⎛⎫++=++=+-=+-≥ ⎪⎪⎝⎭⎝⎭,当且仅当14t =取等,此时12a b ==.......................................10分。
2024年枣庄市高三数学第三次调研模拟考试卷试卷满分150分,考试用时120分钟2024.05一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}20A x x =+>∣,{}220B x x x =--<∣,则A B = ()A .{21}xx -<<∣B .{22}x x -<<∣C .{11}x x -<<∣D .{12}xx -<<∣2.已知双曲线22:14y x C m-=的一条渐近线方程为2y x =,则m =()A .1B .2C .8D .163.已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点ππcos ,sin 33P ⎛⎫ ⎪⎝⎭,则πcos 6α⎛⎫-=⎪⎝⎭()A .0B .12C D .24.对数螺线广泛应用于科技领域.某种对数螺线可以用πe ϕρα=表达,其中α为正实数,ϕ是极角,ρ是极径.若ϕ每增加π2个单位,则ρ变为原来的()A .13e 倍B .12e 倍C .π2e 倍D .πe 倍5.己知平面向量(1,1),(2,0)a b =-=,则a 在b 上的投影向量为()A .(1,0)-B .(1,0)C .(D .6.已知圆柱的底面半径为1,母线长为2,它的两个底面的圆周在同一个球的球面上,则该球的表面积为()A .4πB .6πC .8πD .10π7.已知复数1212,,z z z z ≠,若12,z z 同时满足||1z =和|1||i |z z -=-,则12z z -为()A .1BC .2D .8.在ABC 中,1202ACB BC AC ∠=︒=,,D 为ABC 内一点,AD CD ⊥,120BDC ∠=︒,则tan ACD ∠=()A .B C D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知两个变量y 与x 对应关系如下表:x 12345y5m8910.5若y 与x 满足一元线性回归模型,且经验回归方程为ˆ125 4.25yx =+.,则()A .y 与x 正相关B .7m =C .样本数据y 的第60百分位数为8D .各组数据的残差和为010.若函数()()()2ln 1ln 1f x x x x=+--+,则()A .()f x 的图象关于()0,0对称B .()f x 在22⎛ ⎝⎭上单调递增C .()f x 的极小值点为22D .()f x 有两个零点11.已知正方体1111ABCD A B C D -的棱长为2,点M ,N 分别为棱1,DD DC 的中点,点P 为四边形1111D C B A (含边界)内一动点,且2MP =,则()A .1AB ∥平面AMNB .点P 的轨迹长度为π2C .存在点P ,使得MP ⊥平面AMND .点P 到平面AMN 三、填空题:本题共3个小题,每小题5分,共15分.12.写出函数()sin cos 1f x x x =+图象的一条对称轴方程.13.某人上楼梯,每步上1阶的概率为34,每步上2阶的概率为14,设该人从第1阶台阶出发,到达第3阶台阶的概率为.14.设()()1122,,,A x y B x y 为平面上两点,定义1212(,)d A B x x y y =-+-、已知点P 为抛物线2:2(0)C x py p =>上一动点,点(3,0),(,)Q d P Q 的最小值为2,则p =;若斜率为32的直线l 过点Q ,点M 是直线l 上一动点,则(,)d P M 的最小值为.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.如图,四棱台1111ABCD A B C D -的底面为菱形,14,3,60AB DD BAD ==∠=︒,点E 为BC 中点,11,D E BC D E ⊥=(1)证明:1DD ⊥平面ABCD ;(2)若112AD =,求平面11A C E 与平面ABCD 夹角的余弦值.16.已知椭圆2222:1(0)x y E a b a b+=>>的左,右焦点分别为12,F F ,椭圆E 的离心率为12,椭圆E 上的点到右焦点的最小距离为1.(1)求椭圆E 的方程;(2)若过右焦点2F 的直线l 与椭圆E 交于B ,C 两点,E 的右顶点记为A ,1//AB CF ,求直线l 的方程.17.在一个袋子中有若干红球和白球(除颜色外均相同),袋中红球数占总球数的比例为p .(1)若有放回摸球,摸到红球时停止.在第2次没有摸到红球的条件下,求第3次也没有摸到红球的概率;(2)某同学不知道比例p ,为估计p 的值,设计了如下两种方案:方案一:从袋中进行有放回摸球,摸出红球或摸球5次停止.方案二:从袋中进行有放回摸球5次.分别求两个方案红球出现频率的数学期望,并以数学期望为依据,分析哪个方案估计p 的值更合理.18.已知函数2()e x f x ax x =--,()f x '为()f x 的导数(1)讨论()f x '的单调性;(2)若0x =是()f x 的极大值点,求a 的取值范围;(3)若π0,2θ⎛⎫∈ ⎪⎝⎭,证明:sin 1cos 1e e ln(sin cos )1θθθθ--++<.19.若数列{}n a 的各项均为正数,对任意*N n ∈,有212n n n a a a ++≥,则称数列{}n a 为“对数凹性”数列.(1)已知数列1,3,2,4和数列1,2,4,3,2,判断它们是否为“对数凹性”数列,并说明理由;(2)若函数231234()f x b b x b x b x =+++有三个零点,其中0(1,2,3,4)i b i >=.证明:数列1234,,,b b b b 为“对数凹性”数列;(3)若数列{}n c 的各项均为正数,21c c >,记{}n c 的前n 项和为n S ,1n n W S n=,对任意三个不相等正整数p ,q ,r ,存在常数t ,使得()()()r p q p q W q r W r p W t -+-+-=.证明:数列{}n S 为“对数凹性”数列.1.D【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得.【详解】由220x x --<,即()()120x x +-<,解得12x -<<,所以{}{}21220|B xx x x x <-=-=<-<∣,又{}{}202A xx x x =+>=>-∣∣,所以{}12A B x x =-<< ∣.故选:D 2.A【分析】利用双曲线方程先含参表示渐近线方程,待定系数计算即可.【详解】依题意,得0m >,令2204y x y x m -=⇒=,即C 的渐近线方程为y x =,21m=⇒=.故选:A 3.D【分析】根据三角函数的定义求出sin α,cos α,再由两角差的余弦公式计算可得.【详解】因为ππcos ,sin 33P ⎛⎫ ⎪⎝⎭,即122P ⎛⎫ ⎪ ⎪⎝⎭,即角α的终边经过点1322P ⎛⎫ ⎪ ⎪⎝⎭,所以sin α=,1cos 2α=,所以πππ11cos cos cos sin sin 66622ααα⎛⎫-=+== ⎪⎝⎭.故选:D 4.B【分析】设0ϕ所对应的极径为0ρ,10π2ϕϕ=+所对应的极径为1ρ,根据所给表达式及指数幂的运算法则计算可得.【详解】设0ϕ所对应的极径为0ρ,则0π0e ϕρα=,则10π2ϕϕ=+所对应的极径为0π2π1eϕρα+=,所以0000ππ222π1πππ1e e e e ϕϕϕϕραρα++-===,故ϕ每增加π2个单位,则ρ变为原来的12e 倍.故选:B 5.A【分析】根据已知条件分别求出a b ⋅ 和b ,然后按照平面向量的投影向量公式计算即可得解.【详解】(1,1),(2,0)a b =-=,2a b ⋅=-,2b =,a 在b 上的投影向量为()()22,01,04a b b bb⋅-⋅==-.故选:A.6.C【分析】利用圆柱及球的特征计算即可.【详解】由题意可知该球为圆柱的外切球,所以球心为圆柱的中心,设球半径为r ,则r =,故该球的表面积为24π8πr =.故选:C 7.C【分析】设()i ,R z x y x y =+∈,根据||1z =和|1||i |z z -=-求出交点坐标,即可求出12,z z ,再计算其模即可.【详解】设()i ,R z x y x y =+∈,则()11i z x y -=-+,()i 1i z x y -=+-,由||1z =和|1||i |z z -=-,所以221x y +=且()()222211x y y x -+=-+,即221x y +=且x y =,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩或22x y ⎧=-⎪⎪⎨⎪=-⎪⎩,所以122z =+、2i 22z =-(或122i 22z =--、222i 22z =+),则21i i 2222z z ⎛⎫-=--- ⎪ ⎪⎝⎭(或21z z -=),所以122z z -=.故选:C 8.B【分析】在Rt ADC 中,设ACD θ∠=,AC x =,即可表示出CB,CD ,再在BCD △中利用正弦定理得cos sin(60)x θθ-︒,再由两角差的正弦公式及同角三角函数的基本关系将弦化切,即可得解.【详解】在Rt ADC 中,设ACD θ∠=π02θ⎛⎫<<⎪⎝⎭,令AC x =()0x >,则2CB x =,cos CD x θ=,在BCD △中,可得120BCD θ∠=︒-,60CBD θ∠=-︒,由正弦定理sin sin BC CDCDB CBD=∠∠,cos sin(60)x θθ==-︒=,可得tan θ=tan ACD ∠=故选:B .【点睛】关键点点睛:本题解答关键是找到角之间的关系,从而通过设元、转化到BCD △中利用正弦定理得到关系式.9.AD【分析】利用相关性的定义及线性回归直线可判定A ,根据样本中心点在回归方程上可判定B ,利用百分位数的计算可判定C ,利用回归方程计算预测值可得残差即可判定D.【详解】由回归直线方程知:1.250>,所以y 与x 正相关,即A 正确;由表格数据及回归方程易知32.53, 1.253 4.257.55mx y m +==⨯+=⇒=,即B 错误;易知560%3⨯=,所以样本数据y 的第60百分位数为898.52+=,即C 错误;由回归直线方程知1,2,3,4,5x =时对应的预测值分别为 5.5,6.75,8,9.25,.5ˆ10y=,对应残差分别为0.5,0.75,0,0.25,0--,显然残差之和为0,即D 正确.故选:AD 10.AC【分析】首先求出函数的定义域,即可判断奇偶性,从而判断A ,利用导数说明函数的单调性,即可判断B 、C ,求出极小值即可判断D.【详解】对于函数()()()2ln 1ln 1f x x x x =+--+,令10100x x x +>⎧⎪->⎨⎪≠⎩,解得10x -<<或01x <<,所以函数的定义域为()()1,00,1-U ,又()()()()()()22ln 1ln 1ln 1ln 1f x x x x x f x x x ⎡⎤-=--+-=-+--+=-⎢⎥⎣⎦,所以()f x 为奇函数,函数图象关于()0,0对称,故A 正确;又()22221121122211111f x x x x x x x x x---'=--=+-=-+-+--222222222(1)24(1)(1)x x x x x x x ----==--,当x ⎛∈ ⎝⎭时,()0f x '<,即()f x在⎛ ⎝⎭上单调递减,故B 错误;当2x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0f x ¢>,即()f x在,12⎛⎫ ⎪ ⎪⎝⎭上单调递增,根据奇函数的对称性可知()f x 在21,2⎛⎫- ⎪ ⎪⎝⎭上单调递增,在22⎛⎫- ⎪ ⎪⎝⎭上单调递减,所以()f x 的极小值点为22,极大值点为22-,故C 正确;又(()ln 320f x f ==++⎝⎭极小值,且当x 趋近于1时,()f x 趋近于无穷大,当x 趋近于0时,()f x 趋近于无穷大,所以()f x 在()0,1上无零点,根据对称性可知()f x 在()1,0-上无零点,故()f x 无零点,故D 错误.故选:AC .11.ABD【分析】利用线线平行的性质可判定A ,利用空间轨迹结合弧长公式可判定B ,建立空间直角坐标系,利用空间向量研究线面关系及点面距离可判定C 、D.【详解】对于A ,在正方体中易知1111//,////MN CD CD A B NM A B ⇒,又1⊄A B 平面AMN ,MN ⊂平面AMN ,所以1A B ∥平面AMN ,即A 正确;对于B ,因为点P 为四边形1111D C B A (含边界)内一动点,且2MP =,11MD =,则1DP =P 点轨迹为以1D所以点P的轨迹长度为132ππ42⨯,故B 正确;对于C ,建立如图所示空间直角坐标系,则()()())π2,0,0,0,0,1,0,1,0,,,20,2A M N Pθθθ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,所以()())2,0,1,2,1,0,,1AM AN MP θθ=-=-=,若存在点P ,使得MP ⊥面AMN,则100AM MP AN MP θθθ⎧⋅=-=⎪⎨⋅=-=⎪⎩,解之得sin ,cos θθ=即不存在点P ,使得MP ⊥面AMN ,故C 错误;对于D ,设平面AMN 的一个法向量为(),,n x y z = ,则2020AM n x z AN n x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,取12x y z =⇒==,即()1,2,2n =,则点P 到平面AMN的距离()221πtan ,0,3322n MP d n θϕθθϕϕ⋅++⎛⎫++⎛⎫====∈ ⎪⎪⎝⎭⎝⎭ ,显然π2θϕ+=时取得最大值max d =D 正确.故选:ABD【点睛】思路点睛:对于B ,利用定点定距离结合空间轨迹即可解决,对于C 、D 因为动点不方便利用几何法处理,可以利用空间直角坐标系,由空间向量研究空间位置关系及点面距离计算即可.12.π4x =(答案不唯一)【分析】利用二倍角公式及三角函数的图象与性质计算即可.【详解】易知1()sin 212f x x =+,所以()()πππ2πZ Z 242k x k k x k =+∈⇒=+∈,不妨取0k =,则π4x =.故答案为:π4x =(答案不唯一)13.1316【分析】先分①②两种方法,再由独立事件的乘法公式计算即可.【详解】到达第3台阶的方法有两种:第一种:每步上一个台阶,上两步,则概率为3394416⨯=;第二种:只上一步且上两个台阶,则概率为14,所以到达第3阶台阶的概率为911316416+=,故答案为:1316.14.232【分析】利用定义结合二次函数求最值计算即可得第一空,过P 作//PN x 并构造直角三角形,根据(,)d P M 的定义化折为直,结合直线与抛物线的位置关系计算即可.【详解】设2,2m P m p ⎛⎫ ⎪⎝⎭,则()()2221,30332222m m p d P Q m m m p p p p =-+-≥-+=-+-,322p⇒-=,即2p =,p m =时取得最小值;易知39:22l y x =-,2:4C x y =,联立有26180x x -+=,显然无解,即直线与抛物线无交点,如下图所示,过P 作//PN x 交l 于N ,过M 作ME PN ⊥,则(,)d P M PE EM PE EN PN =+≥+=(,M N 重合时取得等号),设2,4n P n ⎛⎫ ⎪⎝⎭,则223,64n n N ⎛⎫+ ⎪⎝⎭,所以()22133336622n PN n n =-+=-+≥,故答案为:2,32【点睛】思路点睛:对于曼哈顿距离的新定义问题可以利用化折为直的思想,数形结合再根据二次函数的性质计算最值即可.15.(1)证明见解析【分析】(1)连接DE 、DB ,即可证明BC ⊥平面1D DE ,从而得到1BC DD ⊥,再由勾股定理逆定理得到1DD DE ⊥,即可证明1DD ⊥平面ABCD ;(2)建立空间直角坐标系,利用空间向量法计算可得.【详解】(1)连接DE 、DB ,因为四边形ABCD 为菱形,60BAD ∠= 所以BDC 是边长为4的正三角形,因为E 为BC 中点,所以DE BC ⊥,DE =又因为11,D E BC D E DE E ⊥⋂=,1,D E DE ⊂平面1D DE ,所以BC ⊥平面1D DE ,又1DD ⊂平面1D DE ,所以1BC DD ⊥,又1D E =13DD =,DE =所以22211DD DE D E +=,所以1DD DE ⊥,又因为,,DE BC E DE BC =⊂ 平面ABCD ,所以1DD ⊥平面ABCD.(2)因为直线1,,DA DE DD 两两垂直,以D 为原点,1,,DA DE DD 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则()()()()()10,0,0,4,0,0,0,,2,2,2,0,3D A E C A -,所以()()1111,2,2A C AC EA ==-=- 设平面11A C E 的一个法向量为(),,n x y z = ,则11130230n A C x n EA x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,即43y x z ⎧=⎪⎨=⎪⎩,令3x =,得4y z ==,所以()4n = ,由题意知,()0,0,1m = 是平面ABCD 的一个法向量,设平面11A C E 与平面ABCD 的夹角为θ,则cos 13m n m n θ⋅===⋅ ,所以平面11A C E与平面ABCD 16.(1)22143x y +=(2)10x y +-=或10x y -=【分析】(1)利用椭圆焦半径公式及性质计算即可;(2)设直线l 方程,B 、C 坐标,根据平行关系得出两点纵坐标关系,联立椭圆方程结合韦达定理解方程即可.【详解】(1)设焦距为2c ,由椭圆对称性不妨设椭圆上一点()()000,0P x y a x ≥≥,易知()2,0F c ,则2PF =00c c x a a x a a =-=-,显然0x a =时2min PF a c =-,由题意得222121ca a c abc ⎧=⎪⎪⎨-=⎪⎪=+⎩解得2,1,a c b ===所以椭圆C 的方程为22143x y +=;(2)设()()1122,,,C x y B x y ,因为AB //1CF ,所以1122::2:1CF AB F F F A ==所以122y y =-①设直线l 的方程为1x my =+,联立得221431x y x my ⎧+=⎪⎨⎪=+⎩,整理得()2234690m y my ++-=,由韦达定理得()122122634934my y m y y m ⎧+=-⎪+⎪⎨=-⎪+⎪⎩,把①式代入上式得222226349234my m y m ⎧-=-⎪⎪+⎨⎪-=-⎪-+⎩,得()()22222236923434m y m m ==++,解得255m =±,所以直线l 的方程为:10x y -=或10x y -=.17.(1)1p-(2)答案见解析【分析】(1)设事件A =“第2次没有摸到红球”,事件B =“第3次也没有摸到红球”,根据条件概率公式计算可得;(2)记“方案一”中红球出现的频率用随机变量X 表示,X 的可能取值为11110,,,,,15432,求出所对应的概率,即可得到分布列与数学期望,“方案二”中红球出现的频率用随机变量Y 表示,则()55,Y B p ~,由二项分布的概率公式得到分布列,即可求出期望,再判断即可.【详解】(1)设事件A =“第2次没有摸到红球”,事件B =“第3次也没有摸到红球”,则()()21P A p =-,()()31P B p =-,所以()()()()()32(1)|1(1)P AB P B p P B A p P A P A p -====--;(2)“方案一”中红球出现的频率用随机变量X 表示,则X 的可能取值为:11110,,,,,15432,且()()501P X p ==-,()4115P X p p ⎛⎫==- ⎪⎝⎭,()3114P X p p ⎛⎫==- ⎪⎝⎭,()2113P X p p ⎛⎫==- ⎪⎝⎭,()112P X p p ⎛⎫==- ⎪⎝⎭,()1P X p ==,所以X 的分布列为:X 0151413121P 5(1)p -4(1)p p -3(1)p p -2(1)p p -()1p p-p 则()()()354211110(1)(1)1(1)115432E X p p p p p p p p p p =⨯-+⨯-+⨯-+⨯-+⨯-+⨯()4321(1)(1)(1)5432p p p p p p p p p ----=++++,“方案二”中红球出现的频率用随机变量Y 表示,因为()55,Y B p ~,所以5Y 的分布列为:()555C (1),0,1,2,3,4,5k k k P Y k p p k -==-=,即Y 的分布列为:Y 0152535451P 5(1)p -45(1)p p -3210(1)p p -3210(1)p p -()451p p -5p 所以()55E Y p =,则()E Y p =,因为()E X p >,()E Y p =,所以“方案二”估计p 的值更合理.18.(1)答案见解析(2)12a >(3)证明见解析【分析】(1)令()()g x f x '=,求出导函数,再分0a ≤和0a >两种情况讨论,分别求出函数的单调区间;(2)结合(1)分0a ≤、102a <<、12a =、12a >四种情况讨论,判断()f x 的单调性,即可确定极值点,从而得解;(3)利用分析法可得只需证sin 12e ln sin sin θθθ-+<,cos 12e ln cos cos θθθ-+<,只需证对任意10x -<<,有()2e ln 1(1)x x x ++<+,结合(2)只需证明()ln 1(10)x x x +<-<<,构造函数,利用导数证明即可.【详解】(1)由题知()e 21x f x ax =--',令()()21x g x f x ax =-'=-e ,则()e 2x g x a '=-,当0a ≤时,()()0,g x f x ''>在区间(),-∞+∞单调递增,当0a >时,令()0g x '=,解得ln2=x a ,当(),ln2x a ∞∈-时,()0g x '<,当()ln2,x a ∈+∞时,()0g x '>,所以()f x '在区间(),ln2a -∞上单调递减,在区间()ln2,a +∞上单调递增,综上所述,当0a ≤时,()f x '在区间(),-∞+∞上单调递增;当0a >时,()f x '在区间(),ln2a -∞上单调递减,在区间()ln2,a +∞上单调递增.(2)当0a ≤时,()00f '=,由(1)知,当(),0x ∈-∞时,()()0,f x f x '<在(),0∞-上单调递减;当()0,x ∈+∞时,()()0,f x f x '>在()0,∞+上单调递增;所以0x =是函数()f x 的极小值点,不符合题意;当102a <<时,ln20a <,且()00f '=,由(1)知,当()ln2,0x a ∈时,()()0,f x f x '<在()ln2,0a 上单调递减;当()0,x ∈+∞时,()()0,f x f x '>在()0,∞+上单调递增;所以0x =是函数()f x 的极小值点,不符合题意;当12a =时,ln20a =,则当(),x ∈-∞+∞时,()()0,f x f x '≥在(),-∞+∞上单调递增,所以()f x 无极值点,不合题意;当12a >时,ln20a >,且()00f '=;当(),0x ∈-∞时,()()0,f x f x '>在(),0∞-上单调递增;当()0,ln2∈x a 时,()()0,f x f x '<在()0,ln2a 上单调递减;所以0x =是函数()f x 的极大值点,符合题意;综上所述,a 的取值范围是12a >.(3)要证()sin 1cos 1e e ln sin cos 1θθθθ--++<,只要证()()sin 1cos 122e e ln sin ln cos sin cos θθθθθθ--+++<+,只要证sin 12e ln sin sin θθθ-+<,cos 12e ln cos cos θθθ-+<,因为π0,2θ⎛⎫∈ ⎪⎝⎭,则()()sin 0,1,cos 0,1θθ∈∈,所以只要证对任意01x <<,有12e ln x x x -+<,只要证对任意10x -<<,有()2e ln 1(1)x x x ++<+(※),因为由(2)知:当1a =时,若0x <,则()()01f x f <=,所以2e 1x x x --<,即2e 1x x x <++①,令函数()()ln 1(10)h x x x x =+--<<,则()1111x h x x x-'=-=++,所以当10x -<<时()0h x '>,所以()h x 在()1,0-单调递增;则()()00h x h <=,即()ln 1(10)x x x +<-<<,由①+②得()22e ln 121(1)x x x x x ++<++=+,所以(※)成立,所以()sin 1cos 1e e ln sin cos 1θθθθ--++<成立.【点睛】方法点睛:利用导数证明或判定不等式问题:1.通常要构造新函数,利用导数研究函数的单调性与极值(最值),从而得出不等关系;2.利用可分离变量,构造新函数,直接把问题转化为函数的最值问题,从而判定不等关系;3.适当放缩构造法:根据已知条件适当放缩或利用常见放缩结论,从而判定不等关系;4.构造“形似”函数,变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.19.(1)只有1,2,4,3,2是“对数凹性”数列,理由见解析(2)证明见解析(3)证明见解析【分析】(1)利用“对数凹性”数列的定义计算即可;(2)利用导数研究三次函数的性质结合()1,f f x x ⎛⎫ ⎪⎝⎭零点个数相同及“对数凹性”数列的定义计算即可;(3)将,p q 互换计算可得0=t ,令1,2p q ==,可证明{}n W 是等差数列,结合等差数列得通项公式可知()11n W c n d =+-,利用1n n W S n=及,n n S c 的关系可得()121n c c d n =+-,并判定{}n c 为单调递增的等差数列,根据等差数列求和公式计算()2124n n n S S S ++-结合基本不等式放缩证明其大于0即可.【详解】(1)根据“对数凹性”数列的定义可知数列1,3,2,4中2234≥⨯不成立,所以数列1,3,2,4不是“对数凹性”数列;而数列1,2,4,3,2中222214423342⎧≥⨯⎪≥⨯⎨⎪≥⨯⎩均成立,所以数列1,2,4,3,2是“对数凹性”数列;(2)根据题意及三次函数的性质易知2234()23f x b b x b x =++'有两个不等实数根,所以221324324Δ44303b b b b b b =-⨯>⇒>,又0(1,2,3,4)i b i >=,所以2324243b b b b b >>,显然()1000x f b =⇒=>,即0x =不是()f x 的零点,又2312341111f b b b b x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,令1t x =,则()231234f t b b t b t b t =+++也有三个零点,即32123431b x b x b x b f x x +++⎛⎫= ⎪⎝⎭有三个零点,则()321234g x b x b x b x b =+++有三个零点,所以()212332g x b x b x b =++'有两个零点,所以同上有22221321313Δ44303b b b b b b b b =-⨯>⇒>>,故数列1234,,,b b b b 为“对数凹性”数列(3)将,p q 互换得:()()()r q p t q p W p vr W r q W t =-+-+-=-,所以0=t ,令1,2p q ==,得()()(2210r W r W r W -+-+-=,所以()()()()12121211r W r W r W W r W W =-+-=+--,故数列{}n W 是等差数列,记221211022S c c d W W c -=-=-=>,所以()()2111112n c c W c n c n d -⎛⎫=+-=+- ⎪⎝⎭,所以()21n n S nW dn c d n ==+-,又因为11,1,2n n n c n c S S n -=⎧=⎨-≥⎩,所以()121n c c d n=+-,所以120n n c c d +-=>,所以{}n c 为单调递增的等差数列,所以()11210,2,2n n n n n n n n cc c c c c c S ++++>>+==.所以()()()()()22212111124(1)2n n n n n n S S S n c c n n c c c c ++++-=++-+++()()()()22112211(1)22n n n c c c c n c c n n ++⎡⎤+++>++-+⎢⎥⎣⎦()()222112112(1)22n n c c c n c c n n ++++⎛⎫=++-+ ⎪⎝⎭()()()2221111(1)2n n n c c n n c c ++=++-++()()2211(1)2n n n n c c +⎡⎤=+-++⎣⎦()2110n c c +=+>所以212n n n S S S ++≥,数列{}n S 是“对数凹性”数列【点睛】思路点睛:第二问根据定义及三次函数的性质、判别式先判定2324243b b b b b >>,再判定()1,f f x x ⎛⎫ ⎪⎝⎭零点个数相同,再次利用导函数零点个数及判别式判定2213133b b b b b >>即可;第三问根据条件将,p q 互换得0=t ,利用赋值法证明{}n W 是等差数列,再根据1n n W S n=及,n n S c 的关系可得n c 从而判定其为单调递增数列,根据等差数列求和公式计算()2124n n n S S S ++-结合基本不等式放缩证明其大于0即可.。
⼈教A版⾼中数学选修2-3全册同步练习及单元检测含答案⼈教版⾼中数学选修2~3 全册章节同步检测试题⽬录第1章《计数原理》同步练习 1.1测试1第1章《计数原理》同步练习 1.1测试2第1章《计数原理》同步练习 1.1测试3第1章《计数原理》同步练习 1.2排列与组合第1章《计数原理》同步练习 1.3⼆项式定理第1章《计数原理》测试(1)第1章《计数原理》测试(2)第2章同步练习 2.1离散型随机变量及其分布列第2章同步练习 2.2⼆项分布及其应⽤第2章测试(1)第2章测试(2)第2章测试(3)第3章练习 3.1回归分析的基本思想及其初步应⽤第3章练习 3.2独⽴性检验的基本思想及其初步应⽤第3章《统计案例》测试(1)第3章《统计案例》测试(2)第3章《统计案例》测试(3)1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题1.⼀件⼯作可以⽤2种⽅法完成,有3⼈会⽤第1种⽅法完成,另外5⼈会⽤第2种⽅法完成,从中选出1⼈来完成这件⼯作,不同选法的种数是()A.8 B.15C.16 D.30答案:A2.从甲地去⼄地有3班⽕车,从⼄地去丙地有2班轮船,则从甲地去丙地可选择的旅⾏⽅式有()A.5种B.6种C.7种D.8种答案:B3.如图所⽰为⼀电路图,从A 到B 共有()条不同的线路可通电()A.1 B.2 C.3 D.4答案:D4.由数字0,1,2,3,4可组成⽆重复数字的两位数的个数是()A.25 B.20 C.16 D.12答案:C5.李芳有4件不同颜⾊的衬⾐,3件不同花样的裙⼦,另有两套不同样式的连⾐裙.“五⼀”节需选择⼀套服装参加歌舞演出,则李芳有()种不同的选择⽅式()A.24 B.14 C.10 D.9答案:B 6.设A ,B 是两个⾮空集合,定义{}()A B a b a A b B *=∈∈,,|,若{}{}0121234P Q ==,,,,,,,则P *Q 中元素的个数是()A.4 B.7 C.12 D.16答案:C⼆、填空题7.商店⾥有15种上⾐,18种裤⼦,某⼈要买⼀件上⾐或⼀条裤⼦,共有种不同的选法;要买上⾐,裤⼦各⼀件,共有种不同的选法.答案:33,2708.⼗字路⼝来往的车辆,如果不允许回头,共有种⾏车路线.答案:129.已知{}{}0341278a b ∈∈,,,,,,,则⽅程22()()25x a y b -+-=表⽰不同的圆的个数是.答案:1210.多项式123124534()()()()a a a b b a a b b ++++++··展开后共有项.答案:1011.如图,从A →C ,有种不同⾛法.答案:612.将三封信投⼊4个邮箱,不同的投法有种.答案:34三、解答题 13.⼀个⼝袋内装有5个⼩球,另⼀个⼝袋内装有4个⼩球,所有这些⼩球的颜⾊互不相同.(1)从两个⼝袋内任取⼀个⼩球,有多少种不同的取法?(2)从两个⼝袋内各取⼀个⼩球,有多少种不同的取法?解:(1)549N =+=种;(2)5420N =?=种.14.某校学⽣会由⾼⼀年级5⼈,⾼⼆年级6⼈,⾼三年级4⼈组成.(1)选其中1⼈为学⽣会主席,有多少种不同的选法?(2)若每年级选1⼈为校学⽣会常委,有多少种不同的选法?(3)若要选出不同年级的两⼈参加市⾥组织的活动,有多少种不同的选法?解:(1)56415N =++=种;(2)564120N =??=种;(3)56644574N =?+?+?=种15.已知集合{}321012()M P a b =---,,,,,,,是平⾯上的点,a b M ∈,.(1)()P a b ,可表⽰平⾯上多少个不同的点?(2)()P a b ,可表⽰多少个坐标轴上的点?解:(1)完成这件事分为两个步骤:a 的取法有6种,b 的取法也有6种,∴P 点个数为N =6×6=36(个);(2)根据分类加法计数原理,分为三类:①x 轴上(不含原点)有5个点;②y 轴上(不含原点)有5个点;③既在x 轴,⼜在y 轴上的点,即原点也适合,∴共有N =5+5+1=11(个).1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题 1.从集合{ 0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a bi +,其中虚数有() A .30个 B .42个 C .36个 D .35个答案:C2.把10个苹果分成三堆,要求每堆⾄少1个,⾄多5个,则不同的分法共有() A .4种 B .5种 C .6种 D .7种答案:A3.如图,⽤4种不同的颜⾊涂⼊图中的矩形A ,B ,C ,D 中,要求相邻的矩形涂⾊不同,则不同的涂法有() A .72种 B .48种 C .24种 D .12种答案:A4.教学⼤楼共有五层,每层均有两个楼梯,由⼀层到五层的⾛法有() A .10种 B .52种C.25种D.42种答案:D5.已知集合{}{}023A B x x ab a b A ===∈,,,,,|,则B 的⼦集的个数是()A.4 B.8 C.16 D.15答案:C6.三边长均为正整数,且最⼤边长为11的三⾓形的个数为()A.25 B.26 C.36 D.37答案:C⼆、填空题7.平⾯内有7个点,其中有5个点在⼀条直线上,此外⽆三点共线,经过这7个点可连成不同直线的条数是.答案:128.圆周上有2n 个等分点(1n >),以其中三个点为顶点的直⾓三⾓形的个数为.答案:2(1)n n -9.电⼦计算机的输⼊纸带每排有8个穿孔位置,每个穿孔位置可穿孔或不穿孔,则每排可产⽣种不同的信息.答案:25610.椭圆221x y m n+=的焦点在y 轴上,且{}{}123451234567m n ∈∈,,,,,,,,,,,,则这样的椭圆的个数为.答案:20 11.已知集合{}123A ,,ü,且A 中⾄少有⼀个奇数,则满⾜条件的集合A 分别是.答案:{}{}{}{}{}13122313,,,,,,,12.整数630的正约数(包括1和630)共有个.答案:24三、解答题 13.⽤0,1,2,3,4,5六个数字组成⽆重复数字的四位数,⽐3410⼤的四位数有多少个?解:本题可以从⾼位到低位进⾏分类.(1)千位数字⽐3⼤.(2)千位数字为3:①百位数字⽐4⼤;②百位数字为4: 1°⼗位数字⽐1⼤;2°⼗位数字为1→个位数字⽐0⼤.所以⽐3410⼤的四位数共有2×5×4×3+4×3+2×3+2=140(个).14.有红、黄、蓝三种颜⾊旗⼦各(3)n n >⾯,任取其中三⾯,升上旗杆组成纵列信号,可以有多少种不同的信号?若所升旗⼦中不允许有三⾯相同颜⾊的旗⼦,可以有多少种不同的信号?若所升旗⼦颜⾊各不相同,有多少种不同的信号?解: 1N =3×3×3=27种; 227324N =-=种; 33216N =??= 种.15.某出版社的7名⼯⼈中,有3⼈只会排版,2⼈只会印刷,还有2⼈既会排版⼜会印刷,现从7⼈中安排2⼈排版,2⼈印刷,有⼏种不同的安排⽅法.解:⾸先分类的标准要正确,可以选择“只会排版”、“只会印刷”、“既会排版⼜会印刷”中的⼀个作为分类的标准.下⾯选择“既会排版⼜会印刷”作为分类的标准,按照被选出的⼈数,可将问题分为三类:第⼀类:2⼈全不被选出,即从只会排版的3⼈中选2⼈,有3种选法;只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有3×1=3种选法.第⼆类:2⼈中被选出⼀⼈,有2种选法.若此⼈去排版,则再从会排版的3⼈中选1⼈,有3种选法,只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有2×3×1=6种选法;若此⼈去印刷,则再从会印刷的2⼈中选1⼈,有2种选法,从会排版的3⼈中选2⼈,有3种选法,由分步计数原理知共有2×3×2=12种选法;再由分类计数原理知共有6+12=18种选法.第三类:2⼈全被选出,同理共有16种选法.所以共有3+18+16=37种选法.1. 1 分类加法计数原理与分步乘法计数原理综合卷⼀.选择题:1.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种2.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出语⽂、数学、英语各⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种3.某商业⼤厦有东南西3个⼤门,楼内东西两侧各有2个楼梯,从楼外到⼆楼的不同⾛法种数是()(A ) 5 (B )7 (C )10 (D )124.⽤1、2、3、4四个数字可以排成不含重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个5.⽤1、2、3、4四个数字可排成必须含有重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个6.3科⽼师都布置了作业,在同⼀时刻4名学⽣都做作业的可能情况有()(A )43种(B )34种(C )4×3×2种(D ) 1×2×3种7.把4张同样的参观券分给5个代表,每⼈最多分⼀张,参观券全部分完,则不同的分法共有()(A )120种(B )1024种(C )625种(D )5种8.已知集合M={l ,-2,3},N={-4,5,6,7},从两个集合中各取⼀个元素作为点的坐标,则这样的坐标在直⾓坐标系中可表⽰第⼀、⼆象限内不同的点的个数是()(A )18 (B )17 (C )16 (D )109.三边长均为整数,且最⼤边为11的三⾓形的个数为()(A )25 (B )36 (C )26 (D )3710.如图,某城市中,M 、N 两地有整齐的道路⽹,若规定只能向东或向北两个⽅向沿途中路线前进,则从M 到N 不同的⾛法共有()(A )25 (B )15 (C)13 (D )10 ⼆.填空题:11.某书店有不同年级的语⽂、数学、英语练习册各10本,买其中⼀种有种⽅法;买其中两种有种⽅法.12.⼤⼩不等的两个正⽅形玩具,分别在各⾯上标有数字1,2,3,4,5,6,则向上的⾯标着的两个数字之积不少于20的情形有种.13.从1,2,3,4,7,9中任取不相同的两个数,分别作为对数的底数和真数,可得到个不同的对数值.14.在连结正⼋边形的三个顶点组成的三⾓形中,与正⼋边形有公共边的有个.15.某班宣传⼩组要出⼀期向英雄学习的专刊,现有红、黄、⽩、绿、蓝五种颜⾊的粉笔供选⽤,要求在⿊板中A 、B 、C 、D 每⼀部分只写⼀种颜⾊,如图所⽰,相邻两块颜⾊不同,则不同颜⾊的书写⽅法共有种.三.解答题:16.现由某校⾼⼀年级四个班学⽣34⼈,其中⼀、⼆、三、四班分别为7⼈、8⼈、9⼈、10⼈,他们⾃愿组成数学课外⼩组.(1)选其中⼀⼈为负责⼈,有多少种不同的选法?(2)每班选⼀名组长,有多少种不同的选法?(3)推选⼆⼈做中⼼发⾔,这⼆⼈需来⾃不同的班级,有多少种不同的选法?17.4名同学分别报名参加⾜球队,蓝球队、乒乓球队,每⼈限报其中⼀个运动队,不同的报名⽅法有⼏种?[探究与提⾼]1.甲、⼄两个正整数的最⼤公约数为60,求甲、⼄两数的公约数共有多个?2.从{-3,-2,-1,0,l,2,3}中,任取3个不同的数作为抛物线⽅程y=ax2+bx+c(a≠0)的系数,如果抛物线过原点,且顶点在第⼀象限,这样的抛物线共有多少条?3.电视台在“欢乐今宵”节⽬中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的群众来信,甲信箱中有30封,⼄信箱中有20封.现由主持⼈抽奖确定幸运观众,若先确定⼀名幸运之星,再从两信箱中各确定⼀名幸运伙伴,有多少种不同的结果?综合卷1.A 2.B 3.D 4.D 5.B 6.B 7.D 8.B 9.B 10.B11.30;300 12.513.17 14.40 15.1801. 2排列与组合1、排列综合卷1.90×9l ×92×……×100=()(A )10100A (B )11100A (C )12100A (D )11101A 2.下列各式中与排列数mn A 相等的是()(A )!(1)!-+n n m (B )n(n -1)(n -2)……(n -m) (C )11m n nA n m --+ (D )111m n n A A --3.若 n ∈N 且 n<20,则(27-n )(28-n)……(34-n)等于()(A )827n A - (B )2734nn A -- (C )734n A - (D )834n A -4.若S=123100123100A A A A ++++,则S 的个位数字是()(A )0 (B )3 (C )5 (D )85.⽤1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有()(A )24个(B )30个(C )40个(D )60个6.从0,l ,3,5,7,9中任取两个数做除法,可得到不同的商共有()(A )20个(B )19个(C )25个(D )30个7.甲、⼄、丙、丁四种不同的种⼦,在三块不同⼟地上试种,其中种⼦甲必须试种,那么不同的试种⽅法共有()(A )12种(B )18种(C )24种(D )96种8.某天上午要排语⽂、数学、体育、计算机四节课,其中体育不排在第⼀节,那么这天上午课程表的不同排法共有()(A )6种(B )9种(C )18种(D )24种9.有四位司机、四个售票员组成四个⼩组,每组有⼀位司机和⼀位售票员,则不同的分组⽅案共有()(A )88A 种(B )48A 种(C )44A ·44A 种(D )44A 种10.有4位学⽣和3位⽼师站在⼀排拍照,任何两位⽼师不站在⼀起的不同排法共有()(A )(4!)2种(B )4!·3!种(C )34A ·4!种(D )3 5A ·4!种11.把5件不同的商品在货架上排成⼀排,其中a ,b 两种必须排在⼀起,⽽c ,d 两种不能排在⼀起,则不同排法共有()(A )12种(B )20种(C )24种(D )48种⼆.填空题::12.6个⼈站⼀排,甲不在排头,共有种不同排法.13.6个⼈站⼀排,甲不在排头,⼄不在排尾,共有种不同排法.14.五男⼆⼥排成⼀排,若男⽣甲必须排在排头或排尾,⼆⼥必须排在⼀起,不同的排法共有种.15.将红、黄、蓝、⽩、⿊5种颜⾊的⼩球,分别放⼊红、黄、蓝、⽩、⿊5种颜⾊的⼝袋中,但红⼝袋不能装⼊红球,则有种不同的放法.16.(1)有5本不同的书,从中选3本送给3名同学,每⼈各⼀本,共有种不同的送法;(2)有5种不同的书,要买3本送给3名同学,每⼈各⼀本,共有种不同的送法.三、解答题:17.⼀场晚会有5个唱歌节⽬和3个舞蹈节⽬,要求排出⼀个节⽬单(1)前4个节⽬中要有舞蹈,有多少种排法?(2)3个舞蹈节⽬要排在⼀起,有多少种排法?(3)3个舞蹈节⽬彼此要隔开,有多少种排法?18.三个⼥⽣和五个男⽣排成⼀排.(1)如果⼥⽣必须全排在⼀起,有多少种不同的排法?(2)如果⼥⽣必须全分开,有多少种不同的排法?(3)如果两端都不能排⼥⽣,有多少种不同的排法?(4)如果两端不能都排⼥⽣,有多少种不同的排法?(5)如果三个⼥⽣站在前排,五个男⽣站在后排,有多少种不同的排法?综合卷1.B 2.D 3.D 4.C 5.A 6.B 7.B 8.C 9.D 10.D 11.C12.600 13.504 14.480 15.9616.(1) 60;(2) 12517.(1) 37440;(2) 4320;(3) 1440018.(1) 4320;(2) 14400;(3) 14400;(4) 36000;(5) 7202、组合综合卷⼀、选择题:1.下列等式不正确的是()(A )!!()!mn n C m n m =- (B )11mm n n m C C n m++=- (C )1111m m n n m C C n +++=+ (D )11m m n n C C ++= 2.下列等式不正确的是()(A )m n m n n C C -= (B )11m m mm m m C C C -++=(C )123455555552C C C C C ++++= (D )11 111m m m m n n n n C C C C --+--=++3.⽅程2551616x x x C C --=的解共有()(A )1个(B )2个(C )3个(D )4个4.若372345n n n C A ---=,则n 的值是()(A )11 (B )12 (C )13 (D )145.已知7781n n n C C C +-=,那么n 的值是()(A )12 (B )13 (C )14 (D )15 6.从5名男⽣中挑选3⼈,4名⼥⽣中挑选2⼈,组成⼀个⼩组,不同的挑选⽅法共有()(A )3254C C 种(B ) 3254C C 55A 种(C ) 3254A A 种(D ) 3254A A 55A 种7.从4个男⽣,3个⼥⽣中挑选4⼈参加智⼒竞赛,要求⾄少有⼀个⼥⽣参加的选法共有()(A )12种(B )34种(C )35种(D )340种8.平⾯上有7个点,除某三点在⼀直线上外,再⽆其它三点共线,若过其中两点作⼀直线,则可作成不同的直线()(A )18条(B )19条(C )20条(D )21条9.在9件产品中,有⼀级品4件,⼆级品3件,三级品2件,现抽取4个检查,⾄少有两件⼀级品的抽法共有()(A )60种(B )81种(C )100种(D )126种10.某电⼦元件电路有⼀个由三节电阻串联组成的回路,共有6个焊点,若其中某⼀焊点脱落,电路就不通.现今回路不通,焊点脱落情况的可能有()(A )5种(B )6种(C )63种(D )64种⼆.填空题:11.若11m m n n C xC --=,则x= .12.三名教师教六个班的课,每⼈教两个班,分配⽅案共有种。
2020年人教版新课标高中数学模块测试卷概 率一、选择题(本大题共12小题,每小题5分,共60分)1.我校有高一学生850人,高二学生900人,高三学生1 200人,学校团委欲用分层抽样的方法抽取30名学生进行问卷调查,则下列判断正确的是( ) A .高一学生被抽到的概率最大 B .高二学生被抽到的概率最大 C .高三学生被抽到的概率最大D .每名学生被抽到的概率相等2.某人将一枚硬币连续抛掷了10次,正面朝上的情形出现了6次,则( ) A .正面朝上的概率为0.6 B .正面朝上的频率为0.6 C .正面朝上的频率为6D .正面朝上的概率接近于0.63.事件分为必然事件、随机事件和不可能事件,其中随机事件A 发生的概率的范围是( ) A .()0P A >B .()1P A <C .()01P A <<D .()01P A ≤≤4.同时抛掷两枚大小相同的骰子,用(),x y 表示结果,记A 为所得点数之和为8,则事件A 包含的样本点总数是( ) A .3B .4C .5D .65.袋内装有一个黑球与一个白球(除颜色外其他都相同),从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A .49B .51C .0.49D .0.516.把形状、质量、颜色等完全相同,标号分别为1,2,3,4,5,6的6个小球放入一个不透明的袋子中,从中任意抽取一个小球,记下号码为x ,把第一次抽取的小球放回去之后再从中抽取一个小球,记下号码为y ,设“6xy =”为事件A ,则()=P A ( )A .118B .112C .19D .167.某校高中三个年级人数统计图如图5-5-1所示,按年级用分层抽样的方法抽取一个样本,已知样本中高一年级学生有8人,则样本容量为( )A .24B .30C .32D .358.假设某运动员每次投篮命中的概率都为40%。
现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中,再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数: 907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为( ) A .720B .14C .15D .3209.关于图5-5-2的说法,错误的一个是( )A .甲的极差是29B .甲的中位数是25C .乙的众数是21D .甲的平均数比乙的大10.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A .110B .15C .310D .2511.甲、乙两名同学6次考试的成绩统计图如图5-5-3所示,两组数据的平均数分别为x 甲,x 乙,标准差分别为σ甲,σ乙,则( )A .x x 乙甲<,σσ乙甲<B .x x 乙甲<,σσ乙甲>C .x x 乙甲>,σσ乙甲<D .x x 乙甲>,σσ乙甲>12.甲、乙两人做游戏,下列游戏中不公平的是( )A .抛一枚骰子,向上的点数为奇数则甲胜,向上的点数为偶数则乙胜B .同时抛两枚相同的骰子,向上的点数之和大于7则甲胜,否则乙胜C .从一副不含大、小王的扑克牌中抽一张,扑克牌是红色则甲胜,是黑色则乙胜D .甲,乙两人各写一个数字,若是同奇或同偶则甲胜,否则乙胜 二、填空题(本大题共4小题,每小题5分,共20分) 13.对某班一次测验成绩进行统计,如下表所示:则(1)该班成绩在[]80,100内的概率为________; (2)该班成绩在[]60,100内的概率为________.14.若一个三位数的各位数字互不相同,且各位数字之和等于10,则称此三位数为“十全十美三位数”(如235),任取一个“十全十美三位数”,该数为奇数的概率为________.15.若以连续两次掷骰子分别得到的点数m ,n 作为点P 的横、纵坐标,则点P 落在圆2216x y +=内的概率为________.16.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字记为a ,再由乙猜甲刚才想的数字,把乙猜的数字记为b ,且a ,{}0,1,2,,9b ∈.若||1a b -≤,则称甲、乙“心有灵犀”.现任意找两人玩这个游戏,则两人“心有灵犀”的概率为________. 三、解答题(本大题共6小题,共70分)17.(10分)某公司随机收集了该公司所生产的四类产品的售后调查数据,经分类整理得到下表:使用满意率是指一类产品销售中获得用户满意评价的件数与该类产品的件数的比值.(1)从公司收集的这些产品中随机选取1件,求这件产品是获得用户满意评价的丙类产品的概率; (2)假设该公司的甲类产品共销售10 000件,试估计这些销售的甲类产品中,不能获得用户满意评价的件数.18.(12分)为了研究某种理财工具的使用情况,对[]20,70年龄段的人员进行了调查研究,将各年龄段人数分成5组:[)20,30,[)30,40,[)40,50,[)50,60,[]60,70,并整理得到频率分布直方图如图5-5-4: (1)求直方图中a 的值.(2)采用分层抽样的方法,从第二组、第三组、第四组中共抽取8人,则三个组中各抽取多少人?(3)在(2)中抽取的8人中,随机抽取2人,则这2人都来自第三组的概率是多少?19.(12分)已知某种高炮在它的控制区域内击中目标的概率为0.2.(1)假设有5门这种高炮控制某个区域,求目标进入这个区域后未被击中的概率;(2)要使目标一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮?(参考值lg20.301≈)20.(12分)某教育集团为办好人民满意的教育,每年底都随机邀请8名学生家长代表对集团内甲、乙两所学校进行人民满意度的民主测评(最高110分,最低0分,分数越高说明人民满意度越高,分数越低说明人民满意度越低),去年测评的数据如下: 甲校:96,112,97,108,100,103,86,98; 乙校:108,101,94,105,96,93,97,106.(1)分别计算甲、乙两所学校去年人民满意度测评数据的平均数、中位数. (2)分别计算甲、乙两所学校去年人民满意度测评数据的方差. (3)根据以上数据,你认为这两所学校哪所学校人民满意度更高?21.(12分)一只口袋内装有形状、大小、质地等都相同的4个小球,这4个小球上分别标记着数字1,2,3,4.甲、乙、丙三名同学约定: ①每人不放回地随机摸取一个球; ②按照甲、乙、丙的次序依次摸取; ③谁摸取的球的数字最大,谁就获胜.用有序数组(),,a b c 表示这个试验的基本事件,例如:()1,4,3表示在一次试验中,甲摸取的是标记着数字1的小球,乙摸取的是标记着数字4的小球,丙摸取的是标记着数字3的小球. (1)列出基本事件,并指出基本事件的总数; (2)求甲获胜的概率;(3)求出乙获胜的概率,并指出甲、乙、丙三名同学获胜的概率与其摸球的次序是否有关.22.(12分)某种产品的质量按照其质量指标值M 进行等级划分,具体如下表:现从某企业生产的这种产品中随机抽取100件作为样本,对其质量指标值M 进行统计分析,得到如图5-5-5所示的频率分布直方图.(1)记A 表示事件“任取一件这种产品为二等品或一等品”,试估计事件A 的概率;(2)已知该企业的这种产品每件一等品、二等品、三等品的利润分别为10元、6元、2元,试估计该企业销售10 000件该产品的利润;(3)根据该产品质量指标值M 的频率分布直方图,求质量指标值M 的中位数的估计值(精确到0.01).2020年人教版新课标高中数学模块测试卷概 率·答案一、 1.【答案】D【解析】由抽样的定义知,无论哪种抽样,样本被抽到的概率都相同,故每名学生被抽到的概率相等,故选D 。
全国100所名校单元测试示范卷·高三·数学卷(三)第三单元指数函数、对数函数、幂函数(120分钟150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数中,既是单调函数,又是奇函数的是A.y=x5B.y=5xC.y=log2xD.y=x-1解析:B、C不具有奇偶性,D不具有单调性.答案:A2.设函数f(x)=则f(f(16))的值是A.9B.C.81D.解析:因为f(16)=lo16=-4,所以f(f(16))=f(-4)=3-4=.答案:D3.已知幂函数y=f(x)的图象过点(,),则log3f()的值为A.B.- C.2 D.-2解析:设幂函数为y=xα,则=()α,所以α=,所以y=,所以log3(=log33-2=-2.答案:D4.函数y=(-的值域为A.(-∞,27]B.(0,27]C.[27,+∞)D.(-27,27)解析:令u=x2-4x+1=(x-2)2-3≥-3,因为y=()x是减函数,所以0<y≤27.答案:B5.设a=lo6,b=()0.2,c=,则A.a<b<cB.c<b<aC.c<a<bD.b<a<c解析:由指、对函数的性质可知:a=lo6<lo1=0,0<b=()0.2<1,c=>50=1,所以a<b<c.答案:A6.函数f(x)=|lo(3-x)|的单调递减区间是A.(-∞,2]B.(2,3)C.(-∞,3)D.[3,+∞)解析:因为f(x)=---而f(x)=-lo(3-x)在(-∞,2]上单调递减.答案:A7.设函数f(x)=a x+b(a>0,a≠1)的图象过点(2,10),其反函数的图象过点(4,1),则a-b等于A.5B.3C.2D.-1解析:由题意知解得a=3或a=-2(舍),b=1,所以a-b=2.答案:C8.由于盐碱化严重,某地的耕地面积在最近50年内减少了10%.如果按此规律,设2012年的耕地面积为m,则2017年的耕地面积为A.(1-0.1250)mB.0.mC.0.9250mD.(1-0.)m解析:设每年耕地减少的百分率为a,则有(1-a)50=1-10%,所以a=1-0.,则从2012年起,过x年后耕地面积y与x的函数关系是y=m(1-a)x=0.m.当x=5时,y=0.m.答案:B9.已知函数f(x)是奇函数,且当x<0时,f(x)=ln-,则函数f(x)的大致图象为解析:当x>0时,-x<0,所以f(-x)=ln=-ln(1+x),所以f(x)=ln(1+x),其图象是将f(x)=ln x的图象向左平移一个单位,由于f(x)是奇函数,其图象关于原点对称,故选D.答案:D10.已知函数f(x)=()x-,那么函数f(x)零点所在的区间可以是A.(-1,0)B.(0,)C.(,)D.(,1)解析:因为f(-1)=()-1-(-1=4+1=5>0,f(0)=()0-=1>0,f(1)=-1<0,f()=(-(<0,f()=(-(>0,所以f()·f()<0,故选C.答案:C11.定义一种运算(a,b)*(c,d)=ac+bd,若函数f(x)=(1,log5x)*(()x,log2),x0是方程f(x)=0的解,且x1>x0,则f(x1)的值A.恒为正值B.等于零C.恒为负值D.不小于0解析:由定义f(x)=(1,log5x)*(()x,log2)=()x+log5x·log2=()x-log5x.因为函数f(x)是单调递减函数,所以f(x1)<f(x0)=0.答案:C12.若函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[-1,1]时,f(x)=x2,那么函数y=f(x)的图象与函数g(x)=-的图象在(-12,12)内交点的个数为A.18B.20C.21D.22解析:因为f(x+2)=f(x),所以f(x)的周期为2,x∈[-1,1]时,f(x)=x2,画出函数f(x)与g(x)=-在(-12,12)内的图象,发现f(x)=x2在x轴右侧的图象与g(x)=lg x有9个交点,f(x)=x2在x轴左侧的图象与g(x)=-在(-12,0)内有11个交点,一共有20个交点.答案:B第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.函数y=-的定义域是.解析:要使函数有意义,必须满足--即0<1-x≤1,所以0≤x<1.答案:[0,1)14.log2+lg20+lg5++(-7.6)0=.解析:原式=log2+lg(20×5)+2+1=+2+3=.答案:15.定义区间[x1,x2](x1<x2)的长度为x2-x1.已知函数y=3|x|的定义域为[a,b],值域为[3,9],则区间[a,b]的长度为.解析:因为满足值域为[3,9]的定义域为[-2,-1]或[1,2],所以区间[a,b]长度为1.答案:116.已知函数f(x)=且关于x的方程f(x)+x+3a=0有两个实数根,则实数a 的取值范围是.解析:因为方程f(x)+x+3a=0有两个实数根,所以f(x)的图象与函数y=-x-3a的图象有两个交点,如图所示,可知-3a≤1,所以a≥-.答案:[-,+∞)三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.17.(本小题满分10分)设函数f(x)=ln(x2-ax+2)的定义域为A.(1)若2∈A,-2∉A,求实数a的范围;(2)若函数y=f(x)的定义域为R,求实数a的取值范围.-,所以a≤-3.解析:(1)由题意,得故实数a的范围为(-∞,-3].5分(2)由题意,得x2-ax+2>0在R上恒成立,则Δ=a2-8<0,解得-2<a<2.故实数a的范围为(-2,2).10分18.(本小题满分12分)点(,2)在幂函数f(x)的图象上,点(-2,)在幂函数g(x)的图象上.(1)求f(x)与g(x)的解析式;(2)当x为何值时,有f(x)>g(x).解析:(1)设f(x)=xα,则由题意得2=()α,∴α=2,即f(x)=x2,再设g(x)=xβ,则由题意得=(-2)β,β=-2,即g(x)=x-2.6分(2)在同一坐标系中作出f(x)与g(x)的图象,如图所示.f(x)与g(x)交于(-1,1)点和(1,1)点,由图象可知:当x>1或x<-1时,f(x)>g(x).12分19.(本小题满分12分)已知函数f(x)=3+log2x,x∈[1,16],若函数g(x)=[f(x)]2+2f(x2).(1)求函数g(x)的定义域;(2)求函数g(x)的最值.解析:(1)函数g(x)=[f(x)]2+f(x2)满足解得1≤x≤4,即函数g(x)=[f(x)]2+f(x2)的定义域为[1,4].5分(2)因为x∈[1,4],所以log2x∈[0,2].g(x)=[f(x)]2+2f(x2)=(3+log2x)2+6+2log2x2=lo x+10log2x+15=(log2x+5)2-10,当log2x=0时,g(x)min=15,当log2x=2时,g(x)max=39,即函数g(x)的最大值为39,最小值为15.12分20.(本小题满分12分)若已知某火箭的起飞重量M是箭体(包括搭载的飞行器)的重量m和燃料重量x之和,在不考虑空气阻力的条件下,假设火箭的最大速度y关于x的函数关系式为y=k[ln(m+x)-ln(m)]+5ln2(其中k≠0).当燃料重量为(-1)m吨(e为自然对数的底数,e≈2.72)时,该火箭的最大速度为5千米/秒.(1)求火箭的最大速度y(千米/秒)与燃料重量x(吨)之间的关系式y=f(x);(2)已知该火箭的起飞重量是816吨,则应装载多少吨燃料,才能使该火箭的最大飞行速度达到10千米/秒,顺利地把卫星发送到预定的轨道?解析:(1)依题意,把x=(-1)m,y=5代入函数关系y=k[ln(m+x)-ln(m)]+5ln2,解得k=10.所以所求的函数关系式为y=10[ln(m+x)-ln(m)]+5ln2=ln()10.6分(2)设应装载x吨燃料方能满足题意,此时m=816-x,y=10,代入函数关系式y=ln()10,得ln-=1,解得x≈516吨,应装载516吨燃料方能顺利地把飞船发送到预定的轨道.12分21.(本小题满分12分)对定义在[0,1]上,并且同时满足以下两个条件的函数f(x)称为不等函数.①对任意的x∈[0,1],总有f(x)≥0;②当x1≥0,x2≥0,x1+x2≤1时,总有f(x1+x2)≥f(x1)+f(x2)成立.已知函数g(x)=x3与h(x)=2x-a是定义在[0,1]上的函数.(1)试问函数g(x)是否为不等函数?并说明理由;(2)若函数h(x)是不等函数,求实数a组成的集合.解析:(1)当x∈[0,1]时,总有g(x)=x3≥0,满足①;当x1≥0,x2≥0,x1+x2≤1时,g(x1+x2)=(x1+x2)3=++3·x2+3x1·≥+=g(x1)+g(x2),满足②,所以函数g(x)是不等函数.5分(2)h(x)=2x-a(x∈[0,1])为增函数,h(x)≥h(0)=1-a≥0,所以a≤1.由h(x1+x2)≥h(x1)+h(x2),得-a≥-a+-a,即a≥+-=1-(-1)(-1).因为x1≥0,x2≥0,x1+x2≤1,所以0≤-1≤1,0≤-1≤1,x1与x2不同时等于1,所以0≤(-1)(-1)<1,所以0<1-(-1)(-1)≤1.当x1=x2=0时,[1-(-1)(-1)]max=1,所以a≥1.综合上述,a∈{1}.12分22.(本小题满分12分)已知定义在实数集R上的函数f(x)满足f(-x)+f(x)=0,且当x∈(-1,0)时, f(x)=-.(1)求函数f(x)在(-1,1)上的解析式;(2)判断f(x)在(0,1)上的单调性;(3)当λ取何值时,方程f(x)=λ在(-1,1)上有实数解?解析:(1)因为f(x)是x∈R上的奇函数,所以f(0)=0.设x∈(0,1)时,-x∈(-1,0),所以f(-x)=---=-=-f(x),所以f(x)=,所以f(x)=-∈-∈4分(2)设0<x1<x2<1,f(x1)-f(x2)=--=--,因为0<x1<x2<1,所以<,>30=1,所以f(x1)-f(x2)>0,所以f(x)在(0,1)上为减函数.8分(3)因为f(x)在(0,1)上为减函数,所以<f(x)<,即f(x)∈(,).同理,f(x)在(-1,0)上时,f(x)∈(-,-).又f(0)=0,当λ∈(-,-)∪(,)或λ=0时,方程f(x)=λ在x∈(-1,1)上有实数解. 12分。
第三单元导数及其应用(时间:100分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.如果一个物体的运动方程为s=1-t+t2,其中s的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是()A.7米/秒B.6米/秒C.5米/秒D.8米/秒,可得3 s末的瞬时速度是v=s'|t=3=(-1+2t)|t=3=5.2.设曲线y=x+1x-1在点(3,2)处的切线与直线ax+y+3=0垂直,则a等于()A.2B.-2C.12D.-12y=x+1x-1的导数为y'=-2(x-1)2,所以曲线在点(3,2)处的切线斜率k=-12,又直线ax+y+3=0的斜率为-a,所以-a·-12=-1,解得a=-2.3.若函数y=e x+mx有极值,则实数m的取值范围是()A.m>0B.m<0C.m>1D.m<1y'=e x+m,由于e x>0,若y=e x+mx有极值则必须使y'的值有正有负,故m<0.4.已知函数f(x)=-x3+ax2-x-1在R上是减函数,则实数a的取值范围是()A.(-∞,-3]∪[3,+∞)B.[-3,3]C.(-∞,-3)∪(3,+∞)D.(-3,3),知f'(x)=-3x2+2ax-1≤0在R上恒成立,故Δ=(2a)2-4×(-3)×(-1)≤0,解得-3≤a≤3.5.函数f(x)=x2+x-ln x的零点的个数是()A.0B.1C.2D.3f'(x)=2x+1-1x =2x2+x-1x=0,得x=12或x=-1(舍去).当0<x<12时,f'(x)<0,f(x)单调递减;当x>12时,f'(x)>0,f(x)单调递增.则f(x)的最小值为f12=34+ln 2>0,所以无零点.6.(2016山东滨州二模)若f(x)=a e-x-e x为奇函数,则f(x-1)<e-1e的解集为() A.(-∞,0) B.(-∞,2) C.(2,+∞) D.(0,+∞)f(x)在R上为奇函数,∴f(0)=0,即a-1=0.∴a=1.∴f(x)=e-x-e x,∴f'(x)=-e-x-e x<0.∴f(x)在R上单调递减.∴由f(x-1)<e-1e=f(-1),得x-1>-1,即x>0.∴f(x-1)<e-1e的解集为(0,+∞).7.已知a≤1-xx +ln x对任意x∈12,2恒成立,则a的最大值为 ()A.0B.1C.2D.3 〚f(x)=1-xx +ln x,则f'(x)=x-1x2.当x∈12,1时,f'(x)<0;当x∈(1,2]时,f'(x)>0.∴f(x)在12,1上单调递减,在(1,2]上单调递增,∴在x∈12,2上,f(x)min=f(1)=0,∴a≤0,即a的最大值为0.8.已知函数f(x)=ln x+tan α0<α<π2的导函数为f'(x),若方程f'(x)=f(x)的根x0小于1,则α的取值范围为()A.π4,π2B.0,π3C.π6,π4D.0,π4〚f(x)=ln x+tan α,∴f'(x)=1x.令f(x)=f'(x),得ln x+tan α=1x,即tan α=1x-ln x.设g(x)=1x-ln x,显然g(x)在(0,+∞)上单调递减,而当x→0时,g(x)→+∞, 故要使满足f'(x)=f(x)的根x0<1,只需tan α>g(1)=1,又0<α<π2,∴α∈π4,π2.9.设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f'(x)g(x)+f(x)g'(x)>0,且g(3)=0,则不等式f(x)g(x)<0的解集是()A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3) 〚当x<0时,f'(x)g(x)+f(x)·g'(x)>0,即[f(x)g(x)]'>0,∴当x<0时,f(x)g(x)为增函数,又g(x)是偶函数,且g(3)=0,∴g(-3)=0,∴f(-3)g(-3)=0.故当x<-3时,f(x)g(x)<0;由于f(x)g(x)是奇函数,所以当x>0时,f(x)g(x)为增函数,且f(3)g(3)=0,故当0<x<3时,f(x)g(x)<0.故选D.10.已知f(x)是可导的函数,且f'(x)<f(x)对于x∈R恒成立,则()A.f(1)<e f(0),f(2 014)>e2 014f(0)B.f(1)>e f(0),f(2 014)>e2 014f(0)C.f(1)>e f(0),f(2 014)<e2 014f(0)D.f(1)<e f(0),f(2 014)<e2 014f(0) 〚g(x)=f(x)e x ,则g'(x)=f(x)e x'=f'(x)e x-f(x)(e x)'e2x=f'(x)-f(x)e x<0,故函数g(x)=f(x)e x在R上是减函数, 所以g(1)<g(0),g(2 014)<g(0),即f(1)e1<f(0)1,f(2014)e2014<f(0)1,故f(1)<e f(0),f(2 014)<e2 014f(0).11.若函数f(x)=x 33−a2x2+x+1在区间12,3上有极值点,则实数a的取值范围是()A.2,52B.2,52C.2,103D.2,103〚f(x)=x 33−a2x2+x+1在区间12,3上有极值点,则f'(x)=x2-ax+1在区间12,3内有零点,且零点不是f'(x)的图象顶点的横坐标,由x2-ax+1=0,得a=x+1x ,因为x∈12,3,y=x+1x的值域是2,103,当a=2时,f'(x)=x2-2x+1=(x-1)2,不合题意.所以实数a的取值范围是2,103,故选C.12.(2016江西金太阳考前原创题)若存在两个不相等正实数x,y,使得等式x+a(y-2e x)(ln y-ln x)=0成立,其中e为自然对数的底数,则实数a的取值范围是()A.-∞,0∪1e ,+∞ B.0,1eC.1e,+∞ D.(-∞,0) 〚,a=x(2e x-y)ln y.设yx=t(t>0,且t≠1),则a=1(2e-t)ln t ,1a=(2e-t)ln t.令f(t)=(2e-t)ln t,f(t)≠0,则f'(t)=2et-(1+ln t),令2et=(1+ln t),得t=e,由数形结合可知,当t>e时,f'(t)<0,当0<t<e时,f'(t)>0.所以f(t)≤e,且f(t)≠0,所以0<1a ≤e或1a<0,解得a<0或a≥1e.二、填空题(本大题共4小题,每小题5分,共20分)13.(2016河南名校联盟4月联考)已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=e x+x2+1,则函数h(x)=2f(x)-g(x)在点(0,h(0))处的切线方程是__________________.4=0f(x)-g(x)=e x+x2+1,∴f(x)+g(x)=e-x+x2+1.∴f(x)=e x+e-x+2x2+22,g(x)=e-x-ex2.∴h(x)=2f(x)-g(x)=e x+e-x+2x2+2-e-x-e x2=32e x+12e-x+2x2+2.∴h'(x)=32e x-12e-x+4x,即h'(0)=32−12=1,又h(0)=4,∴所求的切线方程是x-y+4=0.14.已知函数f(x)=ax3+3x2-x+1在区间(-∞,+∞)上是减函数,则实数a的取值范围是__________________-∞,-3]f'(x)=3ax2+6x-1≤0在R上恒成立,则a<0,Δ=62+4×3a≤0,解得a≤-3.15.(2016河南焦作二模)已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0,现给出如下结论:①f(0)f(1)<0;②f(0)f(1)>0;③f(0)f(3)>0;④f(0)f(3)<0;⑤f(1)f(3)>0;⑥f(1)f(3)<0.其中正确的结论是__________________.(填序号)〚f(x)=x3-6x2+9x-abc,∴f'(x)=3x2-12x+9=3(x-1)(x-3).∴当1<x<3时,f'(x)<0;当x<1或x>3时,f'(x)>0.∴f(x)的单调递增区间为(-∞,1)和(3,+∞),单调递减区间为(1,3).∴f(x)极大值=f(1)=1-6+9-abc=4-abc,f(x)极小值=f(3)=27-54+27-abc=-abc.∵f(x)=0有三个解a,b,c,∴a<1<b<3<c,∴f(1)=4-abc>0,且f(3)=-abc<0.∴0<abc<4.∵f(0)=-abc,∴f(0)<0,∴f(0)f(1)<0,f(0)f(3)>0,f(1)f(3)<0.16.已知过点A(1,m)恰能作曲线f(x)=x3-3x的两条切线,则m的值是______________〚3或-2(a,a3-3a).∵f(x)=x3-3x,∴f'(x)=3x2-3,∴切线的斜率k=3a2-3,由点斜式可得切线方程为y-(a3-3a)=(3a2-3)(x-a).∵切线过点A(1,m),∴m-(a3-3a)=(3a2-3)(1-a),即2a3-3a2=-3-m.∵过点A(1,m)可作曲线y=f(x)的两条切线,∴关于a的方程2a3-3a2=-3-m有两个不同的根.令g(x)=2x3-3x2,∴g'(x)=6x2-6x.令g'(x)=0,解得x=0或x=1,当x<0时,g'(x)>0,当0<x<1时,g'(x)<0,当x>1时,g'(x)>0,∴g(x)在(-∞,0)上单调递增,在(0,1)上单调递减,在(1,+∞)上单调递增, ∴当x=0时,g(x)取得极大值g(0)=0,当x=1时,g(x)取得极小值g(1)=-1.关于a的方程2a3-3a2=-3-m有两个不同的根,等价于y=g(x)与y=-3-m 的图象有两个不同的交点,∴-3-m=-1或-3-m=0,解得m=-3或m=-2,∴实数m的值是-3或-2.三、解答题(本大题共6小题,共70分)17.(10分)设函数f(x)=6x3+3(a+2)x2+2ax.(1)若f(x)的两个极值点为x1,x2,且x1x2=1,求实数a的值;(2)是否存在实数a,使得f(x)是(-∞,+∞)上的单调函数?若存在,求出a的值;若不存在,说明理由.由题意知f'(x)=18x2+6(a+2)x+2a.因为x1,x2是f(x)的两个极值点,所以f'(x1)=f'(x2)=0.所以x1x2=2a18=1,所以a=9.(2)因为Δ=36(a+2)2-4×18×2a=36(a2+4)>0,所以不存在实数a,使得f(x)是(-∞,+∞)上的单调函数.〚18.(12分)(2016山西孝义模拟)已知f(x)=x3-12x2-2x+5.(1)求f(x)的单调区间;(2)过点(0,a)可作y=f(x)的三条切线,求a的取值范围.f'(x)=3x2-x-2=(3x+2)(x-1),故f(x)在-∞,-23,(1,+∞)内单调递增,在-23,1内单调递减.(2)设切点为(x0,f(x0)),则切线的方程为y-f(x0)=f'(x0)(x-x0),即y-(x03−12x02-2x0+5)=(3x02-x0-2)(x-x0).又点(0,a)在切线上,x02-2x0+5=(3x02-x0-2)(0-x0),故a- x03-12x02+5.即a=-2x03+12x2+5,令g(x)=-2x3+12由已知得y=a的图象与g(x)=-2x3+1x2+5的图象有三个交点,2,g'(x)=-6x2+x,令g'(x)=0,得x1=0,x2=16,g(x1)=5,g(x2)=51216.〚故a的取值范围为5,5121619.(12分)已知函数f(x)=e x-ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x.f(x)=e x-ax,得f'(x)=e x-a,又f'(0)=1-a=-1,得a=2.所以f(x)=e x-2x,f'(x)=e x-2.令f'(x)=0,得x=ln 2,当x<ln 2时,f'(x)<0,f(x)单调递减,当x>ln 2时,f'(x)>0,f(x)单调递增,所以当x=ln 2时,f(x)取得极小值,极小值为f(ln 2)=2-2ln 2=2-ln 4.f(x)无极大值.g(x)=e x-x2,则g'(x)=e x-2x.由(1)得g'(x)=f(x)≥f(ln 2)=2-ln 4>0,故g(x)在R上单调递增,又g(0)=1>0,所以当x>0,g(x)>g(0)>0,即x2<e x.20.(12分)(2016东北三省四市二模)已知函数f(x)=ln x-x.(1)判断函数f(x)的单调性;(2)函数g(x)=f(x)+x+12x-m有两个零点x1,x2,且x1<x2.求证:x1+x2>1.f(x)的定义域为(0,+∞),f'(x)=1x -1=1-xx.令f'(x)>0,解得0<x<1;令f'(x)<0,解得x>1.故函数f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).g(x)=ln x+12x-m(x>0).因为x1,x2是函数g(x)=ln x+12x-m的两个零点,所以ln x1+12x1-m=0,ln x2+12x2-m=0.两式相减,可得ln x1x2=12x2−12x1,即ln x1x2=x1-x22x2x1,故x1x2=x1-x22ln x12,因此x1=x1x2 -12ln x12,x2=1-x2x12ln x12.令t=x1x2,其中0<t<1,则x1+x2=t-12ln t +1-1t2ln t=t-1t2ln t.构造函数h(t)=t-1t -2ln t(0<t<1),则h'(t)=(t-1)2t2.因为0<t<1,所以h'(t)>0恒成立,故h(t)<h(1),即t-1t -2ln t<0,可知t-1t2ln t>1,故x1+x2>1.〚21.(12分)已知函数f(x)=e x-x2+a,x∈R的图象在x=0处的切线方程为y=bx.(e≈2.718 28)(1)求函数f(x)的解析式;(2)当x∈R时,求证:f(x)≥-x2+x;(3)若f(x)>kx对任意的x∈(0,+∞)恒成立,求实数k的取值范围.f(x)=e x-x2+a,∴f'(x)=e x-2x.由已知f(0)=1+a=0,f'(0)=1=b,解得a=-1,b=1.∴函数f(x)的解析式为f(x)=e x-x2-1.φ(x)=f(x)+x2-x=e x-x-1,φ'(x)=e x-1.由φ'(x)=0,得x=0.当x∈(-∞,0)时,φ'(x)<0,φ(x)单调递减;当x∈(0,+∞)时,φ'(x)>0,φ(x)单调递增.故φ(x)min=φ(0)=0,从而f(x)≥-x2+x.(x)>kx对任意的x∈(0,+∞)恒成立⇔f(x)x>k对任意的x∈(0,+∞)恒成立.令g(x)=f(x)x,x>0,则g'(x)=xf'(x)-f(x)x2=x(e x-2x)-(e x-x2-1)x2=(x-1)(e x-x-1)x2.由(2)可知当x∈(0,+∞)时,e x-x-1>0恒成立, 由g'(x)>0,得x>1;由g'(x)<0,得0<x<1.故g(x)的递增区间为(1,+∞),递减区间为(0,1),即g(x)min=g(1)=e-2.故k<g(x)min=g(1)=e-2,即实数k的取值范围为(-∞,e-2).〚22.(12分)(2016山西朔州模拟)已知函数f(x)=ln x-12ax+a-2,a∈R.(1)求函数f(x)的单调区间;(2)设g(x)=xf(x)+2,求证:当a<ln 2e时,g(x)>2a.(x)=1x −a2=2-ax2x(x>0).若a≤0时,f'(x)>0,则函数f(x)的单调递增区间为(0,+∞);若a>0,当0<x<2a时,f'(x)>0,函数f(x)单调递增;当x>2a时,f'(x)<0,函数f(x)单调递减;综上,若a≤0时,函数f(x)的单调递增区间为(0,+∞),若a>0时,函数f(x)的单调递增区间为0,2a ,单调递减区间为2a,+∞.(x)=xf(x)+2=x ln x-12ax2+(a-2)x+2(x>0),则g'(x)=-ax+ln x+a-1(x>0).因为ln 2e <0,所以当a<ln 2e时,g'(x)=-ax+ln x+a-1在(0,+∞)上单调递增.又g'(1)=-1<0,g'(2)=-a+ln 2-1>-ln 2e+ln 2-1=0,且g'(x)的图象是连续的,故g'(x)在(1,2)内存在唯一的零点x0,即g'(x0)=0.则当0<x<x0时,g'(x)<0,g(x)单调递减;当x≥x0时,g'(x)>0,g(x)单调递增;故而g(x)≥g(x0)=x0ln x0-12ax02+(a-2)x0+2.又g'(x0)=-ax0+ln x0+a-1=0,且1<x0<2,ax02-x0+2>2a.〚〛∴g(x)≥g(x0)=12。