八年级数学上册 第12章 整式的乘除 12.2 整式的乘法 3 多项式与多项式相乘教案 (新版)华东
- 格式:doc
- 大小:150.50 KB
- 文档页数:6
第12章 整式的乘除12.2 整式的乘法第1课时 单项式与单项式相乘教学目标1.让学生通过适当的尝试,获得直接的经验,体验单项式与单项式的乘法运算规律,总结运算法则.2.使学生能正确区别各单项式中的系数,同底数的幂和不同底数幂的因式.3.让学生感知单项式的乘法法则对两个以上的单项式相乘同样成立,知道单项式乘法的结果仍是单项式.4.使学生通过探索理解单项式的乘法中,系数与指数的不同计算方法,正确应用单项式的乘法步骤进行计算,能熟练地进行单项式与单项式相乘和含有加减运算的混合运算.教学重难点重点:对单项式运算法则的理解和应用.难点:尝试与探究单项式与单项式的乘法运算规律.教学过程复习巩固1.口述幂的运算的四个法则.【答案】同底数幂的乘法法则:m n m n a a a +=(m ,n 都是正整数);幂的乘方:()nm m n a a =(m ,n 都是正整数);积的乘方:()n n nb a ab =(n 是正整数);同底数幂的除法法则:n m n m a a a -=÷(m ,n 是正整数,并且>m n ,0≠a ).2.幂的运算的四个法则的联系和区别是什么?3.计算:(1)20032004155⎛⎫⨯ ⎪⎝⎭; (2)()()532532b a b a -+ ; (3)()()32232x x -.【答案】(1)5; (2)0; (3)128x -.导入新课【创设情境,课堂引入】计算(1)3225x x ; (2)3225x x y .教学方式:教师启发引导学生,学生主动探索,逐步认识.分析:运用乘法交换律、结合律,把各因式的系数,相同的字母分别结合,教学反思然后相乘.(1)()()32325252510x x x xx=⨯⨯=;(2)()()32325252510x x y x x y x y =⨯⨯=.探究新知【实践探究,交流新知】通过上面两式的计算,启发引导学生归纳得出: 单项式与单项式相乘的法则: (1)系数相乘作为积的系数;(2)相同的字母,应用同底数幂的乘法法则,底数不变,指数相加; (3)只在一个单项式中出现的字母,连同它的指数作为积的一个因式; (4)单项式与单项式相乘的结果仍然是单项式.【合作探究,解决问题】【小组讨论,师生互学】 例1 计算:(1)()2332x y xy - ; (2)()()23254a b b c --. 解:(1)()2332x y xy - ()()()2332x x y y=⨯-⎡⎤⎣⎦………(乘法的交换律与结合律)436y x -=;(2)()()23254a b b c --()()()23254a b b c =-⨯-⎡⎤⎣⎦………(乘法的交换律与结合律)c b a 5220=.例2 计算:(1)()22332x y xy - ; (2)()()2323254a b b c --;(3)()()23254mna b b c --; (4)()()()3222229ab ab ab --.解:(1)()22322647323412x y xy x y x y x y -==;(2)()()()23232466341235425641600a b b c a b b c a b c --=-=-;(3)()()()()()()232232232545454mnmnmnm mn nm m n na b b c a bb c a bc +--=--=--;教学反思(4)()()()3222236224362989ab ab ab a b ab a b a b --=-=-.方法小结:进行计算时,有乘方先算乘方,再算单项式乘以单项式.【巩固练习】 计算: (1)()()433nnab ab - ; (2)23222332a b ab ⎛⎫- ⎪⎝⎭; (3)()()()()23322122a bc a bc abc abc -----. 【答案】(1)124b a ;(2)6523b a ;(3)0.【总结】(学生总结,老师点评) 单项式乘以单项式的注意事项:(1)计算时,应先进行符号运算,积的系数等于各因式系数的积; (2)按顺序运算;(3)不要丢掉只在一个单项式里出现的字母因式;(4)单项式乘以单项式的法则对于多个单项式相乘仍然成立. 【拓展延伸】例3 已知-2x 3m +1y 2n 与7x n−6y −3−m 的积与x 4y 是同类项,求m 2+n 的值. 【思考】根据-2x 3m +1y 2n 与7x n−6y −3−m 的积与x 4y 是同类项,可以得到什么?怎样求m 2+n 的值?解:因为-2x 3m +1y 2n 与7x n−6y −3−m 的积与x 4y 是同类项,所以3164,231,m n n m ++-=⎧⎨--=⎩ 解得2,3.m n =⎧⎨=⎩所以m 2+n =7.【总结】(学生总结,老师点评)根据单项式乘以单项式的法则,结合同类项,列出关于m ,n 的二元一次方程组,进而求得代数式的值.课堂练习1.计算3a ·2b 2的结果是( )A .3ab 2B .6b 2C .6ab 2D .5ab 2 2.计算-2a 2·3a 的结果是( )A .-6a 2B .-6a 3C .12a 3D .6a 3 3.若长方形的宽是a 2,长是宽的2倍,则长方形的面积为 _____.4.一个三角形的一边长为a ,这条边上的高的长度是它的13,那么这个三角形的面积是_____.5.计算:(1)-3x 2 ·5x 3; (2)4y ·(2xy 2); (3)(-x )3·(x 2y )2.6.若(12m n a b ++)·(21n a b -)=54a b ,求m +n 2的值.教学反思参考答案1.C2.B3.42a4.216a 5. 解:(1)原式=(-3×5)(23x x )=-155 x ; (2)原式=(4×2)(2y y )x =83xy ; (3)原式=(- x 3)·(42x y )=-72x y .6.解:原式=1212154m n n a b a b ++-++=, ∴ 1215214m n n ++-⎧⎨++⎩=,=, 解得31.m n ⎧⎨⎩=,=∴ 2 4.m n +=课堂小结单项式乘以单项式中的“一、二、三”一个不变:单项式与单项式相乘时,对于只在一个单项式里出现的字母, 连同它的指数不变,作为积的因式.二个相乘:把各个单项式中的系数、相同字母的幂分别相乘.三个检验:单项式乘以单项式的结果是否正确,可从以下三个方面来 检验:①结果仍是单项式;②结果中含有单项式中的所有字母;③结果 中每一个字母的指数都等于相乘的单项式中同一字母的指数之和.布置作业请完成本课时对应练习!板书设计单项式与单项式相乘单项式与单项式相乘,只要将它们的系数、相同字母的幂分别相乘,对于只在一个单项式中出现的字母,连同它的指数一起作为积的因式.注意事项(1)应先进行符号运算; (2)按顺序运算;(3)不要丢掉只在一个单项式里出现的字母因式;(4)单项式乘以单项式的法则对于多个单项式相乘仍然成立.教学反思。
第12章 整式的乘除12.2整式的乘法第3课时 多项式与多项式相乘教学目标1.使学生理解并掌握多项式乘以多项式的法则.2.经历探索多项式与多项式相乘的过程,通过导图理解多项式与多项式相乘的结果,能够按多项式乘法法则进行简单的多项式乘法运算,达到熟练地进行多项式乘法运算的目的.3.培养数学感知,体验数学在实际应用中的价值,树立良好的学习态度.教学重难点重点:多项式乘以多项式的形成过程及其理解和应用. 难点:多项式乘以多项式的法则的正确应用.教学过程复习巩固1.口述单项式与单项式相乘的法则. 【答案】(1)系数相乘作为积的系数;(2)相同的字母,应用同底数幂的乘法法则,底数不变,指数相加; (3)只在一个单项式中出现的字母,连同它的指数一起作为积的一个因式.2.口述单项式乘以多项式的法则.【答案】单项式与多项式相乘,就是用单项式分别乘以多项式的每一项,再把所得的积相加.导入新课【创设情境,课堂引入】某地区在退耕还林期间,将一块长m 米、宽a 米的长方形林地的长、宽分别增加n 米和b 米.用两种方法表示这块林地现在的面积.思考:(1)加长加宽后得到的林地的长为多少?宽为多少?面积为多少? 【答案】长为()n m +米,宽为()b a +米,面积为()()m n a b ++平方米.教学反思(2)现在这块林地可以看作由四块面积分别为多少的长方形林地组成,总面积为多少?【答案】四块林地的面积分别为ma 平方米、mb 平方米、na 平方米、nb 平方米,总面积为()ma mb na nb +++平方米.(3)两种不同的方法,得到的结果相等吗? 【答案】相等.()()m n a b ma mb na nb ++=+++. 想一想:(1)()()m n a b ma mb na nb ++=+++的等号左边是什么运算?等号右边又是什么运算?(2)请你总结规律.探究新知【实践探究,交流新知】多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.多项式与多项式相乘−−→−转化单项式与多项式相乘−−→−转化单项式与单项式相乘.字母呈现:ma +mb +na +nb .【 例1 计算:(1)(x +2)(x −3) ; (2)(2x + 5y )(3x −2y ). 解:(1)(x +2)(x −3)2326x x x -+-=26x x --=;(2)(2x + 5y )(3x −2y ) =6x 2−4xy +15yx −10y 2 =6x²+11xy −10y². 例2 计算:(1)(m −2n )(m²+mn −3n²) ;(2)(3x²−2x +2)(2x +1). 解:(1)(m −2n )(m²+mn −3n²)=222232223m m m mn m n n m n mn n n +---+教学反思=3222233226m m n mn m n mn n +---+ =322356m m n mn n --+; (2)(3x²−2x +2)(2x +1)=6x³+3x²−4x²−2x +4x +2=6x³−x²+2x +2.【巩固练习】计算:(1)(x +2y )(5a +3b ); (2)(2x −3)(x +4); (3)(x +y )2; (4)(x +y )(x 2-xy +y 2). 解:(1)原式=x ·5a +x ·3b +2y ·5a +2y ·3b =5ax +3bx +10ay +6by ; (2)原式=2x 2+8x -3x -12=2x 2+5x -12;(3)原式=(x +y )(x +y )=x 2+xy +xy +y 2 =x 2+2xy +y 2;(4)原式=x 3-x 2y +xy 2+x 2y -xy 2+y 3 =x 3+y 3.【反思总结】(学生总结,老师点评) 多项式乘以多项式中的注意事项: (1)运算要按一定顺序,做到不重不漏.(2)多项式乘以多项式,未合并同类项之前积的项数应等于两个多项式的项数之积.(3)多项式的每一项分别与另一个多项式的每一项相乘时,要带上每项前面的符号一起运算:同号相乘得正,异号相乘得负.【合作探究,解决问题】【小组讨论】例3 先化简,再求值:(2)(3)(2)(4)x y x y x y x y -+--- ,其中1x =-,y =2.解:(x -2y )(x +3y )-(2x -y )(x -4y ) =x 2+3xy -2xy -6y 2-(2x 2-8xy -xy +4y 2) =x 2+xy -6y 2-2x 2+9xy -4y 2 =-x 2+10xy -10y 2. 当x =-1,y =2时,原式=-(-1)2+10×(-1)×2-10×22 =-1-20-40 =-61.【拓展延伸】例4 已知ax 2+bx +1(a ≠0)与3x -2的积不含x 2项,也不含x 项,求系数a ,b 的值.思考:由积中不含x 2项、x 项可以推出什么?由此怎样求出a ,b 的值? 解:(ax 2+bx +1)(3x -2)=3ax 3-2ax 2+3bx 2-2bx +3x -2=3ax 3+(3b -2a )x 2+(3-2b )x -2.教学反思因为积不含x 2项,也不含x 项, 所以3b -2a =0,3-2b =0,解得a =94,b =32.即系数a ,b 的值分别是94,32.【反思总结】解决此类问题,先根据多项式乘以多项式的法则写出展开式,合并同类项后,再根据不含某一项,得出这一项系数等于零,由此列方程(组)解答.【拓展练习】 计算:(1)(x +2)(x +3)= x 2+5x +6 ; (2)(x -4)(x +1)=x 2-3x -4;(3)(y +4)(y -2)=228y y +-; (4)(y -5)(y -3)=2815y y -+. 根据上面的计算结果,观察规律并填空: (x +p )(x +q )=2x +p q +()x + pq . 课堂练习1.下列多项式相乘,结果为x 2−4x −12的是( ) A .(x −4)(x +3) B .(x −6)(x +2) C .(x −4)(x −3) D .(x +6)(x −2)2.如果(x +a )(x +b )的结果中不含x 的一次项,那么a ,b 满足( )A .a =bB .a =0C .a =−bD .b =03.如图,正方形卡片A 类、B 类和长方形卡片C 类各有若干张,如果要拼一个长为(a +3b )、宽为(2a +b )的大长方形,则需要A 类、B 类和C 类卡片的张数分别为( )A.2,3,7B.3,7,2C.2,5,3D.2,5,7 4.计算: (1)(y +1)(x -y )-x (y -x ); (2)(-7x 2-8y 2)(-x 2+3y 2); (3)(3a +1)(2a -3)-(6a -5)(a -4). 5.化简求值:(4x +3y )(4x -3y )+(2x +y )(3x -5y ),其中x =1,y =−2.参考答案1.B2.C3.A4.解:(1)原式=xy +x -y 2-y -xy +x 2=x 2+x -y 2-y ;(2)原式=7x 4-21x 2y 2+8x 2y 2-24y 4=7x 4-13x 2y 2-24y 4; (3)原式=6a 2-9a +2a -3-6a 2+24a +5a -20=22a -23.教学反思5.解:(4x+3y)(4x−3y)+(2x+y)(3x−5y)教学反思=16x2−12xy+12xy−9y2+6x2−10xy+3xy−5y2=22x2−7xy−14y2.当x=1,y=−2时,原式=22×12-7×1×(-2)-14×(-2)2=22+14 −56=−20.课堂小结通过本节课的学习,要求同学们:1.理解并掌握多项式乘以多项式的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.即(a+b)(p+q)=ap+aq+bp+bq.实质:先转化为单项式乘以多项式的运算,再转化为单项式乘以单项式的运算.2.多项式与多项式相乘,(1)不要“漏乘”;(2)注意“符号”.布置作业请完成本课时对应练习!板书设计多项式与多项式相乘1.法则先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.(a+b)(p+q)=ap+aq+bp+bq.实质:先转化为单项式乘以多项式的运算,再转化为单项式乘以单项式的运算.2.多项式乘以多项式中的注意事项(1)运算要按一定顺序,做到不重不漏;(2)多项式乘以多项式,未合并同类项之前积的项数应等于两个多项式的项数之积;(3)每一项相乘时要带上每项前面的符号一起运算.。
重庆市沙坪坝区虎溪镇八年级数学上册第12章整式的乘除12.2 整式的乘法12.2.3 多项式与多项式相乘教案(新版)华东师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(重庆市沙坪坝区虎溪镇八年级数学上册第12章整式的乘除12.2 整式的乘法12.2.3 多项式与多项式相乘教案(新版)华东师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为重庆市沙坪坝区虎溪镇八年级数学上册第12章整式的乘除12.2 整式的乘法12.2.3 多项式与多项式相乘教案(新版)华东师大版的全部内容。
3多项式与多项式相乘课题名称12。
2.3多项式与多项式相乘三维目标探索并了解多项式与多项式相乘的法则,并运用它们进行运算.重点目标多项式与多项式相乘的法则难点目标正确的运用法则进行计算导入示标单项式乘以单项式和单项式乘以多项式的运算法则目标三导学做思一:1.问题:为了扩大绿地面积,要把街心花园的一块长a米,宽m米的长方形绿地增长b米,加宽n米,求扩地以后的面积是多少?2. 提问:用几种方法表示扩大后绿地的面积?不同的表示方法之间有什么关系?3.学生分析得出结果学生动手,推导结论1。
引导观察:等式的左边(a+b)(m+n)是两个多项式(a+b)与(m+n)相乘 ,把(m+n)看成一个整体,那么两个多项式(a+b)与(m+n)相乘的问题就转化为单项式与多项式相乘,这是一个我们已经解决的问题,请同学们试着做一做.2.学生动手得到结论:多项式与多项式相乘:先用一个多项式的_________乘另一个多项式的_________,再把所得的积____学做思二:例1:)32)(2(22y xy x y x -+- )65)(52(2+-+x x x例2:先化简,再求值:(a —3b)2+(3a+b )2—(a+5b)2+(a —5b)2,其中a=—8,b=-6达标检测1. 计算:①(x+2)(x+3);②(x -1)(x+2);③(x+2)(x —2); ④(x-5)(x —6);⑤(x+5)(x+5); ⑥(x-5)(x —5);2。
目录第11章数的开方
11.1平方根与立方根
1.平方根
2.立方根
11.2实数
第12章整式的乘除
12.1幂的运算
1.同底数幂的乘法
2.幂的乘方
3.积的乘方
4.同底数幂的除法
12.2整式的乘法
1.单项式与单项式相乘
2.单项式与多项式相乘
3.多项式与多项式相乘
12.3乘法公式
1.两数和乘以这两数的差
2.两数和(差)的平方
12.4整式的除法
1.单项式除以单项式
2.多项式除以单项式
12.5因式分解
第13章全等三角形
13.1命题、定理与证明
1.命题
2.定理与证明
13.2三角形全等的判定
1.全等三角形
2.全等三角形的判定条件
3.边角边
4.角边角
5.边边边
6.斜边直角边
13.3等腰三角形
1.等腰三角形的性质
2.等腰三角形的判定
13.4尺规作图
1.作一条线段等于已知线段
2.作一个角等于已知角
3.作已知角的平分线
4.经过一已知点作已知直线的垂线
5.作已知线段的垂直平分线
13.5逆命题与逆定理
1.互逆命题与互逆定理
2.线段垂直平分线
3.角平分线
第14章勾股定理
14.1勾股定理
1.直角三角形三边的关系
2.直角三角形的判定
3.反证法
14.2勾股定理的应用
第15章数据的收集与表示15.1数据的收集
1.数据有用吗
2.数据的收集
15.2数据的表示
1.扇形统计图
2.利用统计图表传递信息。
多项式与多项式相乘教学目标知识与技能经历探索多项式乘法法则的过程,理解多项式乘法法则;灵活运用多项式乘以多项式的运算法则.过程与方法经历探索乘法法则的过程,发展观察、归纳、猜测、验证的能力;体会乘法分配律的作用与转化思想,发展有条理的思考及语言表达能力.情感、态度与价值观充分调动学生学习的积极性、主动性及与他人沟通交往的能力.重点难点重点多项式乘法的运算.难点探索多项式乘法的法则,注意多项式乘法的运算中“漏项”“负号”的问题.教学过程一、复习旧知,导入新课指名学生说出单项式与多项式相乘的法则.(单项式乘以多项式就是用单项式乘以多项式中的每一项,再把所得的积相加.)式子p(a+b)=pa+pb中的p,可以是单项式,也可以是多项式.如果p=m+n,那么p(a+b)就成了(m+n)(a+b),这就是今天我们所要讲的多项式与多项式相乘的问题.(由此引出课题)你会计算这个式子吗?你是怎样计算的?二、师生互动,探究新知【教师活动】教师引导学生由繁化简,把(m+n)看作一个整体,使之转化为单项式乘以多项式,即: [(m+n)(a+b)]=(m+n)a+(m+n)b=ma+mb+na+nb.【学生活动】由教材P28例图你会验证吗?【教师活动】问题:(1)如何表示扩大后的林区的面积?(2)用不同的方法表示出来后的等式为什么是相等的呢?【学生活动】学生分组讨论,相互交流得出答案.【教师活动】观察这一结果的每一项与原来两个多项式各项之间的关系,能不能由原来的多项式各项之间相乘直接得到?如果能得到,又是怎样相乘得到的?(教师示范)1.你能用语言叙述这个式子吗?多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.即:(m+n)(a+b)=ma+mb+na+nb.【教师活动】2.两个多项式相乘,不先计算能知道结果中(合并同类项前)有几项吗?3.在计算中怎样才能不重不漏?这个法则,对于三个或三个以上的多项式相乘,是否适用?若适用,应怎样计算?【学生活动】学生小组讨论、交流、发言汇报.三、随堂练习,巩固新知【例1】计算:(1)(x+3)(2x2-4x+1);(2)2(2x+3y)(3x+2y)-(6x-y)(2x-5y).【答案】(1)(x+3)(2x2-4x+1)=x·2x2+x·(-4x)+x·1+3×2x2+3×(-4x)+3×1=x3-2x2+x+6x2-12x+3=x3+4x2-x+3.(2)2(2x+3y)(3x+2y)-(6x-y)(2x-5y)=2(6x2+4xy+9xy+6y2)-(12x2-30xy-2xy+5y2)=12x2+8x y+18xy+12y2-12x2+30xy+2xy-5y2=58xy+7y2.四、典例精析,拓展新知甲、乙二人共同计算一道整式乘法:(2x+a)·(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x-10;由于乙漏抄了第二个多项式中x的系数,得到的结果为2x2-9x+10.(1)你能知道式子中A.b的值各是多少吗?(2)请你计算出这道整式乘法的正确结果.【分析】甲抄错了a的符号,即甲的计算式为(2x-a)(3x+b)=6x2-(3a-2b)x-ab.对比得到的结果可得-(3a-2b)=11;乙漏抄了第二个多项式中a的系数,即乙的计算式为(2x+a)(x+b)=2x2+(a+2b)x+ab.对比得到的结果可得出a,b的值.解: (1)(2x-a)(3x+b)=6x2-(3a-2b)x-ab=6x2+11x-10.(2)(2x+a)(x+b)=2x2+(a+2b)x+ab=2x2-9x+10.∴解得(2)原式=(2x-5)(3x-2)=6x2-19x+10.五、运用新知,深化理解若多项式(x2+mx+n)(x2-3x+4)展开后不含x3项和x2项,试求m、n的值.解:原式=x4+mx3+nx2-3x3-3mx2-3nx+4x2+4mx+4n=x4+(m-3)x3+(n-3m+4)x2+(4m-3n)x+4n,由题意得:m-3=0,且n-3m+4=0∴m=3,n=5.【教学说明】教师提示各项系数对应,即待定系数法.六、师生互动,课堂小结这节课你学到了什么?有何收获?有何困惑?与同伴交流,在学生交流发言的基础上教师归纳总结.指导学生总结本节课的知识点,学习过程的自我评价.主要针对以下方面:1.多项式×多项式2.整式的乘法用一个多项式中的每一项乘以另一个多项式的每一项,不要漏项.在没有合并同类项之前,两个多项式相乘展开后的项数应是这两个多项式项数之积.教学反思本节课推导多项式乘多项式法则时,从单项式乘多项式法则入手,用换元思想直接推导,思维有根基,为防止本节课中最大错误——漏乘现象,教师设置了一个探究关于多项式相乘后(没合并同类项前)的项数问题,很好的避免了这个错误.典例精析中的待定系数法初次接触,注意对学困生进行及时指导.。