用FFT对信号作频谱分析
- 格式:doc
- 大小:101.00 KB
- 文档页数:7
实验二用FFT对信号进行频谱分析简介:频谱分析是信号处理中常用的一种方法,通过将信号变换到频域,可以得到信号的频谱特征。
其中,快速傅里叶变换(FFT)是一种高效的计算频域的方法。
在这个实验中,我们将学习如何使用FFT对信号进行频谱分析。
实验步骤:1.准备工作:a. 安装MATLAB或者Octave等软件,并了解如何运行这些软件。
2.载入信号:a. 在MATLAB或Octave中,使用内置函数加载信号文件,将信号读入到内存中。
b.查看信号的基本信息,例如采样频率、时长等。
3.FFT变换:a. 使用MATLAB或Octave的fft函数将信号由时域变换到频域。
b.设置合适的参数,例如变换的点数、窗口函数等。
可以尝试不同的参数,观察其对结果的影响。
4.频谱绘制:a. 使用MATLAB或Octave的plot函数将变换后的频率数据进行绘制。
b.可以绘制幅度谱(频率的能量分布)或相位谱(频率的相位分布),也可以同时绘制两个谱。
5.频谱分析:a.根据绘制出的频谱,可以观察信号的频率特征。
例如,可以识别出信号中的主要频率分量。
b.可以进一步计算信号的能量、均值、方差等统计量,了解信号的功率特征。
c.可以对不同的信号进行对比分析,了解它们在频域上的差异。
实验结果和讨论:1.绘制出的频谱图可以清晰地显示信号的频率分量,可以识别出信号中的主要频率。
2.通过对不同信号的对比分析,可以发现它们在频域上的差异,例如不同乐器的音调特征。
3.可以进一步分析频谱的统计特征,例如信号的能量、平均幅度、峰值频率等。
4.在进行FFT变换时,参数的选择对结果有一定的影响,可以进行参数的调优,获得更准确的频谱分析结果。
结论:本实验通过使用FFT对信号进行频谱分析,可以获得信号在频域上的特征。
通过观察频谱图和统计特征,可以进一步了解信号的频率分布、能量特征等信息。
这对信号处理、音频分析等领域具有很大的应用价值。
在实际应用中,可以根据不同的需求,选择合适的参数和方法,对不同的信号进行频谱分析。
用FFT对信号做频谱分析傅里叶变换(Fourier Transform)是一种将信号从时域转换到频域的数学方法,可用于信号的频谱分析。
通过傅里叶变换,我们可以将时域上的信号转换为频域上的频谱,帮助我们理解信号的频率组成以及各个频率分量的强弱。
频谱分析是对信号进行频率分析的过程,是了解信号在频域上的特性和频率成分的一种方法。
通过频谱分析,我们可以获得信号的频率分布情况,帮助我们了解信号的频率成分、频率峰值等信息。
在进行频谱分析时,常用的方法之一是采用快速傅里叶变换(FFT)。
FFT是一种高效的算法,能够快速计算离散傅里叶变换(DiscreteFourier Transform)。
下面将详细介绍FFT在频谱分析中的应用。
首先,我们需要将待分析的信号转换为数字信号,并对其进行采样,得到一个离散的信号序列。
然后,使用FFT算法对这个离散信号序列进行傅里叶变换,得到信号的频谱。
在进行FFT之前,需要进行一些预处理工作。
首先,需要将信号进行加窗处理,以减少泄露效应。
加窗可以选择矩形窗、汉宁窗、汉明窗等,不同的窗函数对应不同的性能和应用场景。
其次,需要对信号进行零填充,即在信号序列末尾添加零值,以增加频谱的分辨率。
零填充可以提高频谱的平滑度,使得频域上的分辨率更高。
接下来,我们使用FFT算法对经过加窗和零填充的信号序列进行傅里叶变换。
FFT算法将离散信号变换为离散频谱,得到信号的频率成分和强度。
FFT结果通常呈现为频率和振幅的二维图像,横轴表示频率,纵轴表示振幅。
通过观察频谱图像,我们可以得到一些关于信号的重要信息。
首先,我们可以观察到信号的频率成分,即信号在不同频率上的分布情况。
在频谱图像中,高峰表示信号在该频率上强度较高,低峰表示信号在该频率上强度较低。
其次,我们可以通过峰值的位置和强度来分析信号的主要频率和频率成分。
频谱图像上的峰值位置对应着信号的主要频率,峰值的高度对应着信号在该频率上的强度。
最后,我们还可以通过观察频谱图像的整体分布情况,来获取信号的频率范围和频率分布的特点。
用FFT对信号作频谱分析快速傅立叶变换(FFT)是一种在信号处理中常用于频谱分析的方法。
它是傅立叶变换的一种快速算法,通过将信号从时间域转换到频域,可以提取信号的频率信息。
FFT算法的原理是将信号分解为不同频率的正弦波成分,并计算每个频率成分的幅度和相位。
具体而言,FFT将信号划分为一系列时间窗口,每个窗口内的信号被认为是一个周期性信号,然后对每个窗口内的信号进行傅立叶变换。
使用FFT进行频谱分析可以得到信号的频率分布情况。
频谱可以显示信号中各个频率成分的强度。
通过分析频谱可以识别信号中的主要频率成分,判断信号中是否存在特定频率的干扰或噪声。
常见的应用包括音频信号处理、图像处理、通信系统中的滤波和解调等。
使用FFT进行频谱分析的步骤如下:1.首先,获取待分析的信号,并确保信号是离散的,即采样频率与信号中的最高频率成分满足奈奎斯特采样定理。
2.对信号进行预处理,包括去除直流分量和任何不需要的干扰信号。
3.对信号进行分段,分段后的每个窗口长度在FFT算法中通常为2的幂次方。
常见的窗口函数包括矩形窗、汉明窗等。
4.对每个窗口内的信号应用FFT算法,将信号从时间域转换到频域,并计算每个频率成分的幅度和相位。
5.对所有窗口得到的频谱进行平均处理,以得到最终的频谱分布。
在使用FFT进行频谱分析时需要注意的问题有:1.噪声的影响:FFT对噪声敏感,噪声会引入幅度偏差和频率漂移。
可以通过加窗等方法来减小噪声的影响。
2.分辨率的选择:分辨率是指在频谱中能够分辨的最小频率间隔。
分辨率与信号长度和采样频率有关,需要根据需求进行选择。
3.漏泄效应:当信号中的频率不是FFT长度的整数倍时,会出现漏泄效应。
可以通过零填充等方法来减小漏泄效应。
4.能量泄露:FFT将信号限定在一个周期内进行计算,如果信号过长,则可能导致部分频率成分的能量泄露到其他频率上。
总之,FFT作为信号处理中常用的频谱分析方法,能够提取信号中的频率信息,广泛应用于多个领域。
实验三用FFT对信号进行频谱分析和MATLAB程序实验三中使用FFT对信号进行频谱分析的目的是通过将时域信号转换为频域信号,来获取信号的频谱信息。
MATLAB提供了方便易用的函数来实现FFT。
首先,我们需要了解FFT的原理。
FFT(快速傅里叶变换)是一种快速计算离散傅里叶变换(DFT)的算法,用于将离散的时间域信号转换为连续的频域信号。
FFT算法的主要思想是将问题划分为多个规模较小的子问题,并利用DFT的对称性质进行递归计算。
FFT算法能够帮助我们高效地进行频谱分析。
下面是一个使用MATLAB进行频谱分析的示例程序:```matlab%生成一个10秒钟的正弦波信号,频率为1Hz,采样率为100Hzfs = 100; % 采样率t = 0:1/fs:10-1/fs; % 时间范围f=1;%正弦波频率x = sin(2*pi*f*t);%进行FFT计算N = length(x); % 信号长度X = fft(x); % FFT计算magX = abs(X)/N; % 幅值谱frequencies = (0:N-1)*(fs/N); % 频率范围%绘制频谱图figure;plot(frequencies, magX);xlabel('频率(Hz)');ylabel('振幅');title('信号频谱');```上述代码生成了一个10秒钟的正弦波信号,频率为1 Hz,采样率为100 Hz。
通过调用MATLAB的fft函数计算信号的FFT,然后计算每个频率分量的幅值谱,并绘制出信号频谱图。
在频谱图中,横轴表示频率,纵轴表示振幅。
该实验需要注意以下几点:1.信号的采样率要与信号中最高频率成一定比例,以避免采样率不足导致的伪频谱。
2.FFT计算结果是一个复数数组,我们一般只关注其幅值谱。
3.频率范围是0到采样率之间的频率。
实验三的报告可以包含以下内容:1.实验目的和背景介绍。
应用FFT实现信号频谱分析一、快速傅里叶变换(FFT)原理快速傅里叶变换是一种将时域信号转换为频域信号的算法,它通过将信号分解为不同频率的正弦波的和,来实现频谱分析。
FFT算法是一种高效的计算DFT(离散傅里叶变换)的方法,它的时间复杂度为O(nlogn),在实际应用中得到广泛使用。
二、FFT算法FFT算法中最基本的思想是将DFT进行分解,将一个长度为N的信号分解成长度为N/2的两个互为逆序的子信号,然后对这两个子信号再进行类似的分解,直到分解成长度为1的信号。
在这一过程中,可以通过频谱折叠的性质,减少计算的复杂度,从而提高计算效率。
三、FFT实现在实际应用中,可以使用Matlab等软件来实现FFT算法。
以Matlab 为例,实现FFT可以分为以下几个步骤:1.读取信号并进行预处理,如去除直流分量、归一化等。
2. 对信号进行FFT变换,可以调用Matlab中的fft函数,得到频域信号。
3.计算频谱,可以通过对频域信号进行幅度谱计算,即取频域信号的模值。
4.可选地,可以对频谱进行平滑处理,以降低噪音干扰。
5.可选地,可以对频谱进行归一化处理,以便于分析和比较不同信号的频谱特性。
四、应用1.音频处理:通过分析音频信号的频谱,可以实现音频特性的提取,如频率、振幅、共振等。
2.图像处理:通过分析图像信号的频谱,可以实现图像特征的提取,如纹理、边缘等。
3.通信系统:通过分析信号的频谱,可以实现信号的调制解调、频谱分配等功能。
4.电力系统:通过分析电力信号的频谱,可以实现电力质量分析、故障检测等。
总结:应用FFT实现信号频谱分析是一种高效的信号处理方法,通过将时域信号转换为频域信号,可以实现对信号频谱特性的提取和分析。
在实际应用中,我们可以利用FFT算法和相应的软件工具,对信号进行频谱分析,以便于进一步的研究和应用。
实验四程序代码及实验结果图: (1)对以下序列进行谱分析。
⎪⎩⎪⎨⎧≤≤-≤≤-=⎪⎩⎪⎨⎧≤≤-≤≤+==其它nn n n n n x 其它n n n n n n x n R n x ,074,330,4)(,074,830,1)()()(3241选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。
分别打印其幅频特性曲线。
并进行对比、分析和讨论。
实验程序代码及结果如下:%------------产生激励序列------------% x1n = ones(1,4); %产生序列向量x1(n)=R4(n) M=8;xa=1:(M/2); xb=(M/2):-1:1;x2n=[xa,xb]; %产生长度为8的三角波序列x2(n) x3n=[xb,xa]; %产生长度为8的倒三角波序列x3(n)n1 = 0:length(x1n)-1; %分别求出序列长度 n2 = 0:M-1; n3 = 0:M-1;n8k= 0:2/8:2-2/8; %产生数字归一化频率 n16k= 0:2/16:2-2/16; n32k= 0:2/32:2-2/32;%------------fft 做频谱分析------------% X1k8=fft(x1n,8); %x1n 的8点DFT X1k16=fft(x1n,16); %x1n 的16点DFT X1k32=fft(x1n,32); %x1n 的32点DFTX2k8=fft(x2n,8); %x2n 的8点DFT X2k16=fft(x2n,16); %x2n 的16点DFT X2k32=fft(x2n,32); %x2n 的32点DFTX3k8=fft(x3n,8); %x3n 的8点DFT X3k16=fft(x3n,16); %x3n 的16点DFT X3k32=fft(x3n,32); %x3n 的32点DFT%------------绘制x1n 的8/16/32点DFT------------% subplot(3,4,1);stem(n1,x1n); %绘制时域采样波形图title('x1(n)的时域波形图'); %标题xlabel('n'); %横坐标名称ylabel('时域幅度值'); %纵坐标名称subplot(3,4,2);stem(n8k,abs(X1k8)); %绘制8点DFT的幅频特性图title('x1(n)的8点DFT]'); %标题xlabel('ω/π');%横坐标名称ylabel('幅度'); %纵坐标名称subplot(3,4,3);stem(n16k,abs(X1k16)); %绘制16点DFT的幅频特性图title('x1(n)的16点DFT'); %标题xlabel('ω/π');%横坐标名称ylabel('幅度'); %纵坐标名称subplot(3,4,4);stem(n32k,abs(X1k32)); %绘制32点DFT的幅频特性图title('x1(n)的32点DFT'); %标题xlabel('ω/π');%横坐标名称ylabel('幅度'); %纵坐标名称%------------绘制x2n的8/16/32点DFT------------%subplot(3,4,5);stem(n2,x2n); %绘制时域采样波形图title('x2(n)的时域波形图'); %标题xlabel('n'); %横坐标名称ylabel('时域幅度值'); %纵坐标名称subplot(3,4,6);stem(n8k,abs(X2k8)); %绘制8点DFT的幅频特性图title('x2(n)的8点DFT]'); %标题xlabel('ω/π');%横坐标名称ylabel('幅度'); %纵坐标名称subplot(3,4,7);stem(n16k,abs(X2k16)); %绘制16点DFT的幅频特性图title('x2(n)的16点DFT'); %标题xlabel('ω/π');%横坐标名称ylabel('幅度'); %纵坐标名称subplot(3,4,8);stem(n32k,abs(X2k32)); %绘制32点DFT的幅频特性图title('x2(n)的32点DFT'); %标题xlabel('ω/π');%横坐标名称ylabel('幅度'); %纵坐标名称%------------绘制x3n的8/16/32点DFT------------%subplot(3,4,9);stem(n3,x3n); %绘制时域采样波形图title('x3(n)的时域波形图'); %标题xlabel('n'); %横坐标名称ylabel('时域幅度值'); %纵坐标名称subplot(3,4,10);stem(n8k,abs(X3k8)); %绘制8点DFT的幅频特性图title('x3(n)的8点DFT]'); %标题xlabel('ω/π');%横坐标名称ylabel('幅度'); %纵坐标名称subplot(3,4,11);stem(n16k,abs(X3k16)); %绘制16点DFT的幅频特性图title('x3(n)的16点DFT'); %标题xlabel('ω/π');%横坐标名称ylabel('幅度'); %纵坐标名称subplot(3,4,12);stem(n32k,abs(X3k32)); %绘制32点DFT的幅频特性图title('x3(n)的32点DFT'); %标题xlabel('ω/π');%横坐标名称ylabel('幅度'); %纵坐标名称2、对以下周期序列进行谱分析。
1. 三、实验内容和结果:高斯序列的时域和频域特性:高斯序列的时域表达式:2(),015()0,n p q a e n x n -⎧⎪≤≤=⎨⎪⎩其它固定参数p=8,改变参数q 的值, 记录时域和频域的特性如下图。
图 1i. 结论: 从时域图中可以看到, q 参数反应的是高斯序列能量的集中程度: q 越小, 能量越集中, 序列偏离中心衰减得越快, 外观上更陡峭。
同时, 随着q 的增大, 时域序列总的能量是在增大的。
频域上, 对应的, 随着q 的增加, 由于时域序列偏离中心的衰减的缓慢, 则高频分量也就逐渐减, 带宽变小: 时域上总的能量增大, 故也可以看到低频成分的幅度都增大。
固定参数q, 改变参数p, 记录时域和频域的特性如下图 2.图 22. 结论: p 是高斯序列的对称中心, p 的变化在时域表现为序列位置的变化。
由于选取的矩形窗函数一定, p 值过大时, 会带来高斯序列的截断。
并且随着p 的增大, 截断的越来越多。
对应地, 看频域上的变化: 截断的越多, 高频的成分也在增多, 以至发生谱间干扰, 泄露现象变得严重。
从图中可以看到, 在p=13时, 已经有混叠存在。
当p=14时, 混叠进一步加大, 泄露变得更明显。
衰减正弦序列的时域和幅频特性:sin(2),015()0,n b e fn n x n απ-⎧≤≤=⎨⎩其它改变参数f, 记录时域和幅频特性如下图3.图 33. 结论: 随着f 的增大, 时域上可以看到, 序列的变化明显快多了。
从幅度谱上看, 序列的高频分量逐渐增多, 低频分量逐渐减小, 以至于发生严重的频谱混叠。
当f 增大到一定的程度, 从图中可以看到, f=0.4375和f=0.5625时的幅度谱是非常相似的, 此时已经很难看出其幅度谱的区别。
三角序列的时域表达式和对应的时域和幅频特性如图 4:c 1,03()8,470,n n x n n n n +≤≤⎧⎪=-≤≤⎨⎪⎩其它图 4结论: 随着fft 取点数的增多, 能够看到的幅度谱的频率分量变得丰富, 得到的是高密度更高的谱, 也就是减轻了栅栏效应。
用FFT 对信号作频谱分析0 引言傅里叶变换⎰∞∞--=t t x X t j d e )()(ωω是对时域信号x (t ) 进行频谱分析的重要方法之一,当x (t )是频率为ω0的单频正弦波信号时X (ω)呈单线状谱,即在ω=ω0处X (ω)为一条竖直线。
在具体的应用中,实际使用的对有限长度为N 的信号离散序列x (n )做FFT ,进而得到其离散傅里叶变换X (k )。
∑-=-=10π2e)()(N n Nnk j n x k X (k ,n =0,1,…,N -1)显然,连续信号中的ω、t 分别为ω=k Δω、t = n Δt ,且有tN f Δπ2πΔ2Δ==ω。
其中,Δt 为x (t )的采样间隔、Δω或Δf 为频率分辨率。
当x (t )的频率ω0刚好等于Δω的整倍数k 0时,X (ω)或X (k )仍然呈单线状。
然而绝大多数情况下ω0并不刚好等于Δω的整倍数,此时的X (ω)、X (k )如图1所示,显然,ω0处于最高的离散谱线k 与次高的离散谱线k ±1(k +1或k -1)之间。
为能通过FFT 准确地确定时域信号x (t )的频率、振幅和初相,人们研究了多种谱线校正方法[1-2]。
本文所介绍的是一种基于离散傅里叶变换基本特性的谱线校正方法。
1 有限长信号的傅里叶变换实际上有限长信号的傅里叶变换可以看成是对无限长的信号加上一个宽度为T 、幅度为1的矩形窗w (t )的加窗傅里叶变换。
由于矩形窗函数w (t )的时域及频域W (ω)表示分别为⎪⎪⎩⎪⎪⎨⎧>≤=2021)(Tt T t t w ⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=π2s i n c 22s i n )(T T T T T W ωωωω 所以,当无限长的信号x (t )为可以余弦函数表示的频率为ω0的正弦波时)(21)cos()(00m 0m t j t j e e U t U t x ωωω-+==根据傅里叶变换的频移特性,w (t )x (t )的傅里叶变换X (ω)应为kkk k k +1k +1k -1 k -1 |X (k )| |X (k )| |X (k -1)||X (k -1)| |X (k +1)||X (k +1)|图1 离散谱分布示意图(a )(b )[])()(2)(00mωωωωω++-=W W U X 如图2所示[3]。
实验二用FFT对信号作频谱分析一、实验目的(1)学习使用FFT对模拟信号和时域离散信号进行频谱分析的方法(2)了解可能出现的分析误差及其原因,以便正确应用FFT二、实验内容:(1)根据参考资料使用FFT进行谐波分析;利用函数生成一组数据,用以模拟电力现场的测量数据,使用FFT对其进行频谱分析;程序:clearfs=1000;t=0:1/fs:0.6;f1=100;f2=300;x1=sin(2*pi*f1*t); %正弦信号x1x2=sin(2*pi*f2*t); %正弦信号x2x=x1+x2;l=length(x);xx=x+randn(1,l); %叠加随机噪声信号figure(1)subplot(7,1,1)plot(x1);subplot(7,1,2)plot(x2);subplot(7,1,3)plot(x);subplot(7,1,4)plot(xx);number=512;y=fft(x,number); %对x取512点的快速傅里叶变换n=0:length(y)-1;f=fs*n/length(y);subplot(7,1,5)plot(f,abs(y));yy=fft(xx,number); %对xx取512点的快速傅里叶变换subplot(7,1,6)plot(f,abs(yy));pyy=y.*conj(y)/number; %y的能量subplot(7,1,7)plot(f,abs(pyy));实验结果见附图1(2)使用操作系统自带的录音机,录制各种声音,保存成.wav文件;将该声音文件读入(采样保存到)某矩阵中,对该采样信号使用FFT进行频谱分析,比较各种语音信号所包含的频谱成分及频率范围。
程序:number=512;fs=1000;x=wavread('你自己的音频名,如a.wav');%读取音频文件y=fft(x,number); %对x取512点的傅里叶变换n=0:length(y)-1;f=fs*n/length(y);subplot(2,1,1)plot(f,abs(y));pyy=y.*conj(y)/number; %y的能量subplot(2,1,2)plot(f,abs(pyy));实验结果见附图2三、实验结论由实验结果可以看出,实验得到了FFT对模拟信号和时域离散信号进行频谱分析的结果。
实验三用FFT对信号作频谱分析_实验报告一、实验目的1.学习使用FFT(快速傅里叶变换)对信号进行频谱分析;2.掌握频谱分析的基本原理和方法;3.熟悉使用MATLAB进行频谱分析的操作。
二、实验原理FFT是一种基于傅里叶变换的算法,可以将时域信号转换为频域信号,并将信号的频谱特征展示出来。
在频谱分析中,我们通过分析信号的频谱可以获得信号的频率、幅值等信息,从而对信号的性质和特征进行研究。
对于一个连续信号,我们可以通过采样的方式将其转换为离散信号,再利用FFT算法对离散信号进行频谱分析。
FFT算法可以将信号从时域转换到频域,得到离散的频谱,其中包含了信号的频率分量以及对应的幅值。
MATLAB中提供了fft函数,可以方便地对信号进行FFT分析。
通过对信号进行FFT操作,可以得到信号的频谱图,并从中提取出感兴趣的频率信息。
三、实验步骤1.准备工作:(2)建立新的MATLAB脚本文件。
2.生成信号:在脚本中,我们可以通过定义一个信号的频率、幅值和时间长度来生成一个信号的波形。
例如,我们可以生成一个频率为1000Hz,幅值为1的正弦波信号,并设置信号的时间长度为1秒。
3.对信号进行FFT分析:调用MATLAB中的fft函数,对信号进行FFT分析。
通过设置采样频率和FFT长度,可以得到信号的频谱。
其中,采样频率是指在单位时间内连续采样的次数,FFT长度是指离散信号的样本点数。
4.绘制频谱图:调用MATLAB中的plot函数,并设置x轴为频率,y轴为幅值,可以绘制出信号的频谱图。
频谱图上横坐标表示信号的频率,纵坐标表示信号的幅值,通过观察可以得到信号的频率分布情况。
四、实验结果在实验过程中,我们生成了一个频率为1000Hz,幅值为1的正弦波信号,并对其进行FFT分析。
通过绘制频谱图,我们发现信号在1000Hz处有最大幅值,说明信号主要由这一频率成分组成。
五、实验总结本实验通过使用FFT对信号进行频谱分析,我们可以方便地从信号的波形中提取出频率分量的信息,并绘制出频谱图进行观察。
用FFT 对信号作频谱分析姓名:黄艳艳 学号:1002214004 学院:物理与电子工程学院 同组人:吴红果1.实验目的学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析 误差及其原因,以便正确应用FFT 。
2. 实验原理用FFT 对信号作频谱分析是学习数字信号处理的重要内容。
经常需要进行谱分析的信号是模拟信号和时域离散信号。
对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。
频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是N /2π,因此要求D N ≤/2π。
可以根据此式选择FFT 的变换区间N 。
误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。
周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。
如果不知道信号周期,可以尽量选择信号的观察时间长一些。
对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。
如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。
3.实验步骤及内容(1)对以下序列进行谱分析。
⎪⎩⎪⎨⎧≤≤-≤≤-=⎪⎩⎪⎨⎧≤≤-≤≤+==其它nn n n n n x 其它nn n n n n x n R n x ,074,330,4)(,074,830,1)()()(3241选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。
分别打印其幅频特性曲线。
并进行对比、分析和讨论。
(2)对以下周期序列进行谱分析。
4()c o s 4x n n π= 5()c o s (/4)c o s (/8)x n n n ππ=+ 选择FFT 的变换区间N 为8和16 两种情况分别对以上序列进行频谱分析。
分别打印其幅频特性曲线。
并进行对比、分析和讨论。
(3)对模拟周期信号进行谱分析6()c o s 8c o s 16c o s 20x t t t t πππ=++选择 采样频率Hz F s 64 ,变换区间N=16,32,64 三种情况进行谱分析。
分别打印其幅频特性,并进行分析和讨论。
4.思考题(1)对于周期序列,如果周期不知道,如何用FFT 进行谱分析?(2)如何选择FFT 的变换区间?(包括非周期信号和周期信号)(3)当N=8时,)(2n x 和)(3n x 的幅频特性会相同吗?为什么?N=16 呢?5.实验报告要求(1)完成各个实验任务和要求。
附上程序清单和有关曲线。
(2)简要回答思考题。
10.3.2 实验程序清单定义子程序:function mstem(Xk)M=length(Xk);k=0:M-1;wk=2*k/M;stem(wk,abs(Xk),'.');box onxlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(Xk))])程序:x1n=[ones(1,4)];M=8;xa=1:(M/2); xb=(M/2):-1:1; x2n=[xa,xb];x3n=[xb,xa];X1k8=fft(x1n,8);X1k16=fft(x1n,16);X2k8=fft(x2n,8);X2k16=fft(x2n,16);X3k8=fft(x3n,8);X3k16=fft(x3n,16);subplot(2,1,1);mstem(X1k8);title('(1a) 8点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X1k8))])subplot(2,1,2);mstem(X1k16);title('(1b)16点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X1k16))])figure(2)subplot(2,1,1);mstem(X2k8);title('(2a) 8点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X2k8))])subplot(2,1,2);mstem(X2k16);title('(2b)16点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X2k16))])figure(3)subplot(2,1,1);mstem(X3k8);title('(3a) 8点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度'); axis([0,2,0,1.2*max(abs(X3k8))])subplot(2,1,2);mstem(X3k16);title('(3b)16点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度'); axis([0,2,0,1.2*max(abs(X3k16))])(2)N=8;n=0:N-1;x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k8=fft(x4n,8);X5k8=fft(x5n);N=16;n=0:N-1;x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k16=fft(x4n);X5k16=fft(x5n);figure(3)subplot(2,2,1);mstem(X4k8);title('(4a) 8点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度'); axis([0,2,0,1.2*max(abs(X4k8))])subplot(2,2,3);mstem(X4k16);title('(4b)16点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度'); axis([0,2,0,1.2*max(abs(X4k16))])subplot(2,2,2);mstem(X5k8);title('(5a) 8点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度'); axis([0,2,0,1.2*max(abs(X5k8))])subplot(2,2,4);mstem(X5k16);title('(5b)16点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度'); axis([0,2,0,1.2*max(abs(X5k16))])(3)figure(4)Fs=64;T=1/Fs;N=16;n=0:N-1;x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T);X6k16=fft(x6nT);X6k16=fftshift(X6k16);Tp=N*T;F=1/Tp;k=-N/2:N/2-1;fk=k*F;subplot(3,1,1);stem(fk,abs(X6k16),'.');box ontitle('(6a) 16点|DFT[x_6(nT)]|');xlabel('f(Hz)');ylabel('幅度'); axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k16))])N=32;n=0:N-1;x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T);X6k32=fft(x6nT);X6k32=fftshift(X6k32);Tp=N*T;F=1/Tp;k=-N/2:N/2-1;fk=k*F;subplot(3,1,2);stem(fk,abs(X6k32),'.');box ontitle('(6b) 32点|DFT[x_6(nT)]|');xlabel('f(Hz)');ylabel('幅度'); axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k32))])N=64;n=0:N-1;x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T);X6k64=fft(x6nT);X6k64=fftshift(X6k64);Tp=N*T;F=1/Tp;k=-N/2:N/2-1;fk=k*F;subplot(3,1,3);stem(fk,abs(X6k64),'.'); box ontitle('(6a) 64点|DFT[x_6(nT)]|');xlabel('f(Hz)');ylabel('幅度'); axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k64))])4.思考题(1)对于周期序列,如果周期不知道,如何用FFT 进行谱分析?(2)如何选择FFT 的变换区间?(包括非周期信号和周期信号)(3)当N=8时,)(2n x 和)(3n x 的幅频特性会相同吗?为什么?N=16 呢?答:(2)频谱分辨率直接D 和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是N /2π,因此要求D N ≤/2π。
可以根据此式选择FFT 的变换区间N 。
(3) 当N=8时,)(2n x 和)(3n x 的幅频特性会相同.当N=16时,)(2n x 和)(3n x 的幅频特性会不相同。