高二下学期数学文科复习专题一 平面向量1111
- 格式:doc
- 大小:230.00 KB
- 文档页数:5
【高二学习指导】高二数学下册第二单元平面向量知识点数学是学习和研究现代科学技术必不可少的基本工具。
以下是数学网为大家整理的高二数学下册第二单元平面向量知识点,供参考学习。
1.基本概念:向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。
2.加法和减法的代数运算:(1)若a=(x1,y1),b=(x2,y2)则ab=(x1+x2,y1+y2).矢量加减法的几何表示:平行四边形规则,三角形规则。
向量加法有如下规律:+=+(交换律);+(+c)=(+)+c(结合律);3.实数与向量的乘积:实数与向量的乘积为向量。
(1)||=||(2) A0时,方向与a相同;A0时,方向与a相反;当a=0时,a=0两个向量共线的充要条件:(1)向量B与非零向量共线的充要条件是存在且只有一个实数,所以B=(2)若=(),b=()则‖b.平面向量的基本定理:若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使得=e1+e2.4.分割的方向线段的P比率:设p1、p2是直线上两个点,点p是上不同于p1、p2的任意一点,则存在一个实数使=,叫做点p分有向线段所成的比。
当点P位于线段上时,当点P位于线段的延长线上时,分点坐标公式:若=;的坐标分别为(),(),();则(-1),中点坐标公式:.5.向量的量积:(1).向量的夹角:给定两个非零向量和B as=,=B,AOB=()称为向量和B之间的角度。
(2).两个向量的数量积:给定两个非零向量和B,它们的夹角为,那么B=|||B|cos其中|b|cos称为向量b在方向上的投影.(3). 向量的量积的性质:若=(),b=()则e=e=||cos(e为单位向量);BB=0(,B是非零向量)| |=;cos==.(4). 向量的量积运算规律:b=b()b=(b)=(b);(+b)c=c+bc.6.主要思路和方法:本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。
平面向量专题复习一题型一:向量的加、减法、向量数乘运算及其几何意义1.设P 是ABC △所在平面内的一点,2BC BA BP += ,则( )A .0PA PB += B .0PC PA += C .0PB PC +=D .0PA PB PC ++=2.已知a 、b 是两个不共线的向量,若它们起点相同,a 、21b 、t (a +b )三向量的终点在一直线上,则实数t=_________. 3.在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F .若AC a = ,BD b = ,则AF = _________4、已知正方形ABCD 的边长为2,E 为CD 的 中点,则AE BD ⋅= ________.5、已知两个单位向量a ,b 的夹角为60 ,(1)=+-c ta t b ,若0⋅=b c ,则t =_____ 2; 题型二: 平面向量基本定理1、在ABC △中,AB c = ,AC b = .若点D 满足2BD DC = ,则AD = _________2、 在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AC BE = , 则AB 的长为______.123、在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+ ,,则λ=23 ABC ∆中,AB 边的高为CD ,若CB a = ,CA b = ,0a b ⋅= ,||1a = ,||2b = ,则AD = ______________ 4455a b - 题型三: 平面向量的坐标表示与运算1、已知()12a = ,,()32b =- ,,当ka b + 与3a b - 平行,k 值为________2、已知向量(1sin )a θ= ,,(13cos )b θ= ,,则a b - 的最大值为_______ 3、设向量)2,1(m a =,)1,1(+=m b ,),2(m c =,若b c a ⊥+)(,则=||a ______24、已知向量(1,0)a = ,()11b = ,,则 (Ⅰ)与2a b + 同向的单位向量的坐标表示为____________;31010,1010⎛⎫ ⎪ ⎪⎝⎭;(Ⅱ)向量3b a - 与向量a 夹角的余弦值为____________。
高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算1、向量的概念:①向量:既有大小又有方向的量向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量2、向量加法:设,ABa BCb uu u ru uu r r r ,则a +b r =AB BC u u u r u u u r =ACuu u r (1)a a a 00;(2)向量加法满足交换律与结合律;AB BCCDPQQRAR u u u r u u u r u uu r u u u r u u u r u u u rL,但这时必须“首尾相连”.3、向量的减法:①相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:(Ⅰ)a a ;(Ⅱ)当0时,λa 的方向与a 的方向相同;当时,λa 的方向与a 的方向相反;当0时,0a,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线有且只有一个实数,使得b =a6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,使:2211e ea,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a r可表示成axi yj r rr ,记作a r=(x,y)。
2平面向量的坐标运算:(1)若1122,,,ax y bx y rr ,则1212,a bx x y y r r (2)若2211,,,y x B y x A ,则2121,AB x x y y u u u r(3)若a r =(x,y),则a r =(x, y)(4)若1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5)若1122,,,ax y bx y rr ,则1212a bx x y y r r 若ab rr ,则02121y y x x 三.平面向量的数量积1两个向量的数量积:已知两个非零向量a r 与b r,它们的夹角为,则a r ·b r =︱a r︱·︱b r ︱cos 叫做a r与b r 的数量积(或内积)规定00ar r 2向量的投影:︱b r ︱cos =||a b a r r r ∈R ,称为向量b r 在a r方向上的投影投影的绝对值称为射影3数量积的几何意义:a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r 5乘法公式成立:2222a b ab a b a b r r r r r r r r ;2222abaa bb r r r r r r 222aa bbr r r r 6平面向量数量积的运算律:①交换律成立:a bb arr r r ②对实数的结合律成立:a b a b a bRr r r r r r ③分配律成立:abca cb c r r r r r r r ca br r r 特别注意:(1)结合律不成立:ab ca b c r r r r r r ;(2)消去律不成立a ba cr r r r 不能得到bc rr (3)a b r r =0不能得到a r =0r或b r =0r 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)ax y b x y rr,则a r ·b r=1212x x y y 8向量的夹角:已知两个非零向量a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800)叫做向量a r 与b r 的夹角cos =cos,a b a ba b??r r r r r r =222221212121y x y x y y x x 当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r⊥br 10两个非零向量垂直的充要条件:a ⊥ba ·b =O02121y y x x 平面向量数量积的性质一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则().A .AB 与AC 共线B .DE 与CB 共线C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是().A .向量AB 与BA 是两平行向量B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC =OA +OB ,其中,∈R ,且+=1,则点C 的轨迹方程为().A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=04.已知a 、b 是非零向量且满足(a -2b)⊥a ,(b -2a)⊥b ,则a 与b 的夹角是A .6B .3C .23D .565.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =A .λ(AB +AD ),λ∈(0,1)B .λ(AB +BC ),λ∈(0,22)C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22)6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =().(第1题)A.EF+ED B.EF-DE C.EF+AD D.EF+AF7.若平面向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为().A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC +BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m 等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?(第10题)18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.一、选择题1.B 解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y),OA =(3,1),OB =(-1,3),OA =(3,),OB =(-,3),又OA +OB =(3-,+3),∴(x ,y)=(3-,+3),∴33+=-=y x ,又+=1,由此得到答案为D .4.B解析:∵(a -2b)⊥a ,(b -2a)⊥b ,∴(a -2b)·a =a 2-2a ·b =0,(b -2a)·b =b 2-2a ·b =0,∴a 2=b 2,即|a|=|b|.∴|a|2=2|a||b|cos θ=2|a|2cos θ.解得cos θ=21.∴a 与b 的夹角是3π.5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE ,∴DF =DE +EF =EF +AF .7.C解析:由(a +2b)·(a -3b)=-72,得a 2-a ·b -6b 2=-72.而|b|=4,a ·b =|a||b|cos 60°=2|a|,∴|a|2-2|a|-96=-72,解得|a|=6.8.D 解析:由OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA ,即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB ,∴O 是△ABC 的三条高的交点.9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |.∴四边形ABCD 为梯形.10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量.(第1题)二、填空题11.-32.解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又A ,B ,C 三点共线,∴5(4-k)=-7(-k -4),∴k =-32.12.-1.解析:∵M(-1,3),N(1,3),∴MN =(2,0),又a =MN ,∴=4-3-2=3+2x x x 解得4=1=-1=-x x x 或∴x =-1.13.-25.解析:思路1:∵AB =3,BC =4,CA =5,∴△ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0,∴AB ·BC +BC ·CA +CA ·AB=BC ·CA +CA ·AB =CA ·(BC +AB )=-(CA )2=-2CA =-25.思路2:∵AB =3,BC =4,CA =5,∴∠ABC =90°,∴cos ∠CAB =CAAB =53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0,BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16,CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9.∴AB ·BC +BC ·CA +CA ·AB =0―16―9=-25.14.323.解析:a +mb =(3+2m ,4-m),a -b =(1,5).∵(a +mb)⊥(a -b),∴ (a +mb)·(a -b)=(3+2m)×1+(4-m)×5=0m =323.15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF交AC 于点E ,则OF =OA +OC ,又OA +OC =-OB ,(第15题)D(第13题)∴OF =2OE =-OB .O 是△ABC 的重心.16.答案:平行四边形.解析:∵a +c =b +d ,∴a -b =d -c ,∴BA =CD .∴四边形ABCD 为平行四边形.三、解答题17.λ<-1.解析:设点P 的坐标为(x ,y),则AP =(x ,y)-(2,3)=(x -2,y -3).AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7)=(3+5λ,1+7λ).∵AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ).∴713532yx 即7455yx 要使点P 在第三象限内,只需74055解得λ<-1.18.DF =(47,2).解析:∵A(7,8),B(3,5),C (4,3),AB =(-4,-3),AC =(-3,-5).又D 是BC 的中点,∴AD =21(AB +AC )=21(-4-3,-3-5)=21(-7,-8)=(-27,-4).又M ,N 分别是AB ,AC 的中点,∴F 是AD 的中点,∴DF =-FD =-21AD =-21(-27,-4)=(47,2).19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a .∴AF ·ED =(a +21b)·(b -21a)=21b 2-21a 2+43a ·b .又AB ⊥AD ,且AB =AD ,∴a 2=b 2,a ·b =0.∴AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴|2a -b|2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ.又4sin θ-43cos θ=8(sin θcos3π-cos θsin3π)=8sin(θ-3π),最大值为8,∴|2a -b|2的最大值为16,∴|2a -b|的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b|表示2a ,b终点间的距离.|2a|=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ|的最大值为直径的长为4.(第18题)(第19题)。
数学讲义之平面向量【主干内容】1.⑴ 平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线的向量,那么对于这一平面内的任一向量,有且只有一对实数1λ、2λ,使得 . ⑵ 设1e 、2e 是一组基底,=2111e y e x +,b =2212e y e x +,则与b 共线的充要条件是 .2.平面向量的坐标表示:分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底,对于一个向量,有且只有一对实数x 、y ,使得=x i +y j .我们把(x 、y)叫做向量的直角坐标,记作 .并且||= .3.平面向量的坐标运算: 若=(x 1、y 1),=(x 2、y 2),λ∈R,则:+= -= λ=4. 向量的数量积的几何意义: |b |cos θ叫做向量b 在a 方向上的投影 (θ是向量a 与b 的夹角). ·b 的几何意义是,数量·b 等于 .5.向量数量积的运算律:a ·b = ; (λa )·b = =a ·(λb );(a +b )·c =总结: 在近几年的高考中,每年都有涉及向量的题目。
其中小题以填空题或选择题形式出现,考查了向量的性质和运算法则,数乘、数量积、共线问题与轨迹问题。
大题则以向量形式为条件,综合考查了函数、三角、数列、曲线等问题。
【题型分类】题型一:向量的概念与几何运算〖例1=,则b a =; ②若A 、B 、C 、D 是不共线的四点,则=是四边形为平行四边形的充要条件; ③若==,,则c a =; ④b a ==且a ∥b ; ⑤若∥,∥,则∥。
其中,正确命题的序号是____________〖例2〗(2011四川)如图1-2,正六边形ABCDEF 中,BA →+CD →+EF →=( )图1-2A .0B . BE →C ..AD → D .CF →〖例3〗(2011届杭二模)已知非零向量a ,b 满足|a + b | =|a –b|a |,则a + b 与a –b 的夹角为( )A .30︒B .60︒C .120︒D .150︒〖例4〗已知,,,,OA a OB b OC c OD d OE e =====,设t R ∈,如果3,2,a c b d ==()e t a b =+,那么t 为何值时,,,C D E 三点在一条直线上?【小结】:1.认识向量的几何特性.对于向量问题一定要结合图形进行研究.向量方法可以解决几何中的证明.2.注意与O 的区别.零向量与任一向量平行.3.注意平行向量与平行线段的区别.用向量方法证明AB∥CD,需证∥,且AB 与CD 不共线.要证A 、B 、C 三点共线,则证∥AC 即可.4.向量加法的三角形法则可以推广为多个向量求和的多边形法则,特点:首尾相接首尾连;向量减法的三角形法则特点:首首相接连终点.题型二:平面向量的坐标运算〖例1〗设=(ksin θ, 1),b =(2-cos θ, 1) (0 <θ<π),∥,求证:k≥3.〖例2〗(2011稽阳联考)已知向量,均为单位向量,它们的夹角为︒45,实数x 、y 满足1||=+y x ,则y 的取值范围是 .〖例3〗已知向量=(cos2α,sin 2α),=(cos 2β,sin 2β),|-|=552,求cos(α-β)的值.〖例4〗(2011湖南)在边长为1的正三角形ABC 中,设BC →=2BD →,CA →=3CE →,则AD →·BE →=________.〖例5〗在平行四边形ABCD 中,A(1,1),=(6,0),点M 是线段AB 的中点,线段CM 与BD 交于点P .(1) 若=(3,5),求点C 的坐标;(2) 当||=||时,求点P 的轨迹.【小结】:1.认识向量的代数特性.向量的坐标表示,实现了“形”与“数”的互相转化.以向量为工具,几何问题可以代数化,代数问题可以几何化.2.由于向量有几何法和坐标法两种表示方法,所以我们应根据题目的特点去选择向量的表示方法,由于坐标运算方便,可操作性强,因此应优先选用向量的坐标运算. 题型三:平面向量的数量积〖例1〗已知向量=(sin θ,1),b =(1,cos θ),-22πθπ<<.(1) 若a⊥b,求θ;(2) 求|a +b |的最大值.〖例2〗(2011全国) 已知a 与b 为两个不共线的单位向量,k 为实数,若向量a +b 与向量ka -b 垂直,则k =________.〖例3〗(2011浙江)若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,则α和β的夹角θ的取值范围是________. 【小结】:1.运用向量的数量积可以解决有关长度、角度等问题.因此充分挖掘题目所包含的几何意义,往往能得出巧妙的解法.2.注意·b 与ab 的区别.·b =0≠>=,或b =.3.应根据定义找两个向量的夹角。
高二文科数学下知识点总结高二文科数学是学习数学的关键阶段之一,学生需要掌握并理解各种数学知识点。
本文将对高二文科数学下的一些重要知识点进行总结,帮助同学们复习和巩固所学内容。
一、复数与平面向量1. 复数的定义和表示方法:复数是由实部和虚部组成的数,表示为a+bi,其中a为实部,b为虚部,i为虚数单位。
2. 复数的四则运算:加法、减法、乘法、除法。
3. 复数的共轭:对于复数a+bi,其共轭复数为a-bi。
4. 平面向量的表示方法:平面向量用有序数对(A,B)表示,其中A和B分别为向量的起点和终点。
5. 平面向量的模长和方向角:平面向量AB的模长表示为|AB|,方向角表示为∠BAC,其中A为原点。
二、数列与数列的极限1. 等差数列:数列中的相邻两项之差相等,常用公式为an=a1+(n-1)d,其中an为第n项,a1为首项,d为公差。
2. 等比数列:数列中的相邻两项之比相等,常用公式为an=a1*r^(n-1),其中r为公比。
3. 数列的通项公式和前n项和公式:数列的通项表示为an=f(n),前n项和表示为Sn=S(1)+S(2)+...+Sn。
4. 数列的极限:数列无穷接近于某一值的情况,常用符号lim表示。
5. 数列极限的性质:极限的四则运算、夹逼定理等性质。
三、函数与导数1. 函数的概念和表示方法:函数是自变量和因变量之间的对应关系,通常表示为y=f(x)。
2. 常见函数类型:一次函数、二次函数、指数函数、对数函数、三角函数等。
3. 函数的性质:奇偶性、单调性、周期性等。
4. 导数的定义和求导法则:导数表示函数在某一点的切线斜率,常用符号f'(x)表示。
5. 常见函数的导数:幂函数、指数函数、对数函数、三角函数等的导数公式。
四、立体几何与解析几何1. 空间直角坐标系:表示空间点的坐标系,其中有x、y、z三个轴。
2. 空间直线的方程:点向式、对称式等。
3. 空间平面的方程:一般式、点法式等。
标准适用高中文科数学平面向量知识点整理1、观点向量:既有大小,又有方向的量.数目:只有大小,没有方向的量.有向线段的三因素:起点、方向、长度.单位向量:长度等于 1个单位的向量.平行向量(共线向量):方向同样或相反的非零向量.零向量与任一直量平行.相等向量:长度相等且方向同样的向量.相反向量: a b b a a+b 0=-=-=向量表示:几何表示法AB ;字母a表示;坐标表示:a=xi+yj=(x,y).向量的模:设 OA a ,则有向线段 OA 的长度叫做向量 a 的长度或模,记作:| a |.( | a |x2y22x2y2。
), a | a |2零向量:长度为 0 的向量。
a=O|a|=O.【例题】 1. 以下命题:( 1)若a b ,则 a b 。
(2)两个向量相等的充要条件是它们的起点同样,终点同样。
(3)若AB DC ,则 ABCD 是平行四边形。
(4)若 ABCD 是平行四边形,则 AB DC 。
(5)若 a bb, c ,则 a c 。
(6)若 a /bb,/ c,则 a // c 。
此中正确的选项是_______(答:(4)(5))2. 已知 a,b 均为单位向量,它们的夹角为60 ,那么 | a3b |=_____(答:13);2、向量加法运算:⑴三角形法例的特色:首尾相连.⑵平行四边形法例的特色:共起点.Caba b C C⑶三角形不等式: a b a b a b .⑷运算性质:①互换律: a b b a;②联合律: a b c a b c ;③a 0 0 a a .3、向量减法运算:⑴三角形法例的特色:共起点,连终点,方向指向被减向量.⑵坐标运算:设 a x1, y1, b x2 , y2,则 a b x1x2 , y1y2.设、两点的坐标分别为x1 , y1, x2 , y2,则x1x2 , y1y2.【例题】( 1)①AB BC CD___;②AB AD DC____;③ ( AB CD ) ( AC BD)_____(答:① AD;② CB;③ 0);( 2)若正方形 ABCD 的边长为 1,AB a, BC b, AC c ,则 | a b c | =_____(答: 2 2 );( 3)已知作用在点A(1,1)的三个力 F1 (3,4), F2(2, 5), F3(3,1) ,则协力F F1F2 F3的终点坐标是(答:( 9,1 ))4、向量数乘运算:⑴实数与向量 a 的积是一个向量的运算叫做向量的数乘,记作 a .① a a ;②当0 时, a 的方向与 a 的方向同样;当0 时, a 的方向与 a 的方向相反;当0 时, a 0.⑵运算律:①a a ;②a a a ;③ a b a b .⑶坐标运算:设 a x, y ,则 a x, y x,y .【例题】(1)若 M(-3 ,-2 ),N(6,-1 ),且 MP 1MN,则点 P 的坐标为 _______ 37) );(答: ( 6,35、向量共线定理:向量a a0与 b 共线,当且仅当有独一一个实数,使b a .设a x , y, b x, y,( b 0 )(a b) 2(| a ||b |)2。
高中数学平面向量知识点总结及常见题型平面向量一、向量的基本概念与基本运算1.向量的概念:向量是既有大小又有方向的量。
向量一般用a、b、c等字母来表示,或用有向线段的起点与终点的大写字母表示,如:AB(几何表示法)或a(坐标表示法)。
向量的大小即向量的模(长度),记作|AB|或|a|。
向量不能比较大小,但向量的模可以比较大小。
②零向量:长度为0的向量,记为0,其方向是任意的,与任意向量平行。
③单位向量:模为1个单位长度的向量。
向量a为单位向量|a|=1.④平行向量(共线向量):方向相同或相反的非零向量。
任意一组平行向量都可以移到同一直线上。
方向相同或相反的向量,称为平行向量,记作a∥b。
由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。
⑤相等向量:长度相等且方向相同的向量。
相等向量经过平移后总可以重合,记为a b。
大小相等,方向相同(x1,y1)(x2,y2)x1x2,y1y2.2.向量加法求两个向量和的运算叫做向量的加法。
设AB a,BC b,则a+b=AB BC=AC。
1)0+a=a;(2)向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。
2)三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点。
当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则。
向量加法的三角形法则可推广至多个向量相加:AB BC CD…+PQ QR AR,但这时必须“首尾相连”。
3.向量的减法①相反向量:与a长度相等、方向相反的向量,叫做a的相反向量,记作a。
零向量的相反向量仍是零向量。
关于相反向量有:(i)(a)=a;(ii) a+(a)=(a)+a=0.iii) 若向量a、b互为相反向量,则a=-b,b=-a,a+b=0.向量减法:向量a加上b的相反向量叫做a与b的差,记作a-b=a+(-b),求两个向量差的运算,叫做向量的减法。
专题二 第1讲 平面向量【要点提炼】考点一 平面向量的线性运算1.平面向量加减法求解的关键是:对平面向量加法抓住“共起点”或“首尾相连”.对平面向量减法应抓住“共起点,连两终点,指向被减向量的终点”,再观察图形对向量进行等价转化,即可快速得到结果.2.在一般向量的线性运算中,只要把其中的向量当作一个字母看待即可,其运算方法类似于代数中合并同类项的运算,在计算时可以进行类比.【热点突破】【典例】1 (1)如图所示,AD 是△ABC 的中线,O 是AD 的中点,若CO →=λAB →+μAC →,其中λ,μ∈R ,则λ+μ的值为( )A .-12B.12 C .-14D.14【答案】 A【解析】 由题意知,CO →=12(CD →+CA →)=12×⎝ ⎛⎭⎪⎫12CB →+CA →=14(AB →-AC →)+12CA →=14AB →-34AC →, 则λ=14,μ=-34,故λ+μ=-12.(2)已知e 1,e 2是不共线向量,a =m e 1+2e 2,b =n e 1-e 2,且mn ≠0.若a ∥b ,则mn =________.【答案】 -2【解析】 ∵a ∥b ,∴m ×(-1)=2×n ,∴mn=-2.(3)A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D ,若OC →=λOA →+μOB →(λ∈R ,μ∈R ),则λ+μ的取值范围是________. 【答案】 (1,+∞)【解析】 由题意可得,OD →=kOC →=k λOA →+k μOB →(0<k<1),又A ,D ,B 三点共线,所以k λ+k μ=1,则λ+μ=1k>1,即λ+μ的取值范围是(1,+∞).易错提醒 在平面向量的化简或运算中,要根据平面向量基本定理恰当地选取基底,变形要有方向,不能盲目转化.【拓展训练】1 (1)如图,在平行四边形ABCD 中,E ,F 分别为边AB ,BC 的中点,连接CE ,DF ,交于点G.若CG →=λCD →+μCB →(λ,μ∈R ),则λμ=________.【答案】 12【解析】 由题意可设CG →=xCE →(0<x<1), 则CG →=x(CB →+BE →)=x ⎝ ⎛⎭⎪⎫CB →+12CD →=x 2CD →+xCB →.因为CG →=λCD →+μCB →,CD →与CB →不共线, 所以λ=x 2,μ=x ,所以λμ=12.(2)如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的一个动点,若OC →=xOA →+yOB →,则x +3y的取值范围是________.【答案】 [1,3]【解析】 设扇形的半径为1,以OB 所在直线为x 轴,O 为坐标原点建立平面直角坐标系(图略),则B(1,0),A ⎝ ⎛⎭⎪⎫12,32,C(cos θ,sin θ)⎝ ⎛⎭⎪⎫其中∠BOC =θ,0≤θ≤π3. 则OC →=(cos θ,sin θ)=x ⎝ ⎛⎭⎪⎫12,32+y(1,0),即⎩⎪⎨⎪⎧x2+y =cos θ,32x =sin θ,解得x =23sin θ3,y =cos θ-3sin θ3,故x +3y =23sin θ3+3cos θ-3sin θ=3cos θ-33sin θ,0≤θ≤π3. 令g(θ)=3cos θ-33sin θ, 易知g(θ)=3cos θ-33sin θ在⎣⎢⎡⎦⎥⎤0,π3上单调递减,故当θ=0时,g(θ)取得最大值为3,当θ=π3时,g(θ)取得最小值为1,故x +3y 的取值范围为[1,3].【要点提炼】考点二 平面向量的数量积1.若a =(x ,y),则|a |=a ·a =x 2+y 2. 2.若A(x 1,y 1),B(x 2,y 2),则|AB →|=x 2-x 12+y 2-y 12.3.若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角, 则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.【热点突破】【典例】2 (1)(2020·全国Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos 〈a ,a +b 〉等于( )A .-3135B .-1935 C.1735 D.1935【答案】 D【解析】 ∵|a +b |2=(a +b )2=a 2+2a ·b +b 2=25-12+36=49, ∴|a +b |=7,∴cos 〈a ,a +b 〉=a ·a +b |a ||a +b |=a 2+a ·b |a ||a +b |=25-65×7=1935. (2)已知扇形OAB 的半径为2,圆心角为2π3,点C 是弧AB 的中点,OD →=-12OB →,则CD →·AB →的值为( )A .3B .4C .-3D .-4 【答案】 C【解析】 如图,连接CO ,∵点C 是弧AB 的中点, ∴CO ⊥AB ,又∵OA =OB =2,OD →=-12OB →,∠AOB =2π3,∴CD →·AB →=(OD →-OC →)·AB →=-12OB →·AB →=-12OB →·(OB →-OA →)=12OA →·OB →-12OB →2=12×2×2×⎝ ⎛⎭⎪⎫-12-12×4=-3. (3)已知在直角梯形ABCD 中,AB =AD =2CD =2,∠ADC =90°,若点M 在线段AC 上,则|MB →+MD →|的取值范围为________________.【答案】 ⎣⎢⎡⎦⎥⎤255,22 【解析】 以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴, 建立如图所示的平面直角坐标系,则A(0,0),B(2,0),C(1,2),D(0,2), 设AM →=λAC →(0≤λ≤1),则M(λ,2λ), 故MD →=(-λ,2-2λ),MB →=(2-λ,-2λ), 则MB →+MD →=(2-2λ,2-4λ), ∴|MB →+MD →|=2-2λ2+2-4λ2=20⎝⎛⎭⎪⎫λ-352+45,0≤λ≤1, 当λ=0时,|MB →+MD →|取得最大值为22, 当λ=35时,|MB →+MD →|取得最小值为255,∴|MB →+MD →|∈⎣⎢⎡⎦⎥⎤255,22.易错提醒 两个向量的夹角的范围是[0,π],在使用平面向量解决问题时要特别注意两个向量的夹角可能是0或π的情况,如已知两个向量的夹角为钝角时,不仅要求其数量积小于零,还要求不能反向共线.【拓展训练】2 (1)(2019·全国Ⅰ)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π6 【答案】 B【解析】 方法一 设a 与b 的夹角为θ, 因为(a -b )⊥b ,所以(a -b )·b =a ·b -|b |2=0, 又因为|a |=2|b |,所以2|b |2cos θ-|b |2=0, 即cos θ=12,又θ∈[0,π],所以θ=π3,故选B.方法二 如图,令OA →=a ,OB →=b ,则BA →=OA →-OB →=a -b .因为(a -b )⊥b ,所以∠OBA =π2,又|a |=2|b |,所以∠AOB =π3, 即a 与b 的夹角为π3,故选B.(2)(2020·新高考全国Ⅰ)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP →·AB →的取值范围是( ) A .(-2,6) B .(-6,2) C .(-2,4) D .(-4,6)【答案】 A【解析】 如图,取A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,则A(0,0),B(2,0),C(3,3),F(-1,3). 设P(x ,y),则AP →=(x ,y),AB →=(2,0),且-1<x<3. 所以AP →·AB →=(x ,y)·(2,0)=2x ∈(-2,6).(3)设A ,B ,C 是半径为1的圆O 上的三点,且OA →⊥OB →,则(OC →-OA →)·(OC →-OB →)的最大值是( ) A .1+ 2B .1- 2C.2-1 D .1【答案】 A【解析】 如图,作出OD →,使得OA →+OB →=OD →.则(OC →-OA →)·(OC →-OB →)=OC →2-OA →·OC →-OB →·OC →+OA →·OB →=1-(OA →+OB →)·OC →=1-OD →·OC →,由图可知,当点C 在OD 的反向延长线与圆O 的交点处时,OD →·OC →取得最小值,最小值为-2,此时(OC →-OA →)·(OC →-OB →)取得最大值,最大值为1+ 2.故选A.专题训练一、单项选择题1.已知四边形ABCD 是平行四边形,点E 为边CD 的中点,则BE →等于( ) A .-12AB →+AD →B.12AB →-AD →C.AB →+12AD →D.AB →-12AD →【答案】 A【解析】 由题意可知,BE →=BC →+CE →=-12AB →+AD →.2.(2020·广州模拟)加强体育锻炼是青少年生活学习中非常重要的组成部分,某学生做引体向上运动,处于如图所示的平衡状态时,若两只胳膊的夹角为π3,每只胳膊的拉力大小均为400 N ,则该学生的体重(单位:kg)约为(参考数据:取重力加速度大小为g =10 m/s 2,3≈1.732)( )A .63B .69C .75D .81 【答案】 B【解析】 设该学生的体重为m ,重力为G ,两臂的合力为F ′,则|G |=|F ′|,由余弦定理得|F ′|2=4002+4002-2×400×400×cos 2π3=3×4002,∴|F ′|=4003,∴|G |=mg =4003,m =403≈69 kg.3.已知向量a =(1,2),b =(2,-2),c =(λ,-1),若c ∥(2a +b ),则λ等于( ) A .-2 B .-1 C .-12 D.12【答案】 A【解析】 ∵a =(1,2),b =(2,-2),∴2a +b =(4,2),又c =(λ,-1),c ∥(2a +b ),∴2λ+4=0,解得λ=-2,故选A.4.(2020·潍坊模拟)在平面直角坐标系xOy 中,点P(3,1),将向量OP →绕点O 按逆时针方向旋转π2后得到向量OQ →,则点Q 的坐标是( )A .(-2,1)B .(-1,2)C .(-3,1)D .(-1,3) 【答案】 D【解析】 由P(3,1),得P ⎝ ⎛⎭⎪⎫2cos π6,2sin π6, ∵将向量OP →绕点O 按逆时针方向旋转π2后得到向量OQ →,∴Q ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π6+π2,2sin ⎝ ⎛⎭⎪⎫π6+π2,又cos ⎝⎛⎭⎪⎫π6+π2=-sin π6=-12,sin ⎝ ⎛⎭⎪⎫π6+π2=cos π6=32,∴Q(-1,3).5.(2020·泰安模拟)如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 等于( )A .0B .1C .2D .3 【答案】 C【解析】 如图,连接AO ,由O 为BC 的中点可得,AO →=12(AB →+AC →)=m 2AM →+n 2AN →, ∵M ,O ,N 三点共线, ∴m 2+n2=1. ∴m +n =2.6.在同一平面中,AD →=DC →,BE →=2ED →.若AE →=mAB →+nAC →(m ,n ∈R ),则m +n 等于( ) A.23 B.34 C.56 D .1 【答案】 A【解析】 由题意得,AD →=12AC →,DE →=13DB →,故AE →=AD →+DE →=12AC →+13DB →=12AC →+13(AB →-AD →)=12AC→+13⎝ ⎛⎭⎪⎫AB →-12AC →=13AB →+13AC →,所以m =13,n =13,故m +n =23.7.若P 为△ABC 所在平面内一点,且|PA →-PB →|=|PA →+PB →-2PC →|,则△ABC 的形状为( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形【答案】 C【解析】 ∵|PA →-PB →|=|PA →+PB →-2PC →|,∴|BA →|=|(PA →-PC →)+(PB →-PC →)|=|CA →+CB →|,即|CA →-CB →|=|CA →+CB →|,两边平方整理得,CA →·CB →=0,∴CA →⊥CB →,∴△ABC 为直角三角形.故选C. 8.已知P 是边长为3的等边三角形ABC 外接圆上的动点,则||PA →+PB →+2PC →的最大值为( )A .2 3B .3 3C .4 3D .5 3 【答案】 D【解析】 设△ABC 的外接圆的圆心为O ,则圆的半径为332×12=3, OA →+OB →+OC →=0, 故PA →+PB →+2PC →=4PO →+OC →. 又||4PO →+OC→2=51+8PO→·OC →≤51+24=75, 故||PA →+PB →+2PC →≤53, 当PO →,OC →同向共线时取最大值.9.如图,圆O 是边长为23的等边三角形ABC 的内切圆,其与BC 边相切于点D ,点M 为圆上任意一点,BM →=xBA →+yBD →(x ,y ∈R ),则2x +y 的最大值为( )A. 2B. 3 C .2 D .2 2 【答案】 C【解析】 方法一 如图,连接DA ,以D 点为原点,BC 所在直线为x 轴,DA 所在直线为y 轴,建立如图所示的平面直角坐标系.设内切圆的半径为r ,则圆心为坐标(0,r),根据三角形面积公式,得12×l △ABC ×r =12×AB ×AC ×sin 60°(l △ABC 为△ABC 的周长),解得r=1.易得B(-3,0),C(3,0),A(0,3),D(0,0), 设M(cos θ,1+sin θ),θ∈[0,2π),则BM →=(cos θ+3,1+sin θ),BA →=(3,3),BD →=(3,0), 故BM →=(cos θ+3,1+sin θ)=(3x +3y,3x),故⎩⎨⎧cos θ=3x +3y -3,sin θ=3x -1,则⎩⎪⎨⎪⎧x =1+sin θ3,y =3cos θ3-sin θ3+23,所以2x +y =3cos θ3+sin θ3+43=23sin ⎝⎛⎭⎪⎫θ+π3+43≤2.当θ=π6时等号成立.故2x +y 的最大值为2.方法二 因为BM →=xBA →+yBD →,所以|BM →|2=3(4x 2+2xy +y 2)=3[(2x +y)2-2xy]. 由题意知,x ≥0,y ≥0, |BM →|的最大值为232-32=3,又2x +y 24≥2xy ,即-2x +y 24≤-2xy ,所以3×34(2x +y)2≤9,得2x +y ≤2,当且仅当2x =y =1时取等号. 二、多项选择题10.(2020·长沙模拟)已知a ,b 是单位向量,且a +b =(1,-1),则( ) A .|a +b |=2 B .a 与b 垂直C .a 与a -b 的夹角为π4D .|a -b |=1 【答案】 BC【解析】 |a +b |=12+-12=2,故A 错误;因为a ,b 是单位向量,所以|a |2+|b |2+2a ·b =1+1+2a ·b =2,得a ·b =0,a 与b 垂直,故B 正确;|a -b |2=a 2+b 2-2a ·b =2,|a -b |=2,故D 错误;cos 〈a ,a -b 〉=a ·a -b |a ||a -b |=a 2-a ·b 1×2=22,所以a 与a-b 的夹角为π4,故C 正确.11.设向量a =(k,2),b =(1,-1),则下列叙述错误的是( ) A .若k<-2,则a 与b 的夹角为钝角 B .|a |的最小值为2C .与b 共线的单位向量只有一个为⎝⎛⎭⎪⎫22,-22D .若|a |=2|b |,则k =22或-2 2 【答案】 CD【解析】 对于A 选项,若a 与b 的夹角为钝角,则a ·b <0且a 与b 不共线,则k -2<0且k ≠-2,解得k<2且k ≠-2,A 选项正确;对于B 选项,|a |=k 2+4≥4=2,当且仅当k =0时等号成立,B 选项正确;对于C 选项,|b |=2,与b 共线的单位向量为±b|b |,即与b 共线的单位向量为⎝⎛⎭⎪⎫22,-22或⎝ ⎛⎭⎪⎫-22,22,C 选项错误;对于D 选项,∵|a |=2|b |=22,∴k 2+4=22,解得k =±2,D 选项错误.12.已知△ABC 是边长为2的等边三角形,D ,E 分别是AC ,AB 上的两点,且AE →=EB →,AD →=2DC →,BD 与CE 交于点O ,则下列说法正确的是( ) A.AB →·CE →=-1 B.OE →+OC →=0C .|OA →+OB →+OC →|=32D.ED →在BC →方向上的投影为76【答案】 BCD【解析】 因为AE →=EB →,△ABC 是等边三角形, 所以CE ⊥AB ,所以AB →·CE →=0,选项A 错误;以E 为坐标原点,EA →,EC →的方向分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示,所以E(0,0),A(1,0),B(-1,0),C(0,3),D ⎝ ⎛⎭⎪⎫13,233,设O(0,y),y ∈(0,3),则BO →=(1,y),DO →=⎝ ⎛⎭⎪⎫-13,y -233,又BO →∥DO →,所以y -233=-13y ,解得y =32,即O 是CE 的中点,OE →+OC →=0,所以选项B 正确; |OA →+OB →+OC →|=|2OE →+OC →|=|OE →|=32,所以选项C 正确;ED →=⎝ ⎛⎭⎪⎫13,233,BC →=(1,3),ED →在BC →方向上的投影为ED →·BC →|BC →|=13+22=76,所以选项D 正确.三、填空题13.(2020·全国Ⅱ)已知单位向量a ,b 的夹角为45°,k a -b 与a 垂直,则k =________.【答案】22【解析】 由题意知(k a -b )·a =0,即k a 2-b ·a =0. 因为a ,b 为单位向量,且夹角为45°,所以k ×12-1×1×22=0,解得k =22. 14.在△ABC 中,AB =1,∠ABC =60°,AC →·AB →=-1,若O 是△ABC 的重心,则BO →·AC →=________.【答案】 5【解析】 如图所示,以B 为坐标原点,BC 所在直线为x 轴,建立平面直角坐标系.∵AB =1,∠ABC =60°, ∴A ⎝ ⎛⎭⎪⎫12,32.设C(a,0). ∵AC →·AB →=-1,∴⎝ ⎛⎭⎪⎫a -12,-32·⎝ ⎛⎭⎪⎫-12,-32=-12⎝ ⎛⎭⎪⎫a -12+34=-1,解得a =4.∵O 是△ABC 的重心,延长BO 交AC 于点D , ∴BO →=23BD →=23×12()BA →+BC→ =13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12,32+4,0=⎝ ⎛⎭⎪⎫32,36.∴BO →·AC →=⎝ ⎛⎭⎪⎫32,36·⎝ ⎛⎭⎪⎫72,-32=5.15.(2020·石家庄模拟)在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,点O 为△ABC 的外接圆的圆心,A =π3,且AO →=λAB →+μAC →,则λμ的最大值为________.【答案】 19【解析】 ∵△ABC 是锐角三角形, ∴O 在△ABC 的内部,∴0<λ<1,0<μ<1.由AO →=λ(OB →-OA →)+μ(OC →-OA →), 得(1-λ-μ)AO →=λOB →+μOC →,两边平方后得,(1-λ-μ)2AO →2=(λOB →+μOC →)2 =λ2OB →2+μ2OC →2+2λμOB →·OC →,∵A =π3,∴∠BOC =2π3,又|AO →|=|BO →|=|CO →|.∴(1-λ-μ)2=λ2+μ2-λμ, ∴1+3λμ=2(λ+μ),∵0<λ<1,0<μ<1,∴1+3λμ≥4λμ,设λμ=t ,∴3t 2-4t +1≥0,解得t ≥1(舍)或t ≤13,即λμ≤13⇒λμ≤19,∴λμ的最大值是19.16.(2020·浙江)已知平面单位向量e 1,e 2满足|2e 1-e 2|≤2,设a =e 1+e 2,b =3e 1+e 2,向量a ,b 的夹角为θ,则cos 2θ的最小值是________.【答案】2829【解析】 设e 1=(1,0),e 2=(x ,y), 则a =(x +1,y),b =(x +3,y). 由2e 1-e 2=(2-x ,-y), 故|2e 1-e 2|=2-x2+y 2≤2,得(x -2)2+y 2≤2.又有x 2+y 2=1,得(x -2)2+1-x 2≤2,化简,得4x ≥3,即x ≥34,因此34≤x ≤ 1.cos 2θ=⎝ ⎛⎭⎪⎫a ·b |a |·|b |2 =⎣⎢⎡⎦⎥⎤x +1x +3+y 2x +12+y2x +32+y 22 =⎝ ⎛⎭⎪⎫4x +42x +26x +102=4x +12x +13x +5 =4x +13x +5=433x +5-833x +5=43-833x +5,当x =34时,cos 2θ有最小值,为4⎝ ⎛⎭⎪⎫34+13×34+5=2829.。
高中文科数学平面向量知识点整理1、概念向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 相反向量:a =-b ⇔b =-a ⇔a +b =0向量表示:几何表示法AB ;字母a 表示;坐标表示:a =xi+yj =(x,y).向量的模:设OA a =,则有向线段OA 的长度叫做向量a 的长度或模,记作:||a .( 222222||,||a x y a a x y =+==+。
)零向量:长度为0的向量。
a =O ⇔|a |=O .【例题】1.下列命题:(1)若a b =,则a b =。
(2)两个向量相等的充要条件是它们的起点相同,终点相同。
(3)若AB DC =,则ABCD 是平行四边形。
(4)若ABCD 是平行四边形,则AB DC =。
(5)若,a b b c ==,则a c =。
(6)若//,//a b b c ,则//a c 。
其中正确的是_______(答:(4)(5))2.已知,a b 均为单位向量,它们的夹角为60,那么|3|a b +=_____(答:13);2、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.⑶三角形不等式:a b a b a b -≤+≤+.⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++; ③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++.baCBAa b C C -=A -AB =B3、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--.【例题】(1)①AB BC CD ++=___;②AB AD DC --=____;③()()AB CD AC BD ---=_____ (答:①AD ;②CB ;③0);(2)若正方形ABCD 的边长为1,,,AB a BC b AC c ===,则||a b c ++=_____(答:);(3)已知作用在点(1,1)A 的三个力123(3,4),(2,5),(3,1)F F F ==-=,则合力123F F F F =++的终点坐标是(答:(9,1))4、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.【例题】(1)若M (-3,-2),N (6,-1),且1MP MN 3--→--→=-,则点P 的坐标为_______(答:7(6,)3--);5、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,(0b ≠)22()(||||)a b a b ⇔⋅=。
《平面向量》专题复习题
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1. 若A (2,-1),B (-1,3),则的坐标是 ( ) A.(1,2) B.(-3,4) C. (3,-4) D. 以上都不对
2.与a =(4,5)垂直的向量是 ( ) A.(-5k ,4k ) B. (-10,2) C. (5
4,k
k
-) D.(5k , -4k )
3. △ABC 中,=a , =b ,则等于 ( ) A.a+b B.-(a+b ) C.a-b D.b-a
4.化简52(a -b )-3
1
(2a +4b )+152(2a +13b )的结果是 ( ) A.
51a ±51b B.0 C. 51a +51b D. 51a -5
1b 5.已知|p |=22,|q |=3, p 与q 的夹角为
4
π
,则以a =5p +2q ,b =p -3q 为邻边的平行四边形的一条对角线长为 ( ) A.15 B.15 C. 16 D.14
6.已知A (2,-2),B (4,3),向量p 的坐标为(2k -1,7)且p ∥,则k 的值为 ( ) A.109-
B.109
C.10
19
- D.1019
7. 已知△ABC 的三个顶点,A 、B 、C 及平面内一点P 满足PA PB PC AB ++=
,则点P 与△
ABC 的关系是 ( ) A. P 在△ABC 的内部 B. P 在△ABC 的外部 C. P 是AB 边上的一个三等分点 D. P 是AC 边上的一个三等分点
8.已知△ABC 的三个顶点,A (1,5),B (-2,4),C (-6,-4),M 是BC 边上一点,且△ABM 的面积是△ABC 面积的
4
1
,则线段AM 的长度是 ( )
A.5 C.
2
5
9.设e 1,e 2是夹角为450的两个单位向量,且a =e 1+2e 2,b =2e 1+e 2,,则|a +b |的值 ( ) A.23 B.9 C.2918+ D.223+
10.若|a |=1,|b a -b )⊥a ,则a 与b 的夹角为 ( ) A.300
B.450
C.600
D.750
11.把一个函数的图象按向量a =(
3
π
,-2)平移后,得到的图象对应的函数解析式为
y =sin(x +
6
π
)-2,则原函数的解析式为 ( ) A.y =sin x B.y =cos x C.y =sin x +2 D.y = -cos x
12.在△ABC 中,=c , BC = a , CA
=b ,则下列推导中错误的是 ( ) A.若a ·b <0,则△ABC 为钝角三角形 B. 若a ·b =0,则△ABC 为直角三角形 C. 若a ·b =b ·c ,则△ABC 为等腰三角形 D. 若c ·( a +b +c )=0,则△ABC 为等腰三角形
二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上) 13.在△ABC
,4==且,8=⋅则这个三角形的形状是 . 14.一艘船从A 点出发以h km /32的速度向垂直于对岸的方向行驶,同时河水的流速为
h km /2,则船实际航行的速度的大小和方向是 .
15. 若向量)4,7(),1,2(),2,3(-=-=-=c b a ,现用a 、b 表示c ,则c= . 16.给出下列命题:①若a 2+b 2=0,则a =b =0;
②已知A ),,(11y x B ),(22y x ,则);2
,2(21
2121y y x x AB ++=
③已知a ,b ,c 是三个非零向量,若a +b =0,则|a·c |=|b·c |
④已知0,021>>λλ,e 1,e 2是一组基底,a =λ1e 1+λ2e 2则a 与e 1不共线,a 与e 2也不共线; ⑤若a 与b 共线,则a·b =|a |·|b |.其中正确命题的序号是 .
三、解答题(本大题共6小题,17-21题每小题12分,22题14分,共74分,解答应写出文
字说明、证明过程或演算步骤)
17.如图,ABCD 是一个梯形
,//=, M 、N 分别是,的中点,已知
=AB a ,=AD b ,试用a 、b 表示,DC BC 和.MN
18.设两个非零向量e 1、e 2不共线.如果=e 1+e 2,=BC 2e 1+8e 2,CD =3(e 1-e 2) ⑴求证:A 、B 、D 共线;
⑵试确定实数k,使k e 1+e 2和e 1+k e 2共线.
A
B
N
M
D
C
19.已知△ABC中,A(2,4),B(-1,-2),C(4,3),BC边上的高为AD.⑴求证:AB⊥AC;⑵求点D与向量
的坐标.
20.已知△ABC的三个顶点为A(1,2),B(4,1),C(3,4).⑴求AB边上的中线CM的长;⑵在AB上取
的面积分成4:5两部分,求P点的坐标. 一点P,使过P且平行与BC的直线PQ把ABC
21.已知a、b是两个非零向量,证明:当b与a+λb(λ∈R)垂直时,a+λb的模取得最小值.
22.已知二次函数f (x ) 对任意x ∈R ,都有f (1-x )=f (1+x )成立,设向量a =(sin x ,2), b =(2sin x ,2
1), c =(cos2x ,1),d =(1,2)。
(1)分别求a ·b 和c ·d 的取值范围; (2)当x ∈[0,π]时,求不等式f (a ·b )>f (c ·d )的解集。
答案
一、BCDBA ;DDADB ;BD 二、13.等边三角形;14.大小是4km/h ,方向与水流方向的夹角为600 ; 15.a -2b ; 16.①③④
三、17.∵||=2||∴2=∴21
21==
a ,=
b -21a , MN =4
1a -b 18.⑴∵BD BC CD =+=
5e 1+5e 2=5 , ∴//又有公共点B,∴A 、B 、D 共线
⑵设存在实数λ使k e 1+e 2=λ(e 1+k e 2) ∴ k =λ且k λ=1 ∴k =1± 19.⑴
由
=⋅可知⊥AB ⊥AC ⑵设D
(x,y ),∴)2,1(),5,5(),4,2(++==--=y x y x ∵⊥ ∴5(x -2)+5(y -4)=0
∵// ∴5(x +1)-5(y +2)=0
∴⎪⎪⎩
⎪⎪⎨
⎧==2527y x ∴D(25,27))2
3
,23(-=
20.⑴2
26||),25,21()23,25(=
--=∴M ⑵设P (x,y )
44||22,59||33
APQ APQ BPQC
ABC S S AP AP AB S S AB ∆∆∆=∴=∴=∴=
)1,3(32)2,1(-=--∴y x )34,3(P ∴
21. 当b 与a +λb (λ∈R)垂直时,b ·(a +λb )=0,∴λ= -2
a b
b | a +λb
当λ= -2
a b
b 时,| a +λb |取得最小值. ∴当b 与a +λb (λ∈R)垂直时,a +λb 的模取得最小值.
22. (1)a ·b =2sin 2x +1≥1 c ·d =2cos 2x +1≥1
(2)∵f (1-x )=f (1+x ) ∴f (x )图象关于x =1对称
当二次项系数m >0时, f (x )在(1,+∞)内单调递增, 由f (a ·b )>f (c ·d )⇒ a ·b > c ·d , 即2sin 2x +1>2cos 2x +1
又∵x ∈[0,π] ∴x ∈3(,)44
ππ
当二次项系数m <0时,f (x )在(1,+∞)内单调递减, 由f (a ·b )>f (c ·d )⇒ a ·b > c ·d , 即2sin 2x +1<2cos 2x +1
又∵x ∈[0,π] ∴x ∈3[0,)(,]44
ππ
π 、
故当m >0时不等式的解集为3(,)44ππ;当m <0时不等式的解集为3[0,)(,]44ππ
π。