初中数学《一元二次方程》主题单元教学设计以及思维导图
- 格式:doc
- 大小:172.00 KB
- 文档页数:13
一元二次方程(思维导图+资料)1、会用配方法解二次项系数为1的一元二次方程2、经历探究将一般一元二次方程化成()0()2≥=+n n m x 形式的过程,进一步理解配方法的意义3、在用配方法解方程的过程中,体会转化的思想。
重点:使学生掌握配方法,解一元二次方程难点:把一元二次方程转化为的(x +m )2= n (n ≥0)形式二、知识准备1、请说出完全平方公式。
(a +b )2 = (a -b )2 =2、用直接开平方法解下例方程:(1) (2)134)5(2=+-x (1)16442=+-x x (2)13425102=++-x x三、学习过程问题1、请你思考方程5)3(2=+x 与0462=++x x 有什么关系,如何解方程0462=++x x 呢?问题2、能否将方程0462=++x x 转化为(n m x =+2)的形式呢?由此可见,只要先把一个一元二次方程变形为(x +m )2= n 的形式(其中m 、n 都是常数),如果n ≥0,再通过直接开平方法求出方程的解,这种解一元二次方程的方法叫做配方法。
(1)2x -4x +3=0. (2)x 2+3x -1 = 0四、知识梳理问题1:配方法解一元二次方程的作用是什么?配方法时要注意什么?问题2、配方法解一元二次方程的一般步骤是什么?达标检测一1、填空:(1)x 2+6x+ =(x+ )2;(2)x 2-2x+ =(x- )2;(3)x 2-5x+ =(x- )2;(4)x 2+x+ =(x+ )2;(5)x 2+px+ =(x+ )2;2、将方程x 2+2x-3=0化为(x+m)2=n 的形式为 ;3、用配方法解方程x 2+4x-2=0时,第一步是 ,第二步是 ,第三步是 ,解是 。
1、用配方法解一元二次方程x 2+8x+7=0,则方程可变形为( )A.(x-4)2=9B.(x+4)2=9C.(x-8)2=16D.(x+8)2=572、、已知方程x 2-5x+q=0可以配方成(x-25 )2=46的形式,则q 的值为( ) A.46 B.425 C. 419 D. -419 3、、已知方程x 2-6x+q=0可以配方成(x-p )2=7的形式,那么q 的值是( )A.9B.7C.2D.-24、、用配方法解下列方程:(1)x 2-4x=5; (2)x 2-100x-101=0;(3)x 2+8x+9=0; (4)y 2+22y-4=0;5、试用配方法证明:代数式x 2+3x-23的值不小于-415。
《第二十一章一元二次方程》单元教学设计
(一)单元知识结构框架
问题1:制作无盖方盒各角应切去多大的 正方形?
问题2:比赛邀请多少球队参赛?
排
例题解析
问题1:由实际问题得出直接开平方法 解一元二次方程
探究:怎样解方程得出配方法
21.2.1 配方法
例题1解下列方程
任务1:由配方法得出根的判别式
任务2:得出一元二次方程的求根公式 例题解析
任务1:探究解方程的方法
任务2:思考一元二次方程是如何降次 的,得出因式分解法 例题解析
任务1:思考从因式分解法还原到一般 式得出根与系数的关系
任务2:用求根公式验证根与系数的关 系 例题解析
探究1:传播问题
21.3实际问题与一元二次方程
探究3:几何问题
(二)课时安排
单元知识 结构框架
及课时安 21.2.4一元二次方程根与系数的 关系
二次方程
思考:得出一元二次方程的概念
探究2:平均增长率问题
根与系数的关系
21.1一元二次方程
21.2.3因式分解法
因式分解法
21.2.2公式法
实际问题 公式法
配方法
概念
元。
1、 会用配方法解二次项系数为1的一元二次方程2、 经历探究将一般一元二次方程化成()0()2≥=+n n m x 形式的过程,进一步理解配方法的意义3、 在用配方法解方程的过程中,体会转化的思想。
重点:使学生掌握配方法,解一元二次方程难点:把一元二次方程转化为的(x +m )2= n (n ≥0)形式 二、知识准备1、 请说出完全平方公式。
(a +b )2 = (a -b )2=2、 用直接开平方法解下例方程:(1) (2)134)5(2=+-x (1)16442=+-x x (2)13425102=++-x x三、学习过程问题1、请你思考方程5)3(2=+x 与0462=++x x 有什么关系,如何解方程0462=++x x 呢?问题2、能否将方程0462=++x x 转化为(n m x =+2)的形式呢?由此可见,只要先把一个一元二次方程变形为(x +m )2= n 的形式(其中m 、n 都是常数),如果n ≥0,再通过直接开平方法求出方程的解,这种解一元二次方程的方法叫做配方法。
(1)2x -4x +3=0. (2)x 2+3x -1 = 0四、知识梳理问题1:配方法解一元二次方程的作用是什么?配方法时要注意什么? 问题2、配方法解一元二次方程的一般步骤是什么?达标检测一1、填空:(1)x 2+6x+ =(x+ )2;(2)x 2-2x+ =(x- )2;(3)x 2-5x+ =(x- )2;(4)x 2+x+ =(x+ )2;(5)x 2+px+ =(x+ )2;2、将方程x 2+2x-3=0化为(x+m)2=n 的形式为 ;3、用配方法解方程x 2+4x-2=0时,第一步是 ,第二步是 ,第三步是 ,解是 。
1、用配方法解一元二次方程x 2+8x+7=0,则方程可变形为( )A.(x-4)2=9B.(x+4)2=9C.(x-8)2=16D.(x+8)2=572、、已知方程x 2-5x+q=0可以配方成(x-25 )2=46的形式,则q 的值为( ) A.46B.425C. 419D. -419 3、、已知方程x 2-6x+q=0可以配方成(x-p )2=7的形式,那么q 的值是( )A.9B.7C.2D.-2 4、、用配方法解下列方程:(1)x 2-4x=5; (2)x 2-100x-101=0; (3)x 2+8x+9=0; (4)y 2+22y-4=0;5、试用配方法证明:代数式x 2+3x-23的值不小于-415。
初中数学九年级上册思维导图一、数与代数1. 实数有理数整数正整数、负整数、0分数正分数、负分数无理数无理数的定义无理数的分类2. 代数式代数式的定义代数式的分类单项式正单项式、负单项式多项式二项式、三项式等代数式的运算加法减法乘法除法3. 方程一元一次方程一元二次方程多元一次方程方程的解法4. 不等式一元一次不等式一元二次不等式不等式的解法二、几何1. 基本几何概念点、线、面线段、射线、直线角、直角、锐角、钝角三角形2. 几何图形四边形矩形、正方形、菱形、梯形多边形五边形、六边形等圆3. 几何证明证明方法综合法、分析法、反证法证明步骤4. 几何计算面积计算体积计算三、统计与概率1. 数据收集与整理数据收集方法数据整理方法2. 数据分析平均数、中位数、众数方差、标准差3. 概率概率的定义概率的计算方法四、数学应用1. 实际问题生活问题科学问题2. 数学建模建模方法建模步骤3. 数学软件数学软件的使用数学软件的应用初中数学九年级上册思维导图五、数学思想与方法1. 数形结合数形结合的定义数形结合的应用2. 分类讨论分类讨论的原则分类讨论的步骤3. 归纳与演绎归纳法的定义与应用演绎法的定义与应用4. 数学建模建模的必要性建模的过程5. 数学探究探究的意义探究的方法六、数学文化1. 数学史古代数学近代数学现代数学2. 数学家故事国内数学家国际数学家3. 数学趣闻数学趣题数学游戏4. 数学与生活数学在科技中的应用数学在生活中的应用七、数学学习策略1. 学习方法预习、听课、复习作业、练习、考试2. 时间管理合理安排学习时间高效利用学习时间3. 学习资源教师辅导、同学互助、家长支持4. 学习评价自我评价同伴评价教师评价八、数学素养1. 数学思维逻辑思维抽象思维创新思维2. 数学语言符号语言图形语言文字语言3. 数学审美数学的美数学的美学价值4. 数学情感对数学的兴趣对数学的热爱初中数学九年级上册思维导图九、数学竞赛与拓展1. 数学竞赛数学竞赛的种类数学竞赛的技巧数学竞赛的准备2. 数学拓展数学课外活动数学研究性学习数学建模竞赛十、数学实验1. 实验目的培养学生的动手能力增强学生的数学兴趣2. 实验内容几何实验统计实验数学软件实验3. 实验方法观察法实验法探究法十一、数学教育1. 教育理念以学生为本注重过程强调应用2. 教学方法启发式教学合作学习情境教学3. 教育评价多元评价过程评价终结评价十二、数学与社会1. 数学在科技中的应用计算机科学工程技术经济管理2. 数学在生活中的应用购物做饭出行3. 数学与艺术音乐绘画建筑。
苏教版初三数学九年级上册知识点总结归纳第一章一元二次方程思维导图:知识点归类知识点一一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。
注意:一元二次方程必须同时满足以下三点:①方程是整式方程。
②它只含有一个未知数。
③未知数的最高次数是2.同时还要注意在判断时,需将方程化成一般形式。
一元二次方程的解法用一元二次方程解决问题列一元二次方程解应用题时,我们一般将解题过程归结为“审、设、列、解、检验、答”六步。
(1) “审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的等量关系.(2) “设”是指设未知数,在一道应用题中,往往含有几个未知量,应恰当地选择其中的一个未知量用字母x表示,然后根据各量之间的数量关系,将其他几个未知量用含x的代数式表示出来.(3) “列”就是指列方程,一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程.(4) “解”是指解方程,即求出未知数的值。
(5) “检验”是指检验方程的解能否保证实际问题有意义.在解实际应用题时,一定要注意检验求得的一元二次方程的根是否与题意相符,不相符的一定要舍去。
(6) “答”是指完成以上步骤后,回归到原始问题,写出答案。
第2章对称图形-圆圆是轴对称图形,每一条直径都是它的对称轴,因此圆有无数条对称轴。
精品学习网初中频道为大家编辑了对称图形圆知识点,希望对大家有帮助。
2.1 圆1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
2.2 圆的对称性(1)圆是满足x轴对称的,这样只需要计算原来的1/2点的位置;(2)圆是满足y轴对称的,这样只需要计算原来的1/2点的位置;(3)圆是满足y = x or y = -x轴对称的,这样只需要计算原来的1/2点的位置;2.3 确定圆的条件1.定理:不在同一直线上的三个点确定一个圆.定理中“不在同一直线”这个条件不可忽略,“确定”一词应理解为“有且只有” .2.通过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心为三角形的外心,这个三角形叫圆的内接三角形.只要三角形确定,那么它的外心和外接圆半径也随之确定了.2.4 圆周角圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角都等于这条弧所对的圆心角的一半。
一元二次方程主题单元设计主题单元规划思维导图(说明:将主题单元规划的思维导图导出为jpeg 文件后,粘贴在这里;如果提交到平台,则需要使用图片导入的功能,具体操作见《2013学员教师远程研修手册》。
)主题单元学习目标(说明:依据新课程标准要求描述学生在本主题单元学习中所要达到的主要目标)知识与技能:了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题.过程与方法:(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型.•根据数学模型恰如其分地给出一元二次方程的概念.(2)结合整式中的有关概念介绍一元二次方程的概念,如二次项等.(3)通过掌握缺一次项的一元二次方程的解法──直接开方法,•导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方在学习活动中获得成功的体验,建立学好数学的信心。
专题问题设计1、用观察检验法估计一元二次方程的解2、配方法的一般形式是什么?配方法的一般步骤3、公式法的公式是什么?b2-4ac>0,b2-4ac=0,b2-4ac<0的解的情况?4、因式分解法的一般思路是什么?5、一元二次方程如何选择方程的解法?所需教学环境和教学资源信息化资源:计算机常规资源:教材、多媒体课件、几何画板课件教学支撑环境:多媒体教室学习活动设计第一课时用配方法解一元二次方程活动1:用配方法解一元二次方程(二次项的系数为1)1、用配方法解下列关于x的方程(1)x2-8x+1=0 (2)x2-2x-=0问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=,x2=(这个方程一定有解吗?什么情况下有解?)活动2:用公式法解一元二次方程1、用公式法解下列方程.(1)2x2-x-1=0 (2)x2+1.5=-3x3、要求学生对知识整体认识的基础上,对知识进行巩固提高4、整理自己的想法和做法,在小组内表述自己的探索过程和结论.活动3:拓展提高:某数学兴趣小组对关于x的方程(m+1)+(m-2)x-1=0提出了下列问题.若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程。
一元二次方程适用九年级年级8课时课内共用8课时,每周5课时;课外共用2课时所需时间主题单元学习概述(说明:简述主题单元在课程中的地位和作用、单元的组成情况,单元的学习重点和难点、解释专题的划分和专题之间的关系,单元的主要的学习方式和预期的学习成果,字数300-500) 方程是刻画现实世界中数量关系的一个有效数学模型。
随着数学应用的日趋广泛,方程的工具作用显得愈发重要。
在前几册已经学习了一元一次方程、二元一次方程组、可化为一元一次的方程的分式方程等,初步感受了方程的模型作用,并积累了一些解方程和利用方程解决实际问题的经验。
但生活中有关方程的模型并不都是线性的,另一种方程———一元二次方程在现实生活中具有同样广泛的应用。
本单元的组成分为概念、解法和应用三个专题。
本单元的学习重点是一元二次方程的解法,难点是利用一元二次方程解决实际问题,提高学生分析问题和解决问题的能力。
本单元划分为概念、解法和应用三个专题,当然,列方程、解方程和方程应用并不是截然割裂的,因此,力求将解方程的技能训练与实际问题的解决融为一体,在解决实际问题的过程中提高学生的解题技能。
本单元的主要学习模式是“问题情境——建立模型——拓展、应用”,通过创设大量的问题情境,让学生进行充分的探索和交流,注重知识的生成过程。
通过本单元的学习,力求能让学生利用一元二次方程这个模型解决现实生活中的相关问题。
主题单元规划思维导图主题单元学习目标(说明:依据新课程标准要求描述学生在本主题单元学习中所要达到的主要目标)知识与技能:1.了解一元二次方程的概念.2.掌握一元二次方程的解法.3.能运用一元二次方程解决实际问题.过程与方法:1.经历由具体问题抽象出一元二次方程的过程.2.经历由具体问题探索一元二次方程解法的过程,渗透“转化”的数学思想方法.3.经历建立一元二次方程模型解决实际问题的过程.情感态度与价值观:1.初步了解数学与人类现实生活的密切联系.2.培养学生对数学的好奇心和求知欲.3.培养学生大胆质疑、尝试、勇于探索的精神.对应课标(说明:学科课程标准对本单元学习的要求)①能够根据具体问题中的数量关系,列出方程,体会方程是刻画现实世界的一个有效的数学模型。
一元二次方程主题单元设计
主题单元规划思维导图(说明:将主题单元规划的思维导图导出为jpeg 文件后,粘贴在这里;如果提交到平台,则需要使用图片导入的功能,具体操作见《2013学员教师远程研修手册》。
)
主题单元学习目标(说明:依据新课程标准要求描述学生在本主题单元学习中所要达到的主要目标)
知识与技能:了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题.
过程与方法:(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型.•根据数学模型恰如其分地给出一元二次方程的概念.(2)结合整式中的有关概念介绍一元二次方程的概念,如二次项等.(3)通过掌握缺一次项的一元二次方程的解法──直接开方法,•导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方
在学习活动中获得成功的体验,建立学好数学的信心。
专题问题设计1、用观察检验法估计一元二次方程的解
2、配方法的一般形式是什么?配方法的一般步骤
3、公式法的公式是什么?b2-4ac>0,b2-4ac=0,b2-4ac<0的解的情况?
4、因式分解法的一般思路是什么?
5、一元二次方程如何选择方程的解法?
所需教学环境和教学资源
信息化资源:计算机
常规资源:教材、多媒体课件、几何画板课件
教学支撑环境:多媒体教室
学习活动设计
第一课时用配方法解一元二次方程
活动1:用配方法解一元二次方程(二次项的系数为1)1、用配方法解下列关于x的方程
(1)x2-8x+1=0 (2)x2-2x-=0
问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=,x2=(这个方程一定有解吗?什么情况下有解?)
活动2:用公式法解一元二次方程
1、用公式法解下列方程.
(1)2x2-x-1=0 (2)x2+1.5=-3x
3、要求学生对知识整体认识的基础上,对知识进行巩固提高
4、整理自己的想法和做法,在小组内表述自己的探索过程和结论.
活动3:拓展提高:
某数学兴趣小组对关于x的方程(m+1)+(m-2)x-1=0提出了下列问题.
若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程。
若不存在,请说明理由。
【技术应用】在几何画板中动态演示求根公式的推导过程.
第三课时用分解因式法解一元二次方程
活动1:用分解因式法解一元二次方程
1、(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)
2、思考:
(1)上面两个方程中有没有常数项?
(2)等式左边的各项有没有共同因式?
(3)等式左边你能分解因式吗?。