三角形基础章节测试题
- 格式:doc
- 大小:307.00 KB
- 文档页数:4
七年级(一)三角形全章测试题班级姓名成绩说明:本试题满分100分,时间100分钟。
一、选择题(每题3分,共计24分)1.如果在一个顶点周围用两个正方形和n 个正三角形恰好可以进行平面镶嵌,则n 的值是( ).A .3 B .4 C .5 D .62.下面四个图形中,线段BE 是⊿ABC 的高的图是( )3.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A .13cmB .6cmC .5cmD .4cm4.三角形一个外角小于与它相邻的内角,这个三角形是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .属于哪一类不能确定 5.如图,在直角三角形ABC 中,AC ≠AB ,AD 是斜边上的高, DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C (∠C 除外)相等的角的个数是( ) A 、3个 B 、4个 C 、5个 D 、6个6.如图,将一副三角板叠放在一起,使直角的顶点重合于O , 则∠AOC+∠DOB=( )A 、900B 、1200C 、1600D 、1807.以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )(A)1个 (B)2个 (C)3个 (D)4个8.给出下列命题:①三条线段组成的图形叫三角形 ②三角形相邻两边组成的角叫三角形的内角 ③三角形的角平分线是射线 ④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外 ⑤任何一个三角形都有三条高、三条中线、三条角平分线 ⑥三角形的三条角平分线交于一点,且这点在三角形内。
正确的命题有( )A.1个B.2个C.3个D.4个 二、填空题(每题3分,共计24分)9.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD=。
第5题图第6题图10.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是___________________.11.把一副常用的三角板如图所示拼在一起,那么图中∠ADE 是度。
第十一章《三角形》章节测试卷一.选择题(共12小题,满分48分,每小题4分)1.已知△ABC中,∠A=20°,∠B=70°,那么△ABC是( )A.直角三角形B.锐角三角形C.钝角三角形D.正三角形2.下面四个图形中,线段BD是△ABC的高的是( )A.B.C.D.3.要使如图所示的五边形木架不变形,至少要再钉上几根木条( )A.1根B.2根C.3根D.4根4.能把一个任意三角形分成面积相等的两部分是( )A.以上都可以B.高C.中线D.角平分线5.长度分别为3,8,x的三条线段能组成一个三角形,x的值可以是( )A.4B.5C.6D.116.如图,在△ABC中,∠BAC=90°,AD是△ABC的高,若∠B=20°,则∠DAC=( )A.90°B.20°C.45°D.70°7.如图所示,∠1=∠2=150°,则∠3=( )A.30°B.150°C.120°D.60°8.如图,在△ABC中,AB=2021,AC=2018,AD为中线,则△ABD与△ACD的周长之差为( )A.1B.2C.3D.49.若一个多边形的每个内角都等于150°,则这个多边形的边数是( )A.10B.11C.12D.1310.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.90°B.135°C.270°D.315°11.△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数.符合条件的三角形有( )A.1个B.2个C.3个D.4个12.如图,在四边形ABCD中,∠ABC与∠BCD的平分线的交点E恰好在AD边上,则∠BEC=( )A.∠A+∠D﹣45°B.12(∠A+∠D)+45°C.180°-(∠A+∠D)D.12∠A+12∠D二.填空题(共4小题,满分16分,每小题4分)13.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=20°,则∠1= °.14.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A= .15.如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC沿直线AD折叠后,点C落到点E处,若DE∥AB,则∠AFD的度数为 .16.如图,D,E,F分别是△ABC的边AB,BC,AC上的中点,连接AE,BF,CD交于点G,AG:GE=2:1,△ABC的面积为6,设△BDG的面积为S1,△CGF的面积为S2,则S1+S2= .三.解答题(共8小题,满分86分)17.已知一个多边形的内角和是外角和的三倍,则这个多边形是几边形?18.如图,∠ABC=∠FEC=∠ADC=90°.(1)在△ABC中,BC边上的高是 ;(2)在△AEC中,AE边上的高是 ;(3)若AB=2.4cm,CD=2cm,AE=3cm,求△AEC的面积及CE的长.19.如图,已知D是△ABC边BC延长线上一点,DF⊥AB于点F,交AC于点E,∠A=35°,∠D=42°,求(1)∠ACD的度数;(2)∠AEF的度数.20.已知一等腰三角形的两边长x,y满足方程组{3x−y=55x+2y=23求此等腰三角形的周长.21.一个零件的形状如图,按规定∠A=90°,∠B和∠C应分别是32°和21°,检验工人量得∠BDC=149°,就判断这个零件不合格,运用三角形的有关知识说出零件不合格的理由.22.如图1所示,将一副三角板的直角顶点重合在点O处.(1)∠AOD ∠BOC;(填“>”“<”“=”)(2)若将三角尺按图2的位置摆放,∠AOC和∠BOD在数量上有何关系?说明理由;(3)在图2中,已知∠BOC与∠AOC的度数比为m:n,当a6m b11与a n+1b2n﹣11是同类项时,求∠BOD的度数.23.问题1现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.研究(1):如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是 研究(2):如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是 研究(3):如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.问题2研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是 .24.△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.(1)如图1,若∠B=40°,∠C=60°,求∠DAE的度数;(2)如图2(∠B<∠C),试说明∠DAE与∠B、∠C的数量关系;(3)拓展:如图3,四边形ABDC中,AE是∠BAC的角平分线,DA是∠BDC的角平分线,猜想:∠DAE与∠B、∠C的数量关系是否改变.说明理由.答案一.选择题1.【解答】解:∵△ABC中,∠A=20°,∠B=70°,∴∠C=180°﹣20°﹣70°=90°,∴△ABC是直角三角形.故选:A.2.【解答】解:由图可得,线段BD是△ABC的高的图是D选项.故选:D.3.【解答】解:过五边形的一个顶点作对角线,有5﹣3=2条对角线,所以至少要钉上2根木条.故选:B.4.【解答】解:三角形的中线把三角形分成等底同高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选:C.5.【解答】解:8﹣3<x<8+3,5<x<11,只有选项C符合题意.故选:C.6.【解答】解:∵∠BAC=90°,∴∠DAC+∠BAD=90°,∵AD是△ABC的高,∴∠ADB=∠BAD+∠B=90°,∴∠DAC=∠B=20°,故选:B.7.【解答】解:∵∠1=∠2=150°,∴∠ABC=∠BAC=180°﹣150°=30°,∴∠3=∠ABC+∠BAC=60°.故选:D.8.【解答】解:∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2021﹣2018=3,故选:C.9.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.10.【解答】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.11.【解答】解:方程组{x+2y=104x+3y=20的解为:{x=2 y=4,∵△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数,∴2<第三边长<6,1∴第三边长可以为:3,5.∴这样的三角形有2个.故选:B.12.【解答】解:∵四边形的内角和=360°,∴∠ABC+∠BCD=360°﹣(∠A+∠D),∵∠ABC与∠BCD的平分线的交点E恰好在AD边上,∴2∠EBC=∠ABC,2∠ECB=∠BCD,∴∠EBC+∠ECB=12(∠ABC+∠BCD)=12×[360°−(∠A+∠D)],∴∠BEC=180°﹣(∠EBC+∠ECB)=180°−12×[360°−(∠A+∠D)]=12(∠A+∠D),故选:D.二.填空题13.【解答】解:∵∠A=60°,∠C=50°,∴∠ABC=180°﹣∠A﹣∠C=180°﹣60°﹣50°=70°,∴∠1=∠ABC﹣∠D=50°﹣20°=50°.故答案为:50.14.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABC=2∠ABP,∠ACM=2∠ACP,又∵∠ABP=20°,∠ACP=50°,∴∠ABC=2×20°=40°,∠ACM=2×50°=100°,∴∠A=∠ACM﹣∠ABC=60°,故答案为60°.15.【解答】解:∵∠B=40°,∠C=30°,∴∠BAC=110°,由折叠的性质得,∠E=∠C=30°,∠EAD=∠CAD,∵DE∥AB,∴∠BAE=∠E=30°,∴∠CAD=40°,∴∠ADC=180°﹣∠CAD﹣∠C=110°,∴∠AFD=110°﹣40°=70°,故答案为:70°.16.【解答】解:∵D,E,F分别是△ABC的边AB,BC,AC上的中点,∴AD=DB,AF=CF,∴△BDG的面积=△ADG的面积,△CFG的面积=△AGF的面积,∴设△BDG的面积为S1,△CGF的面积为S2,则S1+S2=四边形ADGF的面积,∵△ABC的面积为6,AG:GE=2:1,∴四边形ADGF的面积=23×12×6=2,∴S1+S2=2,故答案为:2三.解答题17.解:设这个多边形为n边形,n边形的内角和为:(n﹣2)×180°,n边形的外角和为:360°,根据题意得:(n﹣2)×180°=3×360°,解得:n=8,答:这个多边形是八边形.18.解:(1)在△ABC中,BC边上的高是线段AB;故答案为线段AB;(2)在△AEC中,AE边上的高是线段CD;故答案为线段CD;(3)∵S△AEC=12×AE×CD=12×CE×AB,∴CE=AE⋅CDAB= 2.5(cm).19.解:(1)∵DF⊥AB,∴∠B=90°﹣∠D=48°,∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=83°;(2)∵DF⊥AB,∴∠AFD=90°,∴∠AEF=90°﹣∠A=55°.20.解:解方程组组{3x−y=55x+2y=23得{x=3 y=4,所以,等腰三角形的两边长为3,4.若腰长为3,底边长为4,由3+3=6>4知,三角形的周长为10.若腰长为4,底边长为3,则三角形的周长为11.所以,这个等腰三角形的周长为10或11.21.解:延长CD交AB于点E,∵∠BEC是△ACE的一个外角,∴∠BEC=∠A+∠C=90°+21°=111°,同理,∠BDC=∠BEC+∠B=111°+32°=143°,而检验工人量得∠BDC=149°,所以零件不合格.22.解:(1)∵∠AOB=∠COD=90°,∴∠AOB+∠BOD=∠COD+∠BOD,即∠AOD=∠BOC.故答案为:=;(2)∵∠AOB=∠COD=90°,∴∠AOC+∠BOD=180°.故∠AOC和∠BOD在数量上的关系为:∠AOC+∠BOD=180°;(3)∵a6m b11与a n+1b2n﹣11是同类项,∴{6m=n+111=2n−11,解得{m=2n=11,∵∠BOC与∠AOC的度数比为m:n,11﹣2=9,∴∠BOC=90°×2=20°,11−2∴∠BOD=90°﹣20°=70°.故∠BOD的度数是70°.23.解:(1)如图1,∠1=2∠A,理由是:由折叠得:∠A=∠DA′A,∵∠1=∠A+∠DA′A,∴∠1=2∠A;故答案为:∠1=2∠A;(2)如图2,猜想:∠1+∠2=2∠A,理由是:由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠ADB+∠AEC=360°,∴∠1+∠2=360°﹣∠ADE﹣∠A′DE﹣∠AED﹣∠A′ED=360°﹣2∠ADE﹣2∠AED,∴∠1+∠2=2(180°﹣∠ADE﹣∠AED)=2∠A;故答案为:∠1+∠2=2∠A;(3)如图3,∠2﹣∠1=2∠A,理由是:∵∠2=∠AFE+∠A,∠AFE=∠A′+∠1,∴∠2=∠A′+∠A+∠1,∵∠A=∠A′,∴∠2=2∠A+∠1,∴∠2﹣∠1=2∠A;(4)如图4,由折叠得:∠BMN=∠B′MN,∠ANM=∠A′NM,∵∠DNA+∠BMC=360°,∴∠1+∠2=360°﹣2∠BMN﹣2∠ANM,∵∠BMN+∠ANM=360°﹣∠A﹣∠B,∴∠1+∠2=360°﹣2(360°﹣∠A﹣∠B)=2(∠A+∠B)﹣360°,故答案为:∠1+∠2=2(∠A+∠B)﹣360°.24.解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∠BAC=40°,∴∠CAD=∠BAD=12∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC =180°﹣∠B ﹣∠C ,∵AD 是∠BAC 的角平分线,∴∠CAD =∠BAD =12∠BAC ,∵AE 是△ABC 的高,∴∠AEC =90°,∴∠CAE =90°﹣∠C ,∴∠DAE =∠CAD ﹣∠CAE =12∠BAC ﹣(90°﹣∠C )=12(180°﹣∠B ﹣∠C )﹣90°+∠C =12∠C −12∠B ,即∠DAE =12∠C −12∠B ; (3)不变,理由:连接BC 交AD 于F ,过点A 作AM ⊥BC 于M ,过点D 作DN ⊥BC 于N ,∵AE 是∠BAC 的角平分线,AM 是高,∴∠EAM =12(∠ACB ﹣∠ABC ),同理,∠ADN =12(∠BCD ﹣∠CBD ),∵∠AFM =∠DFN ,∠AMF =∠DNF =90°,∴∠MAD =∠ADN ,∴∠DAE =∠EAM+∠MAD =∠EAM+∠ADN =12(∠ACB ﹣∠ABC )+12(∠BCD ﹣∠CBD )=12(∠ACD ﹣∠ABD ).。
浙教版八上数学第一章:三角形的初步知识综合测试一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.下列各组线段中,能组成三角形的是( )A. 4,6,10B. 3,6,7C. 5,6,12D. 2,3,62. 如图所示,在△ABC 中,∠B =30°,∠C =70°,AD 是△ABC 的一条角平分线,则∠CAD 的度数为( )A. 40°B. 45°C. 50°D. 55°3.利用尺规作图,作不出唯一三角形是( )A.已知三边 B .已知两边及其中一边的对角 C .已知两角及夹边 D .已知两边及夹角4.如图,点E ,D 分别在AB ,AC 上,若AB =AC ,BE =CD ,BD =EC ,∠B =32°,∠A =41°,则∠BOC 度数是( )A .135°B .125°C .115°D .105°5.如图,△ABC 的三边AB 、BC 、CA 的长分别为30、40、15,点P 是三条角平分线的交点,将△ABC 分成三个三角形,则APB S ∆︰BPC S ∆︰CPA S ∆等于( )A.1︰1︰1B. 6︰8︰3C.5︰8︰3D. 4︰5︰36.如图,AD 是△ABC 的中线,CE 是△ACD 的中线,DF 是△CDE 的中线,如果△DEF 的面积是2,那么△ABC 的面积为( )A. 12B. 14C. 16D. 187.对于命题“若a 2>b 2,则a >b ”,下面四组a ,b 的值中,能说明这个命题是假命题的是( )A. a=3,b=2B. a=﹣3,b=2C. a=3,b=﹣1D. a=﹣1,b=38. 如图所示,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D ,E ,AD ,CE 相交于点H ,已知EH =EB =6,AE =8,则CH 的长是( )A. 1B. 2C. 3D. 49.如图,∠A=120°,且∠1=∠2=∠3和∠4=∠5=∠6,则∠BDE=()A. 60°B. 70°C. 80°D. 不能确定,具体由三角形的形状确定10. 如图所示,在△ABC中,∠C=90°,AC=BC,AD是△ABC的角平分线,DE⊥AB于点E.若AB=6 cm,则△DEB的周长为( )A. 5cmB. 6cmC. 7cmD. 8cm二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11. 已知三角形的三边长分别是3,x,9,则化简|x-5|+|x-13|=________12.用直尺和圆规作一个角等于已知角的示意图如图4,则要说明∠D′O′C′=∠ DOC,需要证明△D′O′C′≌△DOC,则这两个三角形全等的依据是(写出全等的简写)13. 如图所示,在△ABC中,AD⊥BC于点D,AE为∠BAC的平分线,且∠DAE=15°,∠B=35°,则∠C=________14. 如图,点D,E,F,B在同一条直线上,AB∥CD,AE∥CF且AE=CF.若BD=10,BF=3.5,则EF =________15.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=72°,∠FAE =18°,则∠C =16.如图所示,在△ABC中,AB=AC,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E,F.则下面结论中①DA平分∠EDF;②AE=AF,DE=DF;③AD上的点到B、C两点的距离相等;④图中共有3对全等三角形,正确的有:_______________________(填序号)三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17(本题6分)如图,在△ABC中,D是BC边上的点(不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE.请你添加一个条件,使CF=BE(不再添加其它线段,不再标注或使用其他字母),并给出证明.18(本题8分)如图,AB=CD,AD=CB,O为BD上任意一点,过O点的直线分别交AD、BC的延长线于M、N点,求证:∠1=∠2.19(本题8分)如图,AF垂直平分BC,AD=CE,DB=AE,求证:∠D=∠E.20(本题10分). 如图,在△ABC中,∠ABC=2∠C,∠BAC的平分线AD交BC于点D,E为AC上一点,AE=AB,连结DE. (1)求证:△ABD≌△AED; (2)已知BD=5,AB=9,求AC长.21(本题10分). “综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的三角形,请列举出所有满足条件的三角形;(2)用直尺和圆规作出三边满足a<b<c 的三角形(用给定的单位长度,不写作法,保留作图痕迹).22(本题12分)如图,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E ,F 分别是BC ,CD 上的点,且∠EAF =21∠BAD ,求证:EF =BD +DF.23(本题12分)如图:在△ABC 中,10==AC AB ,8=BC ,D 为AB 的中点,点P 在线段BC 上以每秒3个单位的速度由B 点向C 点运动,同时,点Q 在线段CA 上由点C 向点A 运动,(1)若Q 的运动速度与点P 相等,则1秒钟后,△BPD 与△CQP 是否全等?请说明理由;(2)若点P 与点Q 的运动速度不相等,则当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?。
八年级(上)数学第1章三角形的初步认识单元测试卷一.选择题(共10小题)1.下面有四个图案,其中不是轴对称图形的是A.B.C.D.2.等腰三角形的一个内角是,则另外两个角的度数分别是A.B.C.或D.3.下列条件中不能判定两个直角三角形全等的是A.两个锐角分别对应相等B.两条直角边分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和一条斜边分别对应相等4.已知直角三角形的两边长分别为3和4,则斜边长为A.4B.5C.4或5D.5或5.用反证法证明“”时应先假设A.B.C.D.6.如图和△中,,再添两个条件不能够全等的是A.,B.,C.,D.,7.已知,如图,在中,,,是的平分线,,则图中等腰三角形一共有A.2个B.3个C.4个D.5个8.已知等腰三角形的两边长分别为、,且、满足,则此等腰三角形的周长是A.8B.11C.12D.11或139.将两个底边相等的等腰三角形按照如图所示的方式拼接在一起(隐藏互相重合的底边)的图形俗称为“筝形”.假如“筝形”下个定义,那么下面四种说法中,你认为最能够描述“筝形”特征的是A.有两组邻边相等的四边形称为“筝形”B.有两组对角分别相等的四边形称为“筝形”C.两条对角线互相垂直的四边形称为“筝形”D.以一条对角线所在直线为对称轴的四边形称为“筝形”10.如图,在等腰中,为的平分线,,,,则A.B.C.D.二.填空题(共8小题)11.已知等腰三角形的两边长分别是2和4,那么这个等腰三角形的周长是.12.已知在中,,,,那么.13.等腰,,平分交于,如果,则.14.如果在直角三角形中,一个锐角是另一个锐角的3倍,那么这个三角形中最小的一个角等于度.15.如图,直角中,,,当时,.16.如图,,,垂足分别是,,(若要用“”得到,则应添加的条件是.(写一种即可)17.如图,在中,度,如果过点画一条直线能把分割成两个等腰三角形,那么度.18.如图,是一个钢架结构,在角内部最多只能构造五根等长钢条,且满足,则的度数最大为度.三.解答题(共6小题)19.用反证法证明一个三角形中不能有两个角是直角.20.如图,中,,是中点,.求的长.21.如图,已知,平分.求证:是等腰三角形.22.如图,,是上的一点,且,,求证:.23.如图,在中,,是的平分线,,交于点.(1)求证:.(2)若,求的度数.24.如图,已知中,,,,、是边上的两个动点,其中点从点开始沿方向运动,且速度为每秒,点从点开始沿方向运动,且速度为每秒,它们同时出发,设出发的时间为秒.(1)出发2秒后,求的长;(2)当点在边上运动时,出发几秒钟后,能形成等腰三角形?(3)当点在边上运动时,求能使成为等腰三角形的运动时间.参考答案一.选择题(共10小题)1.下面有四个图案,其中不是轴对称图形的是A.B.C.D.解:、不是轴对称图形,故本选项符合题意;、是轴对称图形,故本选项不符合题意;、是轴对称图形,故本选项不符合题意;、是轴对称图形,故本选项不符合题意.故选:.2.等腰三角形的一个内角是,则另外两个角的度数分别是A.B.C.或D.解:,,①当底角时,则,;②当顶角时,,,;即其余两角的度数是,或,,故选:.3.下列条件中不能判定两个直角三角形全等的是A.两个锐角分别对应相等B.两条直角边分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和一条斜边分别对应相等解:、两个锐角对应相等,不能说明两三角形能够完全重合,符合题意;、可以利用边角边判定两三角形全等,不符合题意;、可以利用边角边或判定两三角形全等,不符合题意;、可以利用角角边判定两三角形全等,不符合题意.故选:.4.已知直角三角形的两边长分别为3和4,则斜边长为A.4B.5C.4或5D.5或解:直角三角形的两边长分别为3和4,①4是此直角三角形的斜边;②当4是此直角三角形的直角边时,斜边长为.综上所述,斜边长为4或5.故选:.5.用反证法证明“”时应先假设A.B.C.D.解:用反证法证明“”时,应先假设.故选:.6.如图和△中,,再添两个条件不能够全等的是A.,B.,C.,D.,解:选项,,,可利用判定△,同理选项,也可利用判定△,选项,,可利用判定△,选项,,,只能证明△,不能证明△.故选:.7.已知,如图,在中,,,是的平分线,,则图中等腰三角形一共有A.2个B.3个C.4个D.5个解:,是等腰三角形;,是等腰三角形;是的平分线,,,,是等腰三角形;和为等腰三角形;图中等腰三角形的个数有5个;故选:.8.已知等腰三角形的两边长分别为、,且、满足,则此等腰三角形的周长是A.8B.11C.12D.11或13解:解得:,当4为腰时,三边为3,3,5,由三角形三边关系定理可知,周长为:.当5为腰时,三边为5,5,3,符合三角形三边关系定理,周长为:.故选:.9.将两个底边相等的等腰三角形按照如图所示的方式拼接在一起(隐藏互相重合的底边)的图形俗称为“筝形”.假如“筝形”下个定义,那么下面四种说法中,你认为最能够描述“筝形”特征的是A.有两组邻边相等的四边形称为“筝形”B.有两组对角分别相等的四边形称为“筝形”C.两条对角线互相垂直的四边形称为“筝形”D.以一条对角线所在直线为对称轴的四边形称为“筝形”解:由题意:“筝形”的一条对角线是另一条对角线的垂直平分线,所以:“筝形”是轴对称图形,对称轴是对角线所在的直线.故选:.10.如图,在等腰中,为的平分线,,,,则A.B.C.D.解:在等腰中,为的平分线,,,,,,,,,,故选:.二.填空题(共8小题)11.已知等腰三角形的两边长分别是2和4,那么这个等腰三角形的周长是10.解:2是腰长时,三角形的三边分别为2、2、4,,不能组成三角形,2是底边时,三角形的三边分别为2、4、4,能组成三角形,周长.故答案为:10.12.已知在中,,,,那么.解:如图所示:可知为的一个直角边,在中,根据勾股定理有:,即,解得:.故答案为:.13.等腰,,平分交于,如果,则3.解:,平分,,故答案为:3.14.如果在直角三角形中,一个锐角是另一个锐角的3倍,那么这个三角形中最小的一个角等于22.5度.解:在直角三角形中,设最小的锐角的度数为,则另一个锐角的度数则为.则,即,解得,,即这个直角三角形中最小的一个角等于.故答案是:22.5.15.如图,直角中,,,当时,.解:设,,,,,,,,,,,故答案为:.16.如图,,,垂足分别是,,(若要用“”得到,则应添加的条件是或.(写一种即可)解:若添加,在和中,,;若添加,在和中,,.故答案为:或.17.如图,在中,度,如果过点画一条直线能把分割成两个等腰三角形,那么度.解:如图,设过点的直线与交于点,则与都是等腰三角形,度,,,,,,,故答案为.18.如图,是一个钢架结构,在角内部最多只能构造五根等长钢条,且满足,则的度数最大为150度.解:,,,,,,,,,最小为,的度数最大为,故答案为:150.三.解答题(共6小题)19.用反证法证明一个三角形中不能有两个角是直角.【解答】证明:假设三角形的三个内角、、中有两个直角,不妨设,则,这与三角形内角和为相矛盾,不成立;所以一个三角形中不能有两个直角.20.如图,中,,是中点,.求的长.解:,点是中点,,,,点是中点,.21.如图,已知,平分.求证:是等腰三角形.【解答】证明:,,平分,,,是等腰三角形.22.如图,,是上的一点,且,,求证:.【解答】证明:,.,和是直角三角形,而.23.如图,在中,,是的平分线,,交于点.(1)求证:.(2)若,求的度数.【解答】(1)证明:是的平分线,,,,,.(2)解:,,,,.24.如图,已知中,,,,、是边上的两个动点,其中点从点开始沿方向运动,且速度为每秒,点从点开始沿方向运动,且速度为每秒,它们同时出发,设出发的时间为秒.(1)出发2秒后,求的长;(2)当点在边上运动时,出发几秒钟后,能形成等腰三角形?(3)当点在边上运动时,求能使成为等腰三角形的运动时间.解:(1),,,;(2),,根据题意得:,解得:,即出发秒钟后,能形成等腰三角形;(3)①当时,如图1所示,则,,.,,,,,秒.②当时,如图2所示,则,秒.③当时,如图3所示,过点作于点,则,,,,秒.综上所述:当为11秒或12秒或13.2秒时,为等腰三角形.。
三角形章节同步测试题基础卷(满分:100分,时间:45分钟)一、精心选一选(每小题3分,共24分)1.请根据凸多边形的定义,判断下列选项中不是凸多边形的是( )2.小华在计算四个多边形的内角和时,得到下列四个答案,则他计算不对的是( ) A .0720 B .01080 C .01440 D .01900 3.随着一个多边形的边数增加,它的外角和( )A .随着增加B .随着减少C .保持不变D .无法确定4.过多边形的一个顶点的所有对角线把这个多边形分成6个三角形,则这个多边形的内角和等于( )A .0720 B .0900 C .01080 D .012605.若四边形ABCD 中,∠A :∠B :∠C :∠D=1:2:4:5,则∠A+∠D 等于( ) A .030 B .075 C .0180 D .0210 6.能进行镶嵌的正多边形组合是( )A .正三角形和正八边形B .正五边形和正十边形C .正方形和正八边形D .正六边形和正八边形7.如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=070,则∠AED 的度数是( )A .0110 B .0108 C .0105 D .0100 8.能构成如图所示的图案的基本图形是( )ABCDA B CDC DE4二、细心填一填(每小题4分,共32分)9.正十边形的内角和等于 度,每个内角等于 度. 10.如果正多边形的一个外角为072,那么它的边数是 . 11.如图是三个完全相同正多边形拼成的无缝隙,不重叠图形的一部分,这种正多边形是正 边形.12.“三江”黄金广场用三种不同的正多边形地砖铺设(每种只选一块),其中已知选好了用正方形和正六边形这两种,还需再选用 ,使这三种组合在一起的广场铺满.13.多边形每一个内角都等于0140,则从此多边形一个顶点出发的对角线有 条. 14.若一个多边形的各边长相等,其周长为63厘米,且内角和为0900,那么它的边长为 厘米.15.过a 边形的一个顶点有7条对角线,正b 边形的内角和与外角和相等,c 边形没有对角线,d 边形有d 条对角线,则代数式ab dc )( = .16.小华骑自行车在一个正多边形广场上训练,在训练中小华发现,每5分钟就要转弯一次,当他汽车一圈回到出发点发现正好用了30分钟,则此多边形的内角和为 .三、专心解一解(共44分)17.(5分)小华想:2012年奥运会在伦敦举办,设计一个内角和为02012的多边形图案多有意义,他的想法能实现吗?请说明理由.18.(7分) 小华画了一个八边形,请问: (1)从八边形的一个顶点出发,可以引几条对角线?它们将八边形分成几个三角形?(2)请你求出八边形的内角和是外角和的几倍? 19.(7分)如图,已知五边形ABCDE 中,AE ∥CD ,∠A=0130,∠C=0135,求∠B 的度数.20.(8分)小华从点A 出发向前走10m ,向右转036然后继续向前走10m ,再向右转036,他以同样的方法继续走下去,他能回到点A 吗?若能,当他走回点A 时共走多少米?若不A BCDE第19题图第11题图ADEFGQ P能,写出理由.21.(8分)如图,求∠A+∠B+∠C+∠D+∠E+∠F +∠G 的度数.22.(9分)如图所示,分别在三角形、四边形、五边形的广场各角修建半径为R 的扇形草坪.(1)图1中草坪的周长为 ; (2)图2中草坪的周长为 ; (3)图3中草坪的周长为 ;(4)如果多边形边数为n ,其余条件不变,那么,你认为草坪的周长为 .加强卷(满分:50分,时间:30分钟)一、精心选一选(每小题3分,共15分)1.若一个多边形的每个外角都是锐角,那么这个多边形的边数至少是( ) A .3 B .4 C .5 D .62.鹿鸣社区里有一个五边形的小公园(如图所示),王老师每天晚饭后都要到公园里去散步,已知图中的∠1=095,王老师沿公园边由A 点经B →C →D →E 一直到F 时,他在行程中共转过了( )A .0265 B .0275 C .0360 D .04453.一个多边形的每一个内角都是0144,则它的内角和等于( ) A .01260 B .01440 C .01620 D .018004.四边形ABCD 中,∠A+∠C=∠B+∠D ,∠A 的一个外角为0105,则∠C 的度数为( ) A .075 B .090 C .0105 D .0120 5.一个广场地面的一部分如图所示,地面的中央是一块正六边形的地第22题图图1图2 图31 ABCDE F第2题图砖,周围用正三角形和正方形的大理石地砖拼成,从里往外共10层(不包括中央的正六边形地砖),每一层的外界都围成一个多边形,若中央正六边形地砖的边长是1米,则第10层的外边界围成的多边形的周长是( )A .54B .54C .60D .66 二、细心填一填(每小题3分,共15分)6.若一个多边形的每个外角都等于030,则这个多边形的对角线总条数为 . 0140,7.一个多边形的每一个外角都相等,且比它的内角小则这个多边形的边数是 .8.一个四边形的四个内角中做多有 个钝角,最多有个锐角.9.一个正方形的截取一个角后,得到的图形的内角和可能是 .10.用一条宽相等的足够长的纸条,打一个结,然后轻轻拉紧、压平就可以得到如图所示的正五边形ABCDE ,其中∠BAC= .(提示:由AB=AC ,可得∠BAC=∠BCA )三、专心解一解(共20分)11.(8分)多边形除一个内角外,其余各内角和为01200. (1)求多边形的边数;(2)此多边形必有一外角为多少度?12.(12分)如图,把△ABC 沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 、∠1及∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是什么?试说明你找出的规律的正确性.参考答案基础卷一、1~4 ADCA ;5~8 CCDD .二、9.1440,45; 10.5; 11.六; 12.正十二边形; 13.6; 14.9; 15.3; 16.0540.三、17.解:不能,理由如下.设存在n 边形的内角和为02012,有02012180)2(=-n ,解得n ≈13.18.ABCDE第10题图∵多边形的边数不能为小数,∴不存在内角和为02012的多边形.18.解:(1)从八边形的一个顶点出发,可以引5条对角线?它们将八边形分成6个三角形.(2)2360180)28(0=-.故八边形的内角和是外角和的2倍. 19.解:∵AE ∥CD ,∴∠D+∠E=0180.∵ABCDE 是五边形,∴∠A+∠B+∠C+∠D+∠E=0180)25(-. 即0130+∠B 0135++0180=0540,解得∠B=095. 20.解:小华能回到A 点,当他回到A 点时共走了100m . 21.解:∵∠QPE=∠D+∠G ,又∠QPE+∠E+∠F+∠FQP=0360,即∠D+∠G+∠E+∠F+∠FQP=0360. ∴∠D+∠G+∠E+∠F=0360—∠FQP .∵∠A+∠B+∠C+∠AQC=0360,∴∵∠A+∠B+∠C=0360—∠AQC .故∠A+∠B+∠C+∠D+∠G+∠E+∠F=(0360—∠AQC)+(0360—∠FQP )=0720—(∠AQC+∠FQP )=0720—0180=0540.22.解:(1)R π;(2)R π2;(3)R π3;(4)R n π)2(-.加强卷一、1.C ; 2.B ; 3.B ; 4.C ; 5.D .二、6.54; 7.18; 8.3,3; 9.0180,0360或0540; 10.036. 三、11.解:(1)设该多边形的一个内角为0x ,边数为n , 依题意,有01200180)2(x n +=-.∵00012061801200⋅⋅⋅⋅⋅⋅=÷,∴01201806180)2(x n ++⨯=-. 又∵1800<<x ,∴180120=+x ,解60=x .把60=x 代入原方程,得0601200180)2(+=-n ,解得9=x . ∴该多边形的边数为9.(2)∵该多边形有一角为060,∴此多边形必有一外角为0120. 12.解:规律为∠1+∠2=2∠A .∵∠B+∠C=A ∠-0180,∠ADE+∠AED=A ∠-0180,又∠B+∠C+∠CDE+∠DEB=0360,即∠B+∠C+∠2+∠ADE+∠1+∠AED=0360. ∴A ∠-0180+∠1+∠2+A ∠-0180=0360, 整理,得∠1+∠2=2∠A .。
精品word完整版-行业资料分享2017—2018学年度上学期八年级数学学科试卷(检测内容:第十一章三角形)一、选择题(每小题3分,共30分)1.如图,图中三角形的个数为( )A.3个 B.4个 C.5个 D.6个第1题图) ,第5题图) ,第10题图)2.内角和等于外角和的多边形是( )A.三角形 B.四边形 C.五边形 D.六边形3.一个多边形的内角和是720°,则这个多边形的边数是( )A.4条 B.5条 C.6条 D.7条4.已知三角形的三边长分别为4,5,x,则x不可能是( )A.3 B.5 C.7 D.95.如图,在△ABC中,下列有关说法错误的是( )A.∠ADB=∠1+∠2+∠3 B.∠ADE>∠BC.∠AED=∠1+∠2 D.∠AEC<∠B6.下列长方形中,能使图形不易变形的是( )7.不一定在三角形内部的线段是( )A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形的中位线8.等腰三角形一腰上的高与另一腰的夹角为45°,则其顶角为( )A.45° B.135° C.45°或67.5° D.45°或135°9.一个六边形共有n条对角线,则n的值为( )A.7 B.8 C.9 D.1010.如图,在正方形网格中,每个小方格都是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以点A,B,C为顶点的三角形面积为1,则点C的个数有( )A.3个 B.4个 C.5个 D.6个二、填空题(每小题3分,共24分)11.等腰三角形的边长分别为6和8,则周长为___________________.12.已知在四边形ABCD中,∠A+∠C=180°,∠B∶∠C∶∠D=1∶2∶3,则∠C=__________________.13.如图,∠1+∠2+∠3+∠4=________________.14.一个三角形的两边长为8和10,则它的最短边a的取值范围是________,它的最长边b 的取值范围是________.15.下列命题:①顺次连接四条线段所得的图形叫做四边形;②三角形的三个内角可以都是锐角;③四边形的四个内角可以都是锐角;④三角形的角平分线都是射线;⑤四边形中有一组对角是直角,则另一组对角必互补,其中正确的有________.(填序号)16.如图,AD是△ABC的角平分线,BE是△ABC的高,∠BAC=40°,则∠AFE的度数为__________________.第13题图第16题图第17题图第18题图17.如图,小亮从A点出发前进10 m,向右转15°,再前进10 m,又右转15°……这样一直走下去,他第一次回到出发点A时,一共走了________________m.18.如图,已知BD为△ABC中∠ABC的平分线,CD为△ABC中的外角∠ACE的平分线,与BD 交于点D,若∠D=∠α,试用∠α表示∠A,∠A=________________.三、解答题(共66分)19.(8分)如图,一个宽度相等的纸条,如图折叠,则∠1的度数是多少?20.(8分)一块三角形的实验田,平均分成四份,由甲、乙、丙、丁四人种植,你有几种方法?(至少要用三种方法)21.(8分)如图,五个半径为2的圆,圆心分别是点A,B,C,D,E,则图中阴影部分的面积和是多少?(S扇形=nπR2 360°)22.(8分)如图,在六边形ABCDEF中,AF∥CD,AB∥DE,BC∥EF,且∠A=120°,∠B=80°,求∠C及∠D的度数.精品word完整版-行业资料分享23.(8分)如图,已知△ABC中,∠B>∠C,AD为∠BAC的平分线,AE⊥BC,垂足为E,试说明∠DAE=12(∠B-∠C).24.(8分)有两个各内角相等的多边形,它们的边数之比为1∶2,且第二个多边形的内角比第一个多边形的内角大15°,求这两个多边形的边数.25.(8分)如图,∠A=∠C=90°,BE,DF分别为∠ABC与∠ADC的平分线,能判断BE∥DF 吗?试说明理由.26.(10分)(1)如图①,△ABC是锐角三角形,高BD,CE相交于点H.找出∠BHC和∠A之间存在何种等量关系;(2)如图②,若△ABC是钝角三角形,∠A>90°,高BD,CE所在的直线相交于点H,把图②补充完整,并指出此时(1)中的等量关系是否仍然成立?参考答案1.C ;2.B ;3.C ;4.D ;5.D ;6.B ;7.C ;8.D ;9.C ;10.D ;11.20或22;12.60;13.360;14.1810,82 b a ≤≤;15.②⑤;16.70;17.240;18.α2; 19.40; 20.21.π6; 22. 分析:连接AC ,根据平行线的性质以及三角形的内角和定理,可以求得∠BCD 的度数;连接BD ,根据平行线的性质和三角形的内角和定理可以求得∠CDE 的度数.解答:解:连接AC .∵AF ∥CD ,∴∠ACD=180°-∠CAF ,又∠ACB=180°-∠B-∠BAC ,∴∠BCD=∠ACD+∠ACB=180°-∠CAF+180°-∠B-∠BAC=360°-120°-80°=160°. 连接BD .∵AB ∥DE ,∴∠BDE=180°-∠ABD .又∵∠BDC=180°-∠BCD-∠CBD ,∴∠CDE=∠BDC+∠BDE=180°-∠ABD+180°-∠BCD-∠CBD=360°-80°-160°=120°. 23解:∵AD 为∠BAC 的平分线∴∠DAC=21∠BAC又∵∠BAC=180°-(∠B+∠C )∴∠DAC=90°-21(∠B+∠C )又∵AE ⊥BC∴∠DAE+∠ADE=90°精品word 完整版-行业资料分享又∵∠ADE=∠DAC+∠C24. 设一个多边形的边数是n ,则另一个多边形的边数是2n ,因而这两个多边形的外角是n360和n 2360 , 第二个多边形的内角比第一个多边形的内角大15°,即是第一个多边形的外角比第二个多边形的外角大15°,就得到方程:n 360-n2360=15°, 解得n=12, 故这两个多边形的边数分别为12,24. 25. 能判断BE ∥DF因为BE ,DF 平分∠ABC 和∠ADC ,又因为∠A=∠C=90°,所以∠ABC+∠ADC=180°所以∠ABE+∠AEB=90°所以∠AEB=∠ADF 所以BE//DF 。
八年级数学上册第1章《三角形》单元测试卷一、选择题:1.一个三角形的两边长为2和6,第三边为偶数,则这个三角形的周长为()A.16 B.14 C.12 D.102.如图,AB=AC,点D,E分别在AB,AC上,补充下列一个条件后,不能判断△ABE≌△ACD 的是()A.∠B=∠C B.AD=AE C.∠BDC=∠CEB D.BE=CD第2题图第3题图第4题图第5题图3.某实验室有一块三角形玻璃,被摔成如图的四块,胡老师想去店里买一块形状、大小与原来一样的玻璃,他要带的玻璃编号是() A.①B.②C.③D.④4.如图,点O在AD上,∠A=∠C,∠AOC=∠BOD,AB=CD,AD=6 cm,OC=4 cm,则OB的长为() A.2 cm B.3 cm C.4 cm D.6 cm 5.如图,在四边形ABCD中,∠A=90°,AD=6,连结BD,BD⊥CD,∠ADB=∠C.若点P是BC边上一动点,则DP长的最小值为() A.4 B.6 C.3 D.12 6.如图,在△MPN中,点H是高MQ和NR的交点,且MQ=NQ,已知PQ=5,NQ=9,则MH长为() A.3 B.4 C.5 D.6第6题图第7题图7.如图,在△ABC中,∠1=∠2,点G为AD的中点,延长BG交AC于点E,点F为AB 上一点,CF⊥AD于点H,下面判断正确的有()①AD是△ABE的角平分线;②BE是△ABD边AD上的中线;③CH是△ACD边AD上的高;④AH是△ACF的角平分线和高.A.1个B.2个C.3个D.4个8.如图,在△ABC 中,∠C =90°,∠B =30°,以点A 为圆心,适当长为半径画弧,交AB于点M ,交AC 于点N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠BAC的内部交于点P ,连结AP 并延长,交BC 于点D ,有下列说法:①线段AD 是∠BAC 的平分线;②∠ADC =∠BAC ;③点D 到AB 边的距离与DC 的长相等;④△DAC 与△ABC 的面积之比是1∶4,其中结论正确的是( )A .①②B .③④C .①②③D .①③④第8题图 第9题图 第10题图9.如图,△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线,过点C 作CF ⊥AE ,垂足为点F ,过点B 作BD ⊥BC 交CF 的延长线于点D .若BD =3cm ,则△ABC 的面积为( )A .36cm 2B .18cm 2C .6cm 2D .8cm 210.如图,已知AB =AC ,点D ,E 分别在AC ,AB 上且AE =AD ,连结EC ,BD ,EC 交BD 于点M ,连结AM ,过点A 分别作AF ⊥CE ,AG ⊥BD 垂足分别为点F ,G ,下列结论:①△EBM ≌△DCM ;②∠EMB =∠F AG ;③MA 平分∠EMD ;④若点E 是AB 的中点,则BM +AC >BD ,其中正确结论的个数为( ) A .1个 B .2个 C .3个 D .4个二、填空题:11.如图,共有_______个三角形.第11题图 第13题图 第15题图12.把命题“三角形的内角和等于180°”改写成如果____________________________,那么______________________________.13.如图,已知AB =AD ,那么添加一个条件:_____________________,能判定△ABC ≌△ADC .14.在△ABC中,∠A=∠B=13∠C,则∠A=_______.15.如图,DF垂直平分AB,EG垂直平分AC,若∠BAC=110°,则∠DAE=_______. 16.如图,AB=AC,AD=AE,BE,CD交于点O,则图中的全等三角形共有_______对.第16题图第17题图第18题图17.一副三角板如图放置,若∠1=90°,则∠2的度数为________.18.如图,∠A=∠B=90°,AB=100,点E,F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为2∶3,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为________.19.如图,在△ABC中,BC=42,直线l经过边AB的中点D,与BC交于点M,分别过点A,C作直线l的垂线,垂足分别为点E,F,则AE+CF的最大值为________.第19题图第20题图第21题图20.如图,把两块大小相同的含45°的三角板ACF和三角板CFB如图所示摆放,点D在边AC上,点E在边BC上,且∠CFE=13°,∠CFD=32°,则∠DEC的度数为________.三、解答题:21.如图,在△ABC中,点D是AC上一点,AD=AB,过点D作DE∥AB,且DE=AC.(1)求证:△ABC≌△DAE;(2)若点D是AC的中点,△ABC的面积是20,求△AEC的面积.22.如图,点E是AC上一点,AB∥CD,∠B=∠CED,BC=ED.第22题图(1)求证:AB=CE;(2)若AB=5,AE=2,求CD的长度.23.如图,已知AD=AB,AC=AF,∠BAD=∠CAF.(1)求证:△ADC≌△ABF;(2)若∠CAD=130°,∠D=15°,求∠F的度数.第23题图24.如图,已知AD为△ABC的高,BE⊥AC,AD=BD.(1)求证:BF=AC;(2)若∠BAC是钝角,(1)中的结论仍成立吗?请说明理由.第24题图25.(1)发现:如图1,在△ABC中,AD是角平分线,DE⊥AB于点E,DF⊥AC于点F.填空:DE与DF的数量关系是,理由是.图1 图2 图3第25题图(2)应用:如图2,△ABC的两个外角∠CBD和∠BCE的平分线交于点P,BC=4cm,AB+AC=6.8cm2,求△ABC的面积.=8cm,S△PBC(3)拓展:如图3,四边形ABCD中,AC平分∠BAD,∠BAD+∠BCD=180°,求证:CB=CD.26.“一线三等角”模型是平面几何图形中的重要模型之一,“一线三等角”指的是图形中出现同一条直线上有3个相等角的情况,在学习过程中,我们发现“一线三等角”模型的出现,还经常会伴随着出现全等三角形.根据材料的理解解决以下问题:(1)如图1,∠ADC=∠CEB=∠ACB=90°,AC=BC,猜想DE,AD,BE之间的关系:.(2)如图2,将(1)中条件改为∠ADC=∠CEB=∠ACB=α(90°<α<180°),AC=BC,请问(1)中的结论是否成立?若成立,请给出证明;若不成立,请说明理由.(3)如图3,在△ABC中,点D为AB上一点,DE=DF,∠A=∠EDF=∠B,AE=3,BF=5,请直接写出AB的长.。
初二上册三角形单元测试题及答案doc一、选择题(每题3分,共30分)1. 下列关于三角形的说法正确的是()。
A. 三角形的内角和为180度B. 三角形的外角和为360度C. 三角形的内角和为360度D. 三角形的外角和为180度2. 在一个三角形中,如果一个角是90度,那么这个三角形是()。
A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形3. 三角形的两边之和大于第三边,这个性质称为()。
A. 三角不等式B. 三角和定理C. 三角形的外角性质D. 三角形的内角性质4. 一个三角形的三边长分别为a、b、c,若a+b>c,则这个三角形是()。
A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等腰三角形5. 一个三角形的三个内角中,至少有()个锐角。
A. 0B. 1C. 2D. 36. 如果一个三角形的两边长分别为3和4,且第三边长为整数,则这个三角形的周长可能是()。
A. 7B. 8C. 9D. 107. 在一个等腰三角形中,如果底边长为6,腰长为5,则这个三角形的高是()。
A. 4B. 3C. 2D. 18. 一个三角形的三个内角中,最多有()个直角。
A. 0B. 1C. 2D. 39. 一个三角形的三个内角中,最多有()个钝角。
A. 0B. 1C. 2D. 310. 在一个三角形中,如果一个角是60度,那么这个三角形的另外两个角的和是()。
A. 60度B. 90度C. 120度D. 150度二、填空题(每题3分,共30分)1. 如果一个三角形的三边长分别为3、4、5,则这个三角形是______三角形。
2. 在一个等边三角形中,每个内角的度数是______度。
3. 如果一个三角形的两边长分别为2和3,第三边长为整数,则这个三角形的周长可能是______。
4. 在一个直角三角形中,如果一个锐角是30度,则另一个锐角是______度。
5. 如果一个三角形的三个内角的度数分别为50度、60度、70度,则这个三角形是______三角形。
章节测试题1.【答题】如果一个三角形的两边长分别为2和4,则第三边长可能是()A. 2B. 4C. 6D. 8【答案】B【分析】根据三角形的三边关系进行判断.【解答】解:设第三边长为x,则由三角形三边关系定理得4-2<x<4+2,即2<x<6.因此,本题的第三边应满足2<x<6在此处键入公式。
,把各项代入不等式符合的即为答案.2,6,8都不符合不等式2<x<6,只有4符合不等式.选B.2.【答题】以下列数值为长度的各组线段中,能组成三角形的是()A. 2,4,7B. 3,3,6C. 5,8,2D. 4,5,6【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】A. ∵ 2+4<7,∴不能组成三角形;B. ∵3+3=6 ,∴不能组成三角形;C. ∵5+2<8,∴不能组成三角形;D. ∵4+5>6,∴能组成三角形;选D.方法总结:本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.3.【答题】下面是小明用三根火柴组成的图形,其中符合三角形概念的是()A. B.C. D.【答案】C【分析】根据三角形的定义可得答案.【解答】∵由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形,∴C符合三角形的概念.选C.4.【答题】下列长度的线段能组成三角形的是()A. 3、4、8B. 5、6、11C. 5、6、10D. 3、5、10【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:A、3+4<8,故不能组成三角形,故A错误;B、5+6=11,故不能组成三角形,故B错误;C、5+6>10,故能组成三角形,故C正确;D、3+5<10,故不能组成三角形,故D正确.选C.方法总结:本题主要考查了三角形三边的关系,判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.5.【答题】下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A. 1cm,2cm,3cmB. 2cm,,2cm,4cmC. 2cm,3cm,4cmD. 1cm,2cm,5cm【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】选项A,因为1+2=3,所以1cm,2cm,3cm的三根木棒首尾连接后不能摆成三角形;选项B,因为2+2=4,所以2cm,2cm,4cm的三根木棒首尾连接后不能摆成三角形;选项C,因为2+3>4,所以2cm,3cm,4cm的三根木棒首尾连接后能摆成三角形;选项D,因为1+2<5,所以 1cm,2cm,5cm的三根木棒首尾连接后不能摆成三角形;选C.6.【答题】下列长度的各组线段中,能组成三角形的是()A. 4、5、6B. 6、8、15C. 5、7、12D. 3、9、13【答案】A【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】根据三角形的三边关系,得A.4+5>6,能组成三角形,符合题意;B.6+8<15,不能够组成三角形,不符合题意;C.5+7=12,不能够组成三角形,不符合题意;D.3+7<13,不能够组成三角形,不符合题意。
三角形基础测试题含答案解析一、选择题1.如图,在△ABC 中,点D 为BC 的中点,连接AD ,过点C 作CE ∥AB 交AD 的延长线于点E ,下列说法错误的是( )A .△ABD ≌△ECDB .连接BE ,四边形ABEC 为平行四边形 C .DA =DED .CE =CD【答案】D【解析】【分析】 根据平行线的性质得出∠B=∠DCE ,∠BAD=∠E ,然后根据AAS 证得△ABD ≌△ECD ,得出AD=DE ,根据对角线互相平分得到四边形ABEC 为平行四边形,CE=AB ,即可解答.【详解】∵CE ∥AB ,∴∠B=∠DCE ,∠BAD=∠E ,在△ABD 和△ECD 中,===B DCE BAD E BD CD ∠∠⎧⎪∠∠⎨⎪⎩∴△ABD ≌△ECD (AAS ),∴DA=DE ,AB=CE ,∵AD=DE ,BD=CD ,∴四边形ABEC 为平行四边形,故选:D .【点睛】此题考查平行线的性质,三角形全等的判定和性质以及平行四边形的性判定,解题的关键是证明△ABD ≌△ECD .2.如图,在平行四边形ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,若BF=6,AB=5,则AE 的长为( )A.4 B.8 C.6 D.10【答案】B【解析】【分析】【详解】解:设AG与BF交点为O,∵AB=AF,AG平分∠BAD,AO=AO,∴可证△ABO≌△AFO,∴BO=FO=3,∠AOB=∠AOF=90º,AB=5,∴AO=4,∵AF∥BE,∴可证△AOF≌△EOB,AO=EO,∴AE=2AO=8,故选B.【点睛】本题考查角平分线的作图原理和平行四边形的性质.3.如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=()A.65°B.70°C.75°D.80°【答案】D【解析】【分析】由平行线的性质可求得∠C,在△CDE中利用三角形外的性质可求得∠3.【详解】解:∵AB∥CD,∴∠C=∠1=45°,∵∠3是△CDE的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b ∥c⇒a∥c.4.如图,在菱形ABCD中,AB=10,两条对角线相交于点O,若OB=6,则菱形面积是()A .60B .48C .24D .96【答案】D【解析】【分析】 由菱形的性质可得AC ⊥BD ,AO =CO ,BO =DO =6,由勾股定理可求AO 的长,即可求解.【详解】解:∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =CO ,BO =DO =6,∴AO =22100368AB OB -=-=,∴AC =16,BD =12,∴菱形面积=12162⨯=96, 故选:D .【点睛】 本题考查了菱形的性质,勾股定理,掌握菱形的对角线互相垂直平分是本题的关键.5.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA x ⊥轴,点C 在函数()0k y x x=>的图象上,若1AB =,则k 的值为( )A .1B .22C 2D .2【答案】A【解析】【分析】 根据题意可以求得 OA 和 AC 的长,从而可以求得点 C 的坐标,进而求得 k 的值,本题得以解决.【详解】Q 等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA ⊥x 轴,1AB =,45BAC BAO ︒∴∠=∠=, 22OA OB ∴==,2AC =, ∴点C 的坐标为2,22⎛⎫ ⎪ ⎪⎝,Q 点C 在函数()0k y x x=>的图象上, 2212k ∴=⨯=, 故选:A .【点睛】本题考查反比例函数图象上点的坐标特征、等腰直角三角形,解答本题的关键 是明确题意,利用数形结合的思想解答.6.如图,已知ABC ∆,若AC BC ⊥,CD AB ⊥,12∠=∠,下列结论:①//AC DE ;②3A ∠=∠;③3EDB ∠=∠;④2∠与3∠互补;⑤1B ∠=∠,其中正确的有( )A .2个B .3个C .4个D .5个【答案】C【解析】【分析】 根据平行线的判定得出AC ∥DE ,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.【详解】∵∠1=∠2,∴AC ∥DE ,故①正确;∵AC ⊥BC ,CD ⊥AB ,∴∠ACB=∠CDB=90°,∴∠A+∠B=90°,∠3+∠B=90°,∴∠A=∠3,故②正确;∵AC ∥DE ,AC ⊥BC ,∴DE ⊥BC ,∴∠DEC=∠CDB=90°,∴∠3+∠2=90°(∠2和∠3互余),∠2+∠EDB=90°,∴∠3=∠EDB ,故③正确,④错误;∵AC ⊥BC ,CD ⊥AB ,∴∠ACB=∠CDA=90°,∴∠A+∠B=90°,∠1+∠A=90°,∴∠1=∠B ,故⑤正确;即正确的个数是4个,故选:C .【点睛】此题考查平行线的判定和性质,三角形内角和定理,垂直定义,能综合运用知识点进行推理是解题的关键.7.如图,四边形ABCD 和EFGH 都是正方形,点E H ,在ADCD ,边上,点F G ,在对角线AC 上,若6AB ,则EFGH 的面积是( )A .6B .8C .9D .12【答案】B【解析】【分析】 根据正方形的性质得到∠DAC =∠ACD =45°,由四边形EFGH 是正方形,推出△AEF 与△DFH 是等腰直角三角形,于是得到DE =22EH =22EF ,EF =22AE ,即可得到结论. 【详解】解:∵在正方形ABCD 中,∠D =90°,AD =CD =AB ,∴∠DAC =∠DCA =45°,∵四边形EFGH 为正方形,∴EH =EF ,∠AFE =∠FEH =90°,∴∠AEF =∠DEH =45°,∴AF =EF ,DE =DH ,∵在Rt △AEF 中,AF 2+EF 2=AE 2,∴AF =EF =22AE , 同理可得:DH =DE =22EH 又∵EH =EF ,∴DE =22EF =22×22AE =12AE , ∵AD =AB =6,∴DE =2,AE =4,∴EH =2DE =22,∴EFGH 的面积为EH 2=(22)2=8,故选:B .【点睛】本题考查了正方形的性质,等腰直角三角形的判定及性质以及勾股定理的应用,熟练掌握图形的性质及勾股定理是解决本题的关键.8.如图,在ABC ∆中,90C =o ∠,30B ∠=o ,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( ) ①AD 是BAC ∠的平分线;②ADC 60∠=o ;③点D 在AB 的垂直平分线上;④:1:3DAC ABC S S ∆∆=A .1B .2C .3D .4【答案】D【解析】【分析】 根据题干作图方式,可判断AD 是∠CAB 的角平分线,再结合∠B=30°,可推导得到△ABD 是等腰三角形,根据这2个判定可推导题干中的结论.【详解】题干中作图方法是构造角平分线,①正确;∵∠B=30°,∠C=90°,AD 是∠CAB 的角平分线∴∠CAD=∠DAB=30°∴∠ADC=60°,②正确∵∠DAB=∠B=30°∴△ADB 是等腰三角形∴点D 在AB 的垂直平分线上,③正确在Rt △CDA 中,设CD=a ,则AD=2a在△ADB 中,DB=AD=2a ∵1122DAC S CD AC a CD ∆=⨯⨯=⨯,13(CD+DB)22BAC S AC a CD ∆=⨯⨯=⨯ ∴:1:3DAC ABC S S ∆∆=,④正确故选:D【点睛】本题考查角平分线的画法及性质、等腰三角形的性质,解题关键是熟练角平分线的绘制方法.9.如图,在菱形ABCD 中,对角线AC =8,BD =6,点E ,F 分别是边AB ,BC 的中点,点P 在AC 上运动,在运动过程中,存在PE +PF 的最小值,则这个最小值是( )A .3B .4C .5D .6【答案】C【解析】【分析】 先根据菱形的性质求出其边长,再作E 关于AC 的对称点E′,连接E′F ,则E′F 即为PE+PF 的最小值,再根据菱形的性质求出E′F 的长度即可.【详解】解:如图∵四边形ABCD 是菱形,对角线AC=6,BD=8,∴AB=22+=5,34作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,∵AC是∠DAB的平分线,E是AB的中点,∴E′在AD上,且E′是AD的中点,∵AD=AB,∴AE=AE′,∵F是BC的中点,∴E′F=AB=5.故选C.10.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.7【答案】B【解析】试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC22+22BC BD'+.故选B.3411.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AD=CD ,AB=CB ,詹姆斯在探究筝形的性质时,得到如下结论:①AC ⊥BD ;②AO=CO=12AC ;③△ABD ≌△CBD , 其中正确的结论有( )A .0个B .1个C .2个D .3个【答案】D【解析】 试题解析:在△ABD 与△CBD 中,{AD CDAB BC DB DB===,∴△ABD ≌△CBD (SSS ),故③正确;∴∠ADB=∠CDB ,在△AOD 与△COD 中,{AD CDADB CDB OD OD=∠=∠=,∴△AOD ≌△COD (SAS ),∴∠AOD=∠COD=90°,AO=OC ,∴AC ⊥DB ,故①②③正确;故选D .考点:全等三角形的判定与性质.12.如图,已知A ,D,B,E 在同一条直线上,且AD = BE, AC = DF,补充下列其中一个条件后,不一定能得到△ABC ≌△DEF 的是( )A .BC = EFB .AC//DFC .∠C = ∠FD .∠BAC = ∠EDF【答案】C【解析】【分析】 根据全等三角形的判定方法逐项判断即可.【详解】∵BE =CF ,∴BE +EC =EC +CF ,即BC =EF ,且AC = DF ,∴当BC = EF 时,满足SSS ,可以判定△ABC ≌△DEF ;当AC//DF 时,∠A=∠EDF ,满足SAS ,可以判定△ABC ≌△DEF ;当∠C = ∠F 时,为SSA ,不能判定△ABC ≌△DEF ;当∠BAC = ∠EDF 时,满足SAS ,可以判定△ABC ≌△DEF ,故选C.【点睛】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS 、SAS 、ASA 、AAS 和HL .13.如图,在ABC ∆中,AB 的垂直平分线交AB 于点D ,交BC 于点E .ABC ∆的周长为19,ACE ∆的周长为13,则AB 的长为( )A .3B .6C .12D .16【答案】B【解析】【分析】 根据线段垂直平分线的性质和等腰三角形的性质即可得到结论.【详解】∵AB 的垂直平分线交AB 于点D ,∴AE=BE ,∵△ACE 的周长=AC+AE+CE=AC+BC=13,△ABC 的周长=AC+BC+AB=19,∴AB=△ABC 的周长-△ACE 的周长=19-13=6,故答案为:B .【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.14.如图为一个66⨯的网格,在ABC ∆,A B C '''∆和A B C ''''''∆中,直角三角形有( )个A .0B .1C .2D .3【答案】C【解析】【分析】 根据题中的网格,先运用勾股定理计算出各个三角形的边长,再根据勾股定理的逆定理判断是否为直角三角形即可.【详解】设网格的小正方形的边长是1,由勾股定理(两直角边的平方等于斜边的平方)可知,ABC ∆的三边分别是:10,5,5; 由于2225510+=, 根据勾股定理的逆定理得:ABC ∆是直角三角形; '''A B C ∆的三边分别是:''A B 10, ''B C 5 ,''AC 13 由于()()(22210513+?,根据勾股定理的逆定理得:'''A B C ∆不是直角三角形;A B C ''''''∆的三边分别是:A B ''''18B C ''''8 ,A C ''''26; 由于()()()22218826+=, 根据勾股定理的逆定理得:A B C ''''''∆是直角三角形;因此有两个直角等三角形;故选C .【点睛】本题主要考查了勾股定理和勾股定理的逆定理,能灵活运用所学知识是解题的关键.15.在直角三角形中,自锐角顶点引的两条中线为10和35,则这个直角三角形的斜边长是( )A .3B .23C .25D .6【答案】D【解析】【分析】根据题意画出图形,利用勾股定理解答即可.【详解】设AC =b ,BC =a ,分别在直角△ACE 与直角△BCD 中,根据勾股定理得到:2222 10235,2a b b a ⎧⎛⎫+=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩两式相加得:2236a b +=,根据勾股定理得到斜边36 6.==故选:D.【点睛】考查勾股定理,画出图形,根据勾股定理列出方程是解题的关键.16.如图:AD AB ⊥,AE AC ⊥,AD AB =,AE AC =,连接BE 与DC 交于M ,则:①DAC BAE ∠=∠;②DAC BAE ∆∆≌;③DC BE ⊥;正确的有( )个A .0B .1C .2D .3【答案】D【解析】【分析】 利用垂直的定义得到90DAB EAC ∠=∠=︒,则ADC BAE ∠=∠,于是可对①进行判断;利用“SAS ”可证明DAC BAE ∆≅∆,于是可对②进行判断;利用全等的性质得到ADC ABE ∠=∠,则根据三角形内角和和对顶角相等得到90DMB DAB ∠=∠=︒,于是可对③进行判断.【详解】解:AD AB ⊥Q ,AE AC ⊥,90DAB ∴∠=︒,90EAC ∠=︒,DAB BAC EAC BAC ∴∠+=∠+∠,即ADC BAE ∠=∠,所以①正确;在DAC ∆和BAE ∆中,DA AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩,()DAC BAE SAS ∴∆≅∆,所以②正确;ADC ABE ∴∠=∠,∵∠AFD=∠MFB ,90DMB DAB ∴∠=∠=︒,DC BE ∴⊥,所以③正确.故选:D .【点睛】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件.17.如图,已知AE=AD,AB=AC,EC=DB,下列结论:①∠C=∠B;②∠D=∠E;③∠EAD=∠BAC;④∠B=∠E;其中错误的是()A.①②B.②③C.③④D.只有④【答案】D【解析】【分析】【详解】解:因为AE=AD,AB=AC,EC=DB;所以△ABD≌△ACE(SSS);所以∠C=∠B,∠D=∠E,∠EAC=∠DAB;所以∠EAC-∠DAC=∠DAB-∠DAC;得∠EAD=∠CAB.所以错误的结论是④,故选D.【点睛】此题考查了全等三角形的判定方法,根据已知条件利用SSS证明两个三角形全等,还考查了全等三角形的性质:全等三角形的对应角相等,全等三角形的对应边相等.18.一个等腰三角形的顶角为钝角,则底角a的范围是()A.0°<a<9 B.30°<a<90° C.0°<a<45° D.45°<a<90°【答案】C【解析】:∵等腰三角形顶角为钝角∴顶角大于90°小于180°∴两个底角之和大于0°小于90°∴每个底角大于0°小于45°故选:C19.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,若添加下列一个条件后,仍然不能证明△ABC≌△DEF,则这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF【答案】D【解析】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选D.点睛:本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS 和HL是解题的关键.20.如图所示,将含有30°角的三角板(∠A=30°)的直角顶点放在相互平行的两条直线其中一条上,若∠1=38°,则∠2的度数()A.28°B.22°C.32°D.38°【答案】B【解析】【分析】延长AB交CF于E,求出∠ABC,根据三角形外角性质求出∠AEC,根据平行线性质得出∠2=∠AEC,代入求出即可.【详解】解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∠ABC=60°,∵∠1=38°,∴∠AEC=∠ABC-∠1=22°,∵GH∥EF,∴∠2=∠AEC=22°,故选B.【点睛】本题考查了三角形的内角和定理,三角形外角性质,平行线性质的应用,主要考查学生的推理能力.。
浙教版八上数学第一章一、单选题1.下列生活实例中,利用了“三角形稳定性”的是( )A.B.C.D.2.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为( )A.1cm B.2cm C.3cm D.4cm3.如图,在△ABC中,∠C=90°,AD是∠A角平分线,DE⊥AB于点E,CD=2,BC=6,则BE=( )A.2B.22C.23D.64.如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是( )作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;②分别以D,E为圆心,大于1DE的长为半径画弧,两弧在∠AOB内交于一点C;2③画射线OC,射线OC就是∠AOB的角平分线.A.ASA B.SAS C.SSS D.AAS5.如图,将△ABC绕点A逆时针旋转一定的角度,得到△ADE,且AD⊥BC.若∠CAE=45°,∠E=60°,则∠BAC的大小是( )A.60°B.65°C.75°D.95°6.如图,已知锐角∠AOB,根据以下要求作图.(1)在射线OA上取点C和点E,以点O为圆心,OC,OE的长为半径画弧,分别交射线OB于点D,F;(2)连接CF,DE交于点P.则下列结论错误的是( )A.CE=DFB.点P在∠AOB的平分线上C.PE=PFD.若∠AOB=60°,则∠CPD=120°7.三边长度都是整数的三角形称为整数边三角形,若一个三角形的最长边长为8,则满足条件的整数边三角形共有( )A.8个B.10个C.12个D.20个8.如图所示,在△ABC中,点O是∠BCA与∠ABC的平分线的交点,已知△ABC的面积是12,周长是8,则点O到边BC的距离OD是( )A.1B.2C.3D.49.如右图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处,若∠1=129°,则∠2的度数为( )A.49°B.50°C.51°D.52°10.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90∘;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD,四个结论中成立的是( )A.①②④B.①②③C.③④D.①③二、填空题11.已知三角形的三边长分别是2、7、x,且x为奇数,则x= .12.“两直线平行,同位角相等”是 命题(真、假).13.如图,在△ABC中,∠BDC=125°,如果∠ABC与∠ACB的平分线交于点D,那么∠A= 度.14.在△ABC中,BD平分∠ABC,如果AB=12,BC=8,△ABD的面积为24,则△CBD的面积为 15.如图,在Rt△ABC中,DE是斜边AB的垂直平分线,连接BD,若∠CBD=26°,则∠A= 度.16.如图,已知AD为△ABC的中线,AB=10cm,AC=7cm,△ACD的周长为20cm,则△ABD的周长为 cm.三、解答题17.如图,在△ABC中,∠ADB=∠ABD,∠DAC=∠DCA,∠BAD=32°,求∠BAC的度数.18.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.19.如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)∠BAC的度数为______,∠DAF的度数为______;(2)若△DAF的周长为20,求BC的长.20.如图,已知在△ABC中,AB=AC=10cm,BC=8cm,D为AB的中点.点P在线段BC上以3cm/s 的速度由点B出发向终点C运动,同时点Q在线段CA上以acm/s的速度由点C出发向终点A运动,设点P的运动时间为ts.(1)求CP的长;(用含t的式子表示)(2)若以C、P、Q为顶点的三角形和以B,D,P为顶点的三角形全等,且∠B和∠C是对应角,求t,a 的值.21.定义:在一个三角形中,如果有一个角是另一个角的1,我们称这两个角互为“和谐角”,这个2三角形叫做“和谐三角形” .例如:在△ABC中,如果∠A=70°,∠B=35°,那么∠A与∠B互为“和谐角”,△ABC为“和谐三角形”.问题1:如图1,△ABC中,∠ACB=90°,∠A=60°,点D是线段 A BB 上一点(不与A、B 重合),连接CD(1)如图1,△ABC 是“和谐三角形”吗?为什么?(2)如图1,若CD⊥AB,则△ACD、△BCD是“和谐三角形” 吗?为什么?(3)问题2:如图2,△ABC 中,∠ACB=60°,∠A=80°,点 D 是线段AB 上一点(不与A、B 重合),连接CD,若△ACD 是“和谐三角形”,求∠ACD 的度数.22.“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E的度数;(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F的度数;(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)23.(1)阅读理解:问题:如图1,在四边形ABCD中,对角线BD平分∠ABC,∠A+∠C=180°.求证:DA=DC.思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.方法1:在BC上截取BM=BA,连接DM,得到全等三角形,进而解决问题;方法2:延长BA到点N,使得BN=BC,连接DN,得到全等三角形,进而解决问题.结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明.(2)问题解决:如图2,在(1)的条件下,连接AC,当∠DAC=60°时,探究线段AB,BC,BD之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形ABCD中,∠A+∠C=180°,DA=DC,过点D作DE⊥BC,垂足为点E,请直接写出线段AB、CE、BC之间的数量关系.答案解析部分1.【答案】B2.【答案】D3.【答案】C4.【答案】C5.【答案】C6.【答案】D7.【答案】C8.【答案】C9.【答案】C10.【答案】A11.【答案】712.【答案】真13.【答案】7014.【答案】1615.【答案】3216.【答案】2317.【答案】解:在三角形ABD中,(180°﹣32°)=74°,∠ADB=∠ABD=12在三角形ADC中,∠ADB=37°,∠DAC=∠DCA=12∴∠BAC=∠DAC+∠BAD=37°+32°=69°.18.【答案】证明:∵∠1=∠2,∴∠1+∠FBE=∠2+∠FBE,即∠ABE=∠CBF在△ABE与△CBF中,{AC=CB∠ABE=∠CBFBE=BF∴△ABE≌△CBF(SAS).19.【答案】(1)100°,20°;(2)20.20.【答案】(1)CP =(8﹣3t )cm(2)t =43,a =154或t =1,a =321.【答案】(1)解:ΔABC 是“和谐三角形”,理由如下:∵∠ACB =90°,∠A =60°,∴∠B =30°,∴∠B =12∠A ,∴ΔABC 是“和谐三角形”;(2)解:ΔACD 、ΔBCD 是“和谐三角形”,理由如下:∵∠ACB =90°,∠A =60°,∴∠B =30°,∵CD ⊥AB ,∴∠ADC =∠BDC =90°,∴∠ACD =30°,∠BCD =60°.在ΔACD 中,∵∠A =60°,∠ACD =30°,∴∠ACD =12∠A ,∴ΔACD 为和谐三角形”;在ΔBCD 中,∵∠BCD =60°,∠B =30°,∴∠B =12∠BCD ,∴ΔBCD 为和谐三角形”;(3)解:若ΔACD 是“和谐三角形”,由于点D 是线段AB 上一点(不与A 、B 重合),则∠ACD =12∠A 或∠ACD =12∠ADC .当∠ACD =12∠A 时,∠ACD =12∠A =40°;当∠ACD =12∠ADC 时,∠A +3∠ACD =180°,即3∠ACD =100°,∴∠ACD =100°3.综上,∠ACD 的度数为40°或100°3.22.【答案】(1)解:如图,∵∠1=∠2+∠D=∠B+∠E+∠D ,∠1+∠A+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°(2)解:∵∠1=∠2+∠F=∠B+∠E+∠F ,∠1+∠A+∠C+∠D=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°(3)解:∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=180×5+180=1080°.23.【答案】(1)解:方法1:在 BC 上截 BM =BA ,连接 DM ,如图.∵BD 平分 ∠ABC ,∴∠ABD =∠CBD .在 ΔABD 和 ΔMBD 中, {BD =BD∠ABD =∠MBD BA =BM ,∴ΔABD≌ΔMBD ,∴∠A =∠BMD , AD =MD .∵∠BMD +∠CMD =180° , ∠C +∠A =180° .∴∠C =∠CMD .∴DM =DC ,∴DA =DC .方法2:延长 BA 到点N ,使得 BN =BC ,连接 DN ,如图.∵BD 平分 ∠ABC ,∴∠NBD =∠CBD .在 ΔNBD 和 ΔCBD 中, {BD =BD∠NBD =∠CBD BN =BC ,∴ΔNBD≌ΔCBD .∴∠BND =∠C , ND =CD .∵∠NAD +∠BAD =180° ,∠C +∠BAD =180° .∴∠BND =∠NAD ,∴DN =DA ,∴DA =DC .(2)解: AB 、 BC 、 BD 之间的数量关系为: AB +BC =BD . (或者: BD ―CB =AB , BD ―AB =CB ).延长 CB 到点P ,使 BP =BA ,连接 AP ,如图2所示.由(1)可知 AD =CD ,∵∠DAC =60° .∴ΔADC 为等边三角形.∴AC =AD , ∠ADC =60° .∵∠BCD +∠BAD =180° ,∴∠ABC =360°―180°―60°=120° .∴∠PBA =180°―∠ABC =60° .∵BP =BA ,∴ΔABP 为等边三角形.∴∠PAB =60° , AB =AP .∵∠DAC =60° ,∴∠PAB +∠BAC =∠DAC +∠BAC ,即 ∠PAC =∠BAD .在 ΔPAC 和 ΔBAD 中, {PA =BA∠PAC =∠BAD AC =AD ,∴ΔPAC≌ΔBAD .∴PC =BD ,∵PC =BP +BC =AB +BC ,∴AB +BC =BD .(3)BC ―AB =2CE。
人教版数学八年级上学期《三角形》单元测试时间:90分钟总分: 100一、选择题1.能将三角形面积平分的是三角形的..)A.角平分..B...C.中..D.外角平分线2.已知三角形的两边长分别为4cm和9cm, 则下列长度的四条线段中能作为第三边的是.. )A.13c..B.6c..C.5c..D.4cm3.三角形一个外角小于与它相邻的内角, 这个三角形是...)A.直角三角..B.锐角三角..C.钝角三角..D.属于哪一类不能确定4.若一个多边形每一个内角都是135º, 则这个多边形的边数是...)A...B...C.1..D.125.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面, 可供选择的地砖共有( )A.4..B.3..C.2..D.1种6.一个多边形的外角和是内角和的一半, 则它是. )边形A...B...C...D.47.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,若△CEF的面积为12cm2,则S △DGF的值为. )学*科*网...学*科*网...A.4cm..B.6cm..C.8cm..D.9cm28.已知△ABC中, ∠A=20°, ∠B=∠C, 那么三角形△ABC是()A.锐角三角..B.直角三角..C.钝角三角..D.正三角形9.试通过画图来判定, 下列说法正确的是()A.一个直角三角形一定不是等腰三角形B.一个等腰三角形一定不是锐角三角形C.一个钝角三角形一定不是等腰三角形D.一个等边三角形一定不是钝角三角形10.如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35..B.55..C.60..D.70°二、填空题11.如果点G是△ABC的重心.AG的延长线交BC于点D.GD=12.那么AG=________.12.如图,将三角尺的直角顶点放在直尺的一边上,∠1= ,∠2= ,则∠3=_____________°.13.若一个多边形的内角和比外角和大360°, 则这个多边形的边数为_______________.14.如图,△ABC中,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为D.E、F,则线段___是△ABC中AC边上的高.15.一个多边形的内角和是外角和的2倍, 则这个多边形的边数为___.16.十边形的外角和是_____°.17.若三角形的周长是60cm,且三条边的比为3:4:5,则三边长分别为__________.18.如图,⊿ABC中,∠..40°,∠..72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CD.=_________度。
“三角形”知识要点梳理之迟辟智美创作三角形三边关系三角形三角形内角和定理角平分线三条重要线段中线高线全等图形的概念全等三角形的性质三角形全等三角形SSSSAS全等三角形的判定ASAAASHL(适用于RtΔ)全等三角形的应用利用全等三角形测距离作三角形一、三角形概念1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”暗示.2、极点是A、B、C的三角形,记作“ΔABC”,读作“三角形ABC”.3、组成三角形的三条线段叫做三角形的边,即边AB、BC、AC,有时也用a,b,c来暗示,极点A所对的边BC用a暗示,边AC、AB分别用b,c来暗示;4、∠A、∠B、∠C为ΔABC的三个内角.二、三角形中三边的关系1、三边关系:三角形任意两边之和年夜于第三边,任意两边之差小于第三边.用字母可暗示为a+b>c,a+c>b,b+c>a;a-b<c,a-c<b,b-c<a. 2、判断三条线段a,b,c能否组成三角形:(1)当a+b>c,a+c>b,b+c>a同时成立时,能组成三角形;(2)当两条较短线段之和年夜于最长线段时,则可以组成三角形.3、确定第三边(未知边)的取值范围时,它的取值范围为-<<+.年夜于两边的差而小于两边的和,即a b c a b三、三角形中三角的关系1、三角形内角和定理:三角形的三个内角的和即是1800.2、三角形按内角的年夜小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通经常使用“RtΔ”暗示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边.注:直角三角形的性质:直角三角形的两个锐角互余.(3)钝角三角形,即有一个内角是钝角的三角形.3、判定一个三角形的形状主要看三角形中最年夜角的度数.4、直角三角形的面积即是两直角边乘积的一半.5、任意一个三角形都具备六个元素,即三条边和三个内角.都具有三边关系和三内角之和为1800的性质.6、三角形内角和定理包括一个等式,它是我们列出有关角的方程的重要等量关系.四、三角形的三条重要线段1、三角形的三条重要线段是指三角形的角平分线、中线和高线.2、三角形的角平分线:(1)三角形的一个内角的平分线与这个角的对边相交,这个角的极点和交点之间的线段叫做三角形的角平分线.(2)任意三角形都有三条角平分线,而且它们相交于三角形内一点.3、三角形的中线:(1)在三角形中,连接一个极点与它对边中点的线段,叫做这个三角形的中线.(2)三角形有三条中线,它们相交于三角形内一点.4、三角形的高线:(1)从三角形的一个极点向它的对边所在的直线做垂线,和垂足之间的线段叫做三角形的高线,简称为三角形的高.(2)任意三角形都有三条高线,它们所在的直线相交于一点.五、全等图形1、两个能够重合的图形称为全等图形.2、全等图形的性质:全等图形的形状和年夜小都相同.3、全等图形的面积或周长均相等.4、判断两个图形是否全等时,形状相同与年夜小相等两者缺一不成.5、全等图形在平移、旋转、折叠过程中仍然全等.6、全等图形中的对应角和对应线段都分别相等.六、全等分割1、把一个图形分割成两个或几个全等图形叫做把一个图形全等分割.2、对一个图形全等分割:(1)首先要观察分析该图形,发现图形的构成特点;(2)其主要年夜胆检验考试,敢于入手,需要时可采纳计算、交流、讨论等方法完成.七、全等三角形1、能够重合的两个三角形是全等三角形,用符号“≌”连接,读作“全即是”.2、用“≌”连接的两个全等三角形,暗示对应极点的字母写在对应的位置上.3、全等三角形的性质:全等三角形的对应边、对应角相等.这是今后证明边、角相等的重要依据.4、两个全等三角形,准确判定对应边、对应角,即找准对应极点是关键.八、全等三角形的判定1、三边对应相等的两个三角形全等,简写为“边边边”或“SSS”.2、两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”.3、两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”.4、两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”.5、注意以下内容(1)三角形全等的判定条件中必需是三个元素,而且一定有一组边对应相等.(2)三边对应相等,两边及夹角对应相等,一边及任意两角对应相等,这样的两个三角形全等.(3)两边及其中一边的对角对应相等不能判定两三角形全等.6、熟练运用以下内容(1)熟练运用三角形判定条件,是解决此类题的关键.(2)已知“SS”,可考虑A:第三边,即“SSS”;B:夹角,即“SAS”.(3)已知“SA”,可考虑A:另一角,即“AAS”或“ASA”;B:夹角的另一边,即“SAS”.(4)已知“AA”,可考虑A:任意一边,即“AAS”或“ASA”.7、三角形的稳定性:根据三角形全等的判定方法(SSS)可知,只要三角形三边的长度确定了,这个三角形的形状和年夜小就完全确定了,三角形的这个性质叫做三角形的稳定性.九、作三角形1、作图题的一般步伐:(1)已知,即将条件具体化;(2)求作,即具体叙述所作图形应满足的条件;(3)分析,即寻找作图方法的途径(通常是画出草图);(4)作法,即根据分析所得的作图方法,作出正式图形,并依次叙述作图过程;(5)证明,即验证所作图形的正确性(通常省略不写).2、熟练以下三种三角形的作法及依据.(1)已知三角形的两边及其夹角,作三角形.(2)已知三角形的两角及其夹边,作三角形.(3)已知三角形的三边,作三角形.十、利用三角形全等测距离1、利用三角形全等测距离,实际上是利用已有的全等三角形,或构造出全等三角形,运用全等三角形的性质(对应边相等),把较难丈量或无法丈量的距离转化成已知线段或较容易丈量的线段的长度,从而获得被测距离.2、运用全等三角形解决实际问题的步伐:(1)先明确实际问题应该用哪些几何知道解决;(2)根据实际问题笼统出几何图形;(3)结合图形和题意分析已知条件;(4)找到解决问题的途径.十一、直角三角形全等的条件1、在直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”.2、“HL”是直角三角形特有的判定条件,对非直角三角形是不成立的;3、书写时要规范,即在三角形前面必需加上“Rt”字样.十二、分析-综合法1、我们在平时解几何题时,采纳的解题方法通常有两种,综合法与分析法.2、综合法:从问题的条件动身,通过分析条件,依据所学知识,逐步探索,直到得出问题的结论.3、分析法:从问题的结论动身,不竭寻找使结论成立的条件,直至已知条件.4、在具体解题中,通常是两种方法结合起来使用,既运用综合法,又运用分析法.“三角形”单位测试一、选择题1.如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB 交BC于D,DE⊥AB于E,且AB=6㎝,则△DEB的周长是()A.6㎝B.4㎝C.10㎝D.以上都分歧毛病(第1题) (第6题) (第7题) 2.一个多边形的内角和是720 ,则这个多边形的边数为()A.4 B.5 C.6 D.73.等腰三角形中的一个内角为50°,则另两个内角的度数分别是()A、65°,65°B、50°,80°C、50°,50° D.65°,65°或50°,80°4.以下各组数为边长的三角形中,能组成直角三角形的是()A.1,2,3B.2,3,4C.4,5,6D.5,12,13 5.△ABC中,①若AB=BC=CA,则△ABC是等边三角形;②一个底角为60°的等腰三角形是等边三角形;③顶角为60°的等腰三角形是等边三角形;④有两个角都是60°的三角形是等边三角形.上述结论中正确的有()A.1个B.2个C.3个D.4个6.如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,其中正确的结论的个数是()A.1 B.2 C.3 D.47.如图,△ABC中,AB=AC,∠A=040,则B=()A、060B、070C、075D、0808.满足下列条件的ABC∆,不是直角三角形的是()A.︒∠65B B.5:4:3=A, ︒=∠25BA∠C:=:∠∠C .222c a b -=D .12=AC ,20=AB ,16=BC9.下列几组数,能作为直角三角形的三边的是A .5,12,23B .0.6,0.8,1C .20,30,50D .4, 5,610.如图,将Rt △ABC (∠ACB =90°,∠ABC =30°)沿直线AD 折叠,使点B 落在E 处,E 在AC 的延长线上,则∠AEB 的度数为( )A .30°B .40°C .60°D .55°(第10题) (第11题) (第13题)二、填空题11.如图,E 点为ΔABC 的边AC 中点,CN ∥AB ,过E 点作直线交AB 与M 点,交CN 于N 点,若MB =6cm ,CN =4cm ,则AB =________.12.一个十二边形的内角和是度,外角和是度.13.如图,∠ACD 是△ABC 的外角,∠ACD =80°,∠B =30°,则∠A =.14.若等腰三角形的一个内角为50°,则这个等腰三角形顶角的度数为. NC BAEM15.如图,在Rt△ABC中,∠ABC=90°,AB=BC=8,点M在BC上,且BM=2 N是AC上一动点,则BN+MN的最小值为___________.(第15题) (第16题)16.如图,△ABC的三个极点分别在格子的3个极点上,请你试着再在图中的格子的极点上找出一个点D,使得△DBC 与△ABC全等,这样的三角形有个.三、解答题17.今年第九号台风“苏拉”登岸浙江,A市接到台风警报时,台风中心位于A市正南方向85km的B处,正以14km/h 的速度沿BC方向移动.已知A市到BC的距离AD=40km,那么台风中心从B点移到D点经过多长时间?(计算结果精确到0.1小时)18.已知三角形的两边长分别为3和5,第三边长为c,化简.19.如图,△ABD≌△EBD, △DBE≌△DCE, B, E, C在一条直线上.(1)BD是∠ABE的平分线吗?为什么?(2)DE⊥BC,BE=EC吗?为什么?ADB CE20.已知:如图,AB=CD,DE⊥AC,BF⊥AC,DE=BF.求证:AE=CF.21.如图:AD是△ABC的高,E为AC上一点,BE交AD 于F,且有BF=AC,FD=CD.求证:BE⊥AC.22.如图,︒=AOB,OM是AOB∠90∠的平分线,将三角尺的直角极点P在射线OM上滑动,两直角边分别与OBOA,交于点C和D,证明:PDPC=.参考谜底1.A2.C3.D4.D5.D6.D7.B8.B9.B10.C 11.10cm12.18000,360°13.50°14.50°或80°15.1016.3 1718.由三边关系定理,得3+5>c,5-3<c,即8>c>2.==c-2-(4-c)=c-2-4+c=c-6.(15分)19.略20.略21.略22.略。
第十一章三角形》单元测试卷含答案(共5套)第十一章三角形单元测试卷(一)时间: 120分钟满分: 120分一、选择题1.以下列每组长度的三条线段为边能组成三角形的是() A。
2.3.6.B。
2.4.6C。
2.2.4.D。
6、6、62.如图, 图中∠1的大小等于()A。
40°。
B。
50°。
C。
60°。
D。
70°3.一个多边形的每一个内角都等于140°, 则它的边数是() A。
7.B。
8.C。
9.D。
104.如图, △ABC中, ∠A=46°, ∠C=74°, BD平分∠XXX于点D, 那么∠XXX的度数是()A。
76°。
B。
81°。
C。
92°。
D。
104°5.用五根木棒钉成如下四个图形, 具有稳定性的有()A。
1个。
B。
2个。
C。
3个。
D。
4个6.如图, 点A, B, C, D, E, F是平面上的6个点, 则∠A+∠B +∠C+∠D+∠E+∠F的度数是()A。
180°。
B。
360°。
C。
540°。
D。
720°二、填空题7.已知三角形两条边长分别为3和6, 第三边的长为奇数, 则第三边的长为9.8.若n边形内角和为900°, 则边数n为10.9.将一副三角板按如图所示的方式叠放, 则∠α的度数为30°。
10.如图, 在△ABC中, ∠ACB=90°, ∠A=20°。
若将XXX沿CD所在直线折叠, 使点B落在AC边上的点E处, 则∠XXX的度数是70°。
11.如图, 在△ABC中, E、D.F分别是AD.BF、CE的中点。
若△DEF的面积是1cm², 则S△ABC=3cm²。
12.当三角形中一个内角β是另一个内角α的时, 我们称此三角形为“希望三角形”, 其中角α称为“希望角”。
如果一个“希望三角形”中有一个内角为54°, 那么这个“希望三角形”的“希望角”的度数为27°。
第一章三角形的初步认识单元测试题一、单选题(共10题;共30分)1、下面命题正确的是( )A、一组对边平行,另一组对边相等的四边形是平行四边形.B、等腰梯形的两个角一定相等。
C、对角线互相垂直的四边形是菱形。
D、三角形三条边上的中线相交于一点,并且这一点到三个顶点的距离相等.2、用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的根据是()A、SASB、ASAC、AASD、SSS3、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A、60°B、120°C、60°或150°D、60°或120°4、如图,四边形ABCD是正方形,延长BC至点E,使CE=CA,连接AE交CD于点F,则∠AFC的度数是()A、150°B、125°C、135°D、112。
5°5、如图所示,一位同学书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是().A、SSSB、SASC、AASD、ASA6、以下列各组线段长为边能组成三角形的是( )A、1cm,2cm,4cmB、8cm,6cm,4cmC、12cm,5cm,6cmD、2cm,3cm,6cm7、下列命题中,真命题的是()A、如果一个四边形两条对角线相等,那么这个四边形是矩形B、如果一个平行四边形两条对角线相互垂直,那么这个四边形是菱形C、如果一个四边形两条对角线平分所在的角,那么这个四边形是菱形D、如果一个四边形两条对角线相互垂直平分,那么这个四边形是矩形8、下列命题中,真命题的个数是( )①全等三角形的周长相等②全等三角形的对应角相等③全等三角形的面积相等④面积相等的两个三角形全等.A、4B、3C、2D、19、若△ABC≌△DEF,△ABC的周长为100cm,DE=30cm,DF=25cm,那么BC长()A、55cmB、45cmC、30cmD、25cm10、在△ABC中,∠B的平分线与∠C的平分线相交于O,且∠BOC=130°,则∠A=()A、50°B、60°C、80°D、100°二、填空题(共8题;共24分)11、用直尺和圆规作一个角等于已知角的示意图如图所示,则说明△DOC≌△D’O'C'的依据是________.12、如图,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,则△ABD与△ACD的周长之差为________cm.13、△ABC中,∠BAC:∠ACB:∠ABC=4:3:2,且△ABC≌△DEF,则∠DEF=________ 度.14、①三角形的三条角平分线交于一点,这点到三条边的距离相等;②三角形的三条中线交于一点;③三角形的三条高线所在的直线交于一点;④三角形的三条边的垂直平分线交于一点,这点到三个顶点的距离相等.以上说法中正确的是________.15、如图,BF、CF是△ABC的两个外角的平分线,若∠A=50°,则∠BFC=________度.16、如图,点D,B,C点在同一条直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=________度.17、如图所示,BE⊥AC于点D,且AB=CB,BD=ED,若∠ABC=64°,则∠E=________.18、如图,在△ABC中,将∠C沿DE折叠,使顶点C落在△ABC内C′处,若∠A=75°,∠B=65°,∠1=40°,则∠2的度数为________.三、解答题(共5题;共36分)19、如图,已知E是∠AOB的平分线上的一点,EC⊥OA,ED⊥OB,垂足分别是C,D.求证:OE垂直平分CD.20、如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.∠1=∠2,∠3=105°,求∠ACB 的度数.21、如图,已知DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC和∠BDC的度数.22、如图所示,已知∠ACB和∠ADB都是直角,且AC=AD,P是AB上任意一点.求证:CP=DP.23、如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA.四、综合题(共1题;共10分)24、如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.(1)证明DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.答案解析部分一、单选题1、【答案】D【考点】线段垂直平分线的性质,菱形的判定,等腰梯形的性质,命题与定理【解析】【分析】此题需要根据平行四边形的判定、等腰梯形的性质、菱形、三角形垂直平分线的性质四个知识点,分别对四个结论进行判断,然后得出正确的结果.【解答】A、一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,故本选项错误;B、等腰梯形的两个角不一定相等,还可能互补,故本选项错误;C、对角线互相垂直的平行四边形是菱形,故本选项错误;D、三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等,故本选项正确;故选D.【点评】本题考查了平行四边形的判定、等腰梯形的性质、菱形、三角形垂直平分线的性质,考查的知识点较多,但难度不大,注意细心判断各个选项.2、【答案】D【考点】全等三角形的判定与性质【解析】【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,得到三角形全等,由全等得到角相等,是用的全等的性质,全等三角形的对应角相等.【解答】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D'(SSS),则△COD≌△C’O'D',即∠A'O’B’=∠AOB(全等三角形的对应角相等).故选D.【点评】本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.3、【答案】D【考点】三角形内角和定理,等腰三角形的性质【解析】【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分另两种情况进行讨论.当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故选D.【点评】熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出60°一种情况,把三角形简单的认为是锐角三角形。
【高效培优】2022—2023学年八年级数学上册必考重难点突破必刷卷(浙教版)【单元测试】第1章三角形的初步认识(夯实基础培优卷)学校:___________姓名:___________班级:___________考号:___________ 一、选择题(本大题共10有个小题,每小题3分,共30分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知△ABC的三个内角度数之比为3△4△5,则此三角形是()三角形.A.锐角B.钝角C.直角D.不能确定2.如图,直线a∥b,AC△AB,AC交直线b于点C,△1=60°,则△2的度数是()A.30°B.35°C.45°D.50°3.如图,△B+△C+△D+△E―△A等于()A.180°B.240°C.300°D.360°4.在下列命题中,为真命题的是()A.相等的角是对顶角B.平行于同一条直线的两条直线互相平行C.同旁内角互补D.垂直于同一条直线的两条直线互相平行5.小欣在一次游戏活动中,从三角形的一个顶点A 出发,沿三角形的三条边走过各顶点,再回到A点,然后转向出发时的方向,则他在行程中所转的各个角的度数和()A .90°B .180°C .360°D .270°6.如图,ABC EFD ≌,那么下列结论正确的是( )A .EC BD =B .EF AB ∥C .DE BD = D .AC ED ∥7.下列各组中的两个图形属于全等形的是( )A .B .C .D . 8.如图,在△ABC 和△DEF 中,点A ,E ,B ,D 在同一直线上,BC EF ∥,AC =DF ,只添加一个条件,能判定△ABC △△DEF 的是( )A .BC =EFB .AE =DBC .△A =△DEFD .△A =△D9.如图,小颖按下面方法用尺规作角平分线:在已知的AOB ∠的两边上,分别截取,OC OD ,使OC OD =.再分别以点C ,D 为圆心、大于12CD 的长为半径作弧,两弧在AOB ∠内交于点P ,作射线OP ,则射线OP 就是AOB ∠的平分线.其作图原理是:OCP ODP △≌△,这样就有AOP BOP ∠=∠,那么判定这两个三角形全等的依据是( )A .SASB .ASAC .AASD .SSS10.如图1,已知 AB=AC ,D 为△BAC 的平分线上一点,连接 BD 、 CD ;如图2,已知 AB= AC ,D 、E 为△BAC 的平分线上两点,连接 BD 、CD 、BE 、CE ;如图3,已知 AB=AC ,D 、E 、F 为△BAC 的平分线上三点,连接BD 、CD 、BE 、CE 、 BF 、CF ;…,依次规律,第 n 个图形中全等三角形的对数是( )A .nB .2n -1C .()12n n +D .3(n+1)二、填空题(本大题共8有小题,每题3分,共24分)11.如图,DBC ∠与ECB ∠是ABC ∆的两个外角,BF 平分DBC ∠交ECB ∠的平分线于点F .若60F ∠=︒,则A ∠=________.12.“同一平面内,若a △b ,c △b ,则a △c ”这个命题的条件是___________________________,结论是__________,这个命题是____________命题.13.如图,△ABC △△DBE ,△C =45°,△ABE =70°,△ABD =40°,则△D 的度数为____________.14.如图,PAC △△PBD △,若40A ∠=︒,20BPD ∠=︒,则PCD ∠的度数为______.15.如图,已知点A ,C 在线段BD 两侧,AB AD =,CB CD =,线段AC ,BD 相交于点O .下列结论:①ABC ADC ∠=∠;②AC BD ⊥;③AC 平分BAD ∠;④OB OD =.其中正确的是_________(填写所有正确结论的序号).16.如图,在正方形方格中,各正方形的顶点叫做格点,三个顶点都在格点上的三角形称为格点三角形.图中ABC 是格点三角形,请你找出方格中所有与ABC 全等,且以A 为顶点的格点三角形.这样的三角形共有_____个(ABC 除外).17.如图ABC 中,40B ∠=︒,50C ∠=︒.通过观察尺规作图的痕迹,可以发现直线DF 是线段AB 的_________,射线AE 是DAC ∠的_____;并求DAE ∠的度数为_________.C,点Q 18.如图,在平面直角坐标系中,O为坐标原点,点A,C分别在x轴,y轴的正半轴上,点(0,4)S=分别以AC、CQ为腰,点C为直角项点在第一、第二象限作等腰Rt CAN、在x轴的负半轴上,且12CQA等腰Rt QCM,连接MN交y轴于P点,则OP的值为__________.三、解答题(本大题共6有小题,共66分;第19小题8分,第20-21每小题10分,第22-23每小题12分,第24小题14分)19.如图已知△ABC△△DEF,点B、E、C、F在同一直线上,△A=85°,△B=60°,AB=8,EH=2.(1)求△F的度数与DH的长;(2)求证:AB△DE.20.如图,把三角形纸片'A BC沿D折叠,点A'落在四边形BCDE内部点A处,(1)写出图中一对全等的三角形,井写出它们的所有对应角.∠∠的度数分别是多少(用含x或y的式子表示)?(2)设AED∠的度数为x,ADE∠的度数为y,那么1,2(3)A∠+∠之间有一种数量关系始终保持不变,请找出这个规律,井说明理由.∠与1221.小宋对三角板在平行线间的摆放进行了探究(1)如图(1),已知a b ∥,小宋把三角板的直角顶点放在直线b 上.若140∠=︒,直接写出2∠的度数;若1m ∠=︒,直接写出2∠的度数(用含m 的式子表示).(2)如图(2),将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的直角顶点与45°角的顶点重合于点A ,含30°角的直角三角板的斜边与纸条一边b 重合,含45°角的三角板的另一个顶点在纸条的另一边a 上,求1∠的度数.22.一个问题解决往往经历发现猜想——探索归纳——问题解决的过程,下面结合一道几何题来体验一下.【发现猜想】(1)如图①,已知△AOB =70°,△AOD =100°,OC 为△BOD 的角平分线,则△AOC 的度数为 ;.【探索归纳】(2)如图①,△AOB =m ,△AOD =n ,OC 为△BOD 的角平分线. 猜想△AOC 的度数(用含m 、n 的代数式表示),并说明理由.【问题解决】(3)如图②,若△AOB =20°,△AOC =90°,△AOD =120°.若射线OB 绕点O 以每秒20°逆时针旋转,射线OC 绕点O 以每秒10°顺时针旋转,射线OD 绕点O 每秒30°顺时针旋转,三条射线同时旋转,当一条射线与直线OA 重合时,三条射线同时停止运动. 运动几秒时,其中一条射线是另外两条射线夹角的角平分线?23.在等腰直角三角形ABC 中,△BAC =90°,AB =AC ,直线PQ 过点A 且PQ //BC ,过点B 为一锐角顶点作Rt△BDE ,△BDE =90°,且点D 在直线PQ 上(不与点A 重合).(1)如图1,DE 与AC 交于点M ,若DF △PQ 于点D 交AB 于点F ,求证:△BDF △△MDA ;(2)在图2中,DE 与CA 延长线交于点M ,试猜想线段BD 、ED 、EM 的数量关系,并证明你的猜想.(3)在图3中,DE 与AC 延长线交于点M ,(2)中结论是否成立?如果成立,请给予证明;如果不成立,请说明理由.24.直线m 与直线n 相交于C ,点A 是直线m 上一点,点B 是直线n 上一点,ABC ∠的平分线BP 与DAB ∠的平分线AE 的反向延长线相交于点P .(1)如图1,若90ACB ∠=︒,则P ∠=__________;若ACB α∠=,则P ∠=__________(结果用含α的代数式表示);(2)如图2,点F 是直线n 上一点,若点B 在点C 左侧,点F 在点C 右侧时,连接AF ,CAF ∠与AFC ∠的平分线相交于点Q .①随着点B 、F 的运动,APB AQF ∠+∠的值是否变化?若发生变化,请说明理由;若不发生变化,试求出其值;②延长AQ 交直线n 于点G ,作QH∥CF 交AF 于点H ,则,,AGC HQF ACB ∠∠∠三个角之间是否存在某种数量关系,请说明理由.。
1、2、3、4、5、6、7、第11、选择题(共10小题,每小题至少有两边相等的三角形是(A .等边三角形C •等腰直角三角形下列图形具有稳定性的是(如图,/仁55°,A./3=108 °章《三角形》单元测试卷(满分120分,限时120分钟)3分,共30分))B .等腰三角形D .锐角三角形)则/ 2的度数为(°C. 54 D. 55°10、如图,AD是厶ABC的角平分线,点O在AD上,且OE丄BC于点E,/ BAC=60 ° / C=80 ° 则/ EOD的度数为()A .20°、填空题(共B.30°C. 10 D . 156小题,每小题3分,共18 分)11、已知三角形的两边长分别为3和6,那么第三边长的取值范围是12、如图,AD丄BC于D,那么图中以AD为高的三角形有_________ 个.三角形一边上的中线把原三角形分成两个(B、面积相等的三角形D、周长相等的三角形)A、形状相同的三角形C、直角三角形下列说法不正确的是(A .三角形的中线在三角形的内部B .三角形的角平分线在三角形的内部C •三角形的高在三角形的内部D.三角形必有下列长度的三根小木棒能构成三角形的是()A . 2cm, 3cm, 5cm B. 7cm, 4cm, 2cmC. 3cm, 4cm, 8cmD. 3cm, 3cm, 4cm已知△ ABC中,/ A=20 ° / B= / C,那么三角形△A .锐角三角形B .直角三角形试通过画图来判定,下列说法正确的是(A .一个直角三角形一定不是等腰三角形C .一个钝角三角形一定不是等腰三角形D为垂足,ABC 是(钝角三角形高线在三角形的内部D •正三角形13、如图,△ ABC中,/ ACB >90° AD丄BC,BE丄AC,CF丄AB,垂足分别为D、E、F,则线段是厶ABC中AC边上的高.9、A. 35° B .55°B •一个等腰三角形一定不是锐角三角形D .一个等边三角形一定不是钝角三角形/ C=55 °则/ ABC的度数是()14、一个多边形的内角和是外角和的2倍,则这个多边形的边数为_________15、十边形的外角和是________ °16、若三角形的周长是60cm,且三条边的比为3: 4: 5,则三边长分别为__________________三、解答题(共8题,共72分)17、(本题8分)求正六边形的每个外角的度数.C. 60° D .70°18、(本题8分)如图,一个六边形木框显然不具有稳定性,要把它固定下来,至少要钉上几根木条,请画出相应木条所在线段. AF22、(本题10分)如图,在△ ABC中,AD是BC边上的中线,△ ADC的周长比厶ABD的周长多5cm, AB与AC的和为11cm,求AC的长.共有_____ 个三角形.(2)按上面的方法继续下去,第n个图形中有__________ 个三角形(用n的代数式表示结论)23、(本题10分)如图,在△ ABC中,/ ABC=66 ° / ACB=54 ° BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求/ ABE、/ ACF和/ BHC的度数.20、(本题8 分)已知:如图,/ B=42° / A+10° = Z 1,Z ACD=64°求证:AB // CD。
2021-2022学年八年级数学上册尖子生同步培优题典【浙教版】专题1.12第1章三角形的初步认识单元测试(培优提升卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,考试时间90分钟,试题共24题,选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021•嘉兴)能说明命题“若x 为无理数,则x 2也是无理数”是假命题的反例是( )A .x =1B .x =1C .x =D .x ―2.(2021春•玉田县期末)已知一个三角形的两条边长分别是3和5,则第三条边的长度不能是( )A .2B .3C .4D .53.(2020秋•椒江区期末)在平面内,若AB =6,BC =4,∠A =30°,则可以构成的△ABC 的个数是( )A .0个B .1个C .2个D .不少于2个4.(2020春•松北区期末)下列四个图形中,线段BE 是△ABC 的高的图形是( )A .B .C .D .5.(2020春•常熟市期末)如图,在△ABC 中,D 、E 分别是BC 、AD 的中点,点F 在BE 上,且EF =2BF ,若S △BCF =2cm 2,则S △ABC 为( )A .4cm 2B .8cm 2C .12cm 2D .16cm 26.(2020秋•红桥区期末)如图,若△ABC≌△ADE,则下列结论中一定成立的是( )A.∠BAD=∠CAE B.AC=DE C.∠ABC=∠AED D.AB=AE7.(2021•阳新县校级模拟)如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是( )A.32°B.45°C.60°D.64°8.(2020秋•北海期末)将一副直角三角板如图放置,使两直角重合,则∠DFB的度数为( )A.145°B.155°C.165°D.175°9.(2020秋•温岭市期中)如图,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则下列结论:①DF+AE>AD;②BE=DE;③AD⊥EF;④AB:AC=BD:CD.正确的有( )个.A.1B.2C.3D.410.(2020春•松北区期末)如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC 于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G,则①DH=HC;②DF=FC;③BF=AC;④CE=12BF中正确有( )A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2020春•灌云县期中)如图,以AD为高的三角形共有 个.12.(2021•宁波模拟)写出一个能说明命题“若|a|>|b|,则a>b”是假命题的反例 .13.(2020秋•南浔区期末)如图,已知在△ABC和△ADC中,∠ACB=∠ACD,请你添加一个条件: ,使△ABC≌△ADC(只添一个即可).14.(2019秋•肥西县期末)如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出 个.15.(2020春•叙州区期末)如图,△ABC中,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,AD∥BC.以下结论:①∠ABC=∠ACB;②∠ADC+∠ABD=90°;③BD平分∠ADC;④2∠BDC=∠BAC.其中正确的结论有 .(填序号)16.(2020春•天心区期末)如图,Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB 于F,则下列结论中正确的是 .(填序号)①AC=AF②CH=CE③∠ACD=∠B④CE=EB三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2020春•安源区期中)如图,在△ABC中,AD,AE,AF分别为△ABC的高线、角平分线和中线.(1)写出图中所有相等的角和相等的线段;(2)当BF=8cm,AD=7cm时,求△ABC的面积.18.(2021春•綦江区期中)如图,在△ABC中,CD⊥AB,EF⊥AB,垂足分别为D、F.(1)若∠1=∠2,试说明DG∥BC;(2)若CD平分∠ACB,∠A=60°,求∠B的度数.19.(2021春•惠来县期末)如图,在△ABC和△DEF中,边AC,DE交于点H,AB∥DE,AB=DE,BE=CF.(1)若∠B=55°,∠ACB=100°,求∠CHE的度数.(2)求证:△ABC≌△DEF.20.(2021春•郏县期末)王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.21.(2020秋•东海县期末)小明与爸爸妈妈在公园里荡秋千,如图,小明坐在秋千的起始位置A处,OA 与地面垂直,两脚在地面上用力一蹬,妈妈在距地面1.2m高的B处接住他后用力一推,爸爸在C处接住他,若妈妈与爸爸到OA的水平距离BD、CE分别为1.6m和2m,∠BOC=90°.(1)△OBD与△COE全等吗?请说明理由;(2)爸爸是在距离地面多高的地方接住小明的?22.(2020春•南岗区校级期中)已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF.(1)如图1,求证:△ABE≌△CDF.(2)如图2,连接AD、BC、BF、DE,在不添加任何辅助线的情况下,请直接写出图2中所有全等的三角形(除△ABE全等于△CDF外).23.(2020春•雨花区校级期末)如图,在△ABC中,∠ACB=90°,CE是△ABC的角平分线,CD⊥AB,垂足为D,延长CE与外角∠ABG的平分线交于点F.(1)若∠A=60°,求∠DCE和∠F的度数;(2)若∠A=n°(0<n<90),请直接写出∠DCE和∠F的度数(用含n的代数式表示);(3)若△FCB高FH和∠DCB的角平分线交于点Q,在(2)的条件下求∠CQH的度数(用含n的代数式表示).24.(2020春•广饶县期末)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t= 时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.。
E C B A E C B A E
C B
A E C
B A 4
3
21
H E D C
B
A E
D
C
B
A
三角形基础章节测试题
一、选择题(30分)
1、以下列各组线段为边,能组成三角形的是( )
A 、1cm 、2cm 、4cm
B 、8cm 、6cm 、4cm
C 、12cm 、5 cm 、6cm
D 、2cm 、3cm 、6cm
2. 如图,点O 是△ABC 内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC 等于( )
A. 95°
B. 120°
C. 135°
D. 无法确定
3. 若一个三角形的三边长是三个连续的自然数,其周长m 满足1022m p p ,
则这样的三角形有( )
A. 2个
B. 3个
C. 4个
D. 5个
4、下面四个图形中,线段BE 是△ABC 的高的图是( )
A B C D 5、如图,AE 是△ABC 的边BC 上的高,AD 是∠EAC 的角平分线,交BC 于D ,若∠ACB =40°, 则∠DAE =( )
A、50° B、25° C、40° D、35°
6、下列各角能成为某多边形的内角的和的是( )
A 、430°
B 、4343°
C 、4320°
D 、4360°
7、在铺设人行道时,需用边长相同的正三角形和正六边形两种地砖镶嵌地面,在每个顶点的
周围正三角形和正六边形地砖的个数是( ) A.3、2 B.2、3 C.4、1 D.1、2
8、如图中,∠CAD+∠B+∠ACE+∠D+∠E=( )
A .900 B.1800 C.2700 D.3600
9、在△ABC 中,∠A = 12∠B =1
3
∠C ,则△ABC 是( )
A.锐角三角形
B.直角三角形
C.钝角三角形
D.形状无法确定
10、如图:△ABC 的高BD 、CE 相交于点H ,下面给出四个结论:(1)∠1=∠2; (2)∠BHC 与∠A 互补;(3)∠BHC =∠1+∠2+∠A ;(4)∠1+∠2+∠3+∠4=180°, 其中错误结论的个数是( )
A 、0个
B 、1个
C 、3个
D 、 4个
12图1B A O
A
F
E D
C
B
A
O
C
B
A
二、填空(18分)
11. 锐角三角形的三条高都在________,钝角三角形有________条高在三角形外,
直角三角形有两条高恰是它的________。
12. 若等腰三角形的两边长分别为3cm和8cm,则它的周长是________。
13、在△ABC中,AD是中线,则S△ABD ________S△ACD(填“>”“<”“=”)
14、如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,
CD⊥AB与D,DF⊥CE,则∠CDF=_________度。
15、一个多边形的每一个外角都等于30°,这个多边形的边数是__________,
它的内角和是_______度。
16、一个四边形的四个内角中最多有_________个钝角,最多有_______个锐角。
三、解答题(72分)
17、在图中按要求画图:
(1)过B点画AC边上的高;(2)过A点画出BC的垂线;(3)画出表示点C到线段AB距离的线段;(4)过点C作AB的平行线。
18、一个等腰三角形的周长为18cm,腰长是底边长的2倍,求各边长。
19、△ABC中,∠ABC、∠ACB的平分线相交于点O,
(1)若∠ABC=40°,∠ACB=50°,则∠BOC=_______
(2)若∠ABC+∠ACB=116°,则∠BOC=_________
(3)若∠A=76°,则∠BOC=_______
(4)∠BOC=120°,则∠A=________
(5)你能找出∠A与∠BOC之间的数量关系吗?
20. 如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm,求⑴△ABC的面积;⑵CD的长。
21.如图,已知0
MON = 50
,点A、B分别在射线ON、OM上移动(不与O重合),AC 平分∠OAB,DB平分∠ABM,直线AC,BD交于点C,试问:随着A、B点的移动变化,求∠ACB的大小。
22.如图,在△ABC中,∠ABC=∠ACB,D为BC边上一点,E为直线AC上一点,且∠ADE=∠AED.⑴求证:∠BAD=2∠CDE;
⑵若D在BC的反向延长线上,其它条件不变,请判断∠BAD与∠CDE的数量关系,并证明你的结论。
A B
C
E
D C
A
y x
B O A
D K C
y
x B O A N H C
y x
B O A
23.已知,如图,在平面直角坐标系中,点B 在x 轴的负半轴上, ⊿ABO 的周长为26,若OB 的6倍比AB 与OA 的和大2.
(1)求B 点的坐标;
(2)若∠A:∠ABO:∠AOB=5:10:21,CK 平分∠BCO, CK ⊥CD,y 轴平分∠AOC, 求∠CDO 的度数;
(3)在y 轴上有一点H,其中H(0,8),射线HN ∥x 轴,当点A 在HN 上运动时,且∠HOC=∠ABO,则下列两个结论: ①OC ·AB 的值不变; ②OC+AB 的值不变. 其中只有一个结论正确,请选出来,并求出它的值.。