江苏省南京市2019年中考数学模拟试卷(含答案)
- 格式:doc
- 大小:387.50 KB
- 文档页数:18
2019年第二学期 九年级数学注意事项:1.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.计算1-(-2)2÷4的结果为A .2B .54C .0D .-342.南京规划地铁6号线由栖霞山站开往南京南站,全长32100米,这个数据用科学计数法表示为 A .321×102 B .32.1×103 C .3.21×104 D .3.21×105 3.一元二次方程2x 2+3x +1=0的根的情况是A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定 4.下列运算结果正确的是A .a 2+a 3=a 5B .a 2·a 3=a 6C .a 3÷a 2=aD .(a 2)3=a 55.如图,将矩形ABCD 绕点A 逆时针旋转90°至矩形AEFG ,点D 的旋转路径为 ⌒DG,若AB =1,BC =2,则阴影部分的面积为 A .π3+32B .1+32C .π2D .π3+16.如图,将正六边形ABCDEF 放入平面直角坐标系后,若点A 、B 、E 的坐标分别为 (a ,b )、(3,1)、(-a ,b ),则点D 的坐标为A .(1,3)B .(3,-1)C .(-1,-3)D .(-3,1)B (第6题)(第5题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.分解因式2x 2+4x +2= ▲ .8.满足不等式组⎩⎨⎧x +2<1,2(x -1)>-8的整数解为 ▲ .9.已知一组数据2,6,5,2,4,则这组数据的中位数是 ▲ .10.计算12-33= ▲ . 11.若关于x 的方程x 2+mx +5=0有一个根为1,则该方程的另一根为 ▲ . 12.如图,△ABC 是⊙O 的内接三角形,AD 是⊙O 直径,若∠ABC =50°,则∠CAD = ▲ °.13.如图,在□ABCD 中,E 、F 分别是AD 、CD 的中点,EF 与BD 相交于点M ,若△DEM的面积为1,则□ABCD 的面积为 ▲ .14.如图,A (a ,b )、B (1,4)(a >1)是反比例函数y =kx (x >0)图像上两点,过A 、B分别作x 轴、y 轴的垂线,垂足分别为C 、D 、E 、F ,AE 、BD 交于点G .则四边形ACDG 的面积随着a 的增大而 ▲ .(填“减小”、“不变”或“增大”) 15.二次函数y =a (x -b )2+c (a <0)的图像经过点(1,1)和(3,3),则b 的取值范围是 ▲ .16.如图,在△ABC 中,∠C =90°,AC =BC =1,P 为△ABC 内一个动点,∠P AB =∠PBC ,则CP 的最小值为 ▲ .(第12题)ACDE F M (第13题)(第14题)(第16题)三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(10分)(1)解方程组 ⎩⎪⎨⎪⎧x +2y =3,2x -y =1; (2)解方程 1x -1=2x +3.18.(6分)计算x x 2-1÷⎝⎛⎭⎫1+1x -1.19.(7分)一个不透明的袋子中,装有2个红球,1个白球,1个黄球,这些球除颜色外都相同.求下列事件的概率:(1)搅匀后从中任意摸出1个球,恰好是红球; (2)搅匀后从中任意摸出2个球,2个都是红球.20.(8分)某公司在某市五个区投放共享单车供市民使用,投放量的分布及投放后的使用情况统计如下.(1)该公司在全市一共投放了 ▲ 万辆共享单车;(2)在扇形统计图中,B 区所对应扇形的圆心角为 ▲ °;(3)该公司在全市投放的共享单车的使用量占投放量的85%,请计算C 区共享单车的使用量并补全条形统计图.各区共享单车投放量分布扇形统计图 (第20题) 各区共享单车投放量及使用量条形统计图21.(8分)如图,在□ABCD 中,点E 、F 、G 、H 分别在边AB 、BC 、CD 、DA 上,AE =CG ,AH =CF ,且EG 平分∠HEF . (1)求证:△AEH ≌△CGF ; (2)求证:四边形EFGH 是菱形.22.(7分)用两种方法证明“直角三角形斜边上的中线等于斜边的一半”. 已知:如图,在Rt △ABC 中,∠ACB =90°,CD 是斜边AB求证:CD =12AB .请把证法1补充完整,并用不同的方法完成证法2.AB C DHE GF (第21题) AC (第22题)23.(9分)同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y (cm )与燃烧时间x (min )的关系如图所示.(1)求乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式; (2)求点P 的坐标,并说明其实际意义;(3)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.24.(8分)定义:在△ABC 中,∠C =30°,我们把∠A 的对边与∠C 的对边的比叫做∠A的邻弦,记作thi A ,即thi A =∠A 的对边∠C 的对边=BCAB .请解答下列问题:已知:在△ABC 中,∠C =30°.(1)若∠A =45°,求thi A 的值;(2)若thi A =3,则∠A = ▲ °;(3)若∠A 是锐角,探究thi A 与sin A 的数量关系.25.(8分)A 厂一月份产值为16万元,因管理不善,二、三月份产值的月平均下降率为x(0<x <1).B 厂一月份产值为12万元,二月份产值下降率为x ,经过技术革新,三月份产值增长,增长率为2x .三月份A 、B 两厂产值分别为y A 、y B (单位:万元). (1)分别写出y A 、y B 与x 的函数表达式; (2)当y A =y B 时,求x 的值;(3)当x 为何值时,三月份A 、B 两厂产值的差距最大?最大值是多少万元?min ) y ((第23题)26.(8分)如图,在Rt △ABC 中,∠A =90°,点D 、E 分别在AC 、BC 上,且CD ·BC=AC ·CE ,以E 为圆心,DE 长为半径作圆,⊙E 经过点B ,与AB 、BC 分别交于点F 、G .(1)求证:AC 是⊙E 的切线; (2)若AF =4,CG =5,①求⊙E 的半径;②若Rt △ABC 的内切圆圆心为I ,则IE = ▲ .27.(9分)在△ABC 中,D 为BC 边上一点.(1)如图①,在Rt △ABC 中,∠C =90°,将△ABC 沿着AD 折叠,点C 落在AB 边上.请用直尺和圆规作出点D (不写作法,保留作图痕迹);(2)如图②,将△ABC 沿着过点D 的直线折叠,点C 落在AB 边上的E 处.①若DE ⊥AB ,垂足为E ,请用直尺和圆规作出点D (不写作法,保留作图痕迹); ②若AB =42,BC =6,∠B =45°,则CD 的取值范围是 ▲ .(第26题)① ② (第27题)AB C① ②数学试题参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7. 2(x +1)2 8.-2 9.4 10.2- 3 11. 5 12.40 13.16 14.增大 15.b >2 16.2-1 三、解答题(本大题共11小题,共88分) 17.(本题10分)(1)解方程组: ⎩⎨⎧x +2y =3,2x -y =1.解: 由②得 y =2x —1 ③ 将③代入①得:x +2(2x -1)=3x =1 ………2分 将 x =1代入②得y =1 ………4分∴该方程组的解为:⎩⎨⎧x =1,y =1. ……5分(2)方程两边同乘(x -1)(x +3)得:x +3=2(x -1) ………2分 解得x =5 ………4分检验:当x =5时,(x -1)(x +3)≠0所以x =5是原方程的解 ……5分18.(本题6分) 解:x x 2-1÷⎝⎛⎭⎫1+1x -1 =x (x +1)(x -1)÷⎝⎛⎭⎫x -1x -1+1x -1 =x (x +1)(x -1)÷xx -1 =x(x +1)(x -1)·x -1x=1x +1.……6分 19.(本题7分)(1)解: 搅匀后从中任意摸出1个球,所有可能出现的结果共有4种,它们出现的可能性相同.所有的结果中,满足“恰好是红球”(记为事件A )的结果有2种, 所以P(A )=2 4 = 12.……3分 (2)解:搅匀后从中任意摸出2个球,所有可能出现的结果有:(红1,红2)、(红1,黄)、(红2,黄)、(红1,白)、(红2,白)、(白,黄),共有6种,它们出现的可能性相同.所有的结果中,满足“2个都是红球”(记为事件B )的结果只有1种,所以P(B )=16 . ……7分20.(本题8分) (1) 4 ……2分 (2) 36 ……4分(3)图略 4×85%-0.8-0.3-0.9-0.7=0.7(万辆)答: C 区共享单车的使用量为0.7万辆. ……8分 21.(本题8分)证明:(1)∵四边形ABCD 是平行四边形,∴∠A =∠C .又∵AE =CG ,AH =CF ,∴△AEH ≌△CGF . ……3分(2)∵四边形ABCD 是平行四边形,∴AD =BC ,AB =CD ,∠B =∠D . ∵AE =CG ,AH =CF , ∴EB =DG ,HD =BF . ∴△BEF ≌△DGH . ∴EF =HG .又∵△AEH ≌△CGF , ∴EH =GF .∴四边形HEFG 为平行四边形. ……5分 ∴EH ∥FG , ∴∠HEG =∠FGE . ∵EG 平分∠HEF , ∴∠HEG =∠FEG , ∴∠FGE =∠FEG , ∴EF =GF ,∴EFGH 是菱形. ……8分22.(本题7分) ①EC =EB ; ②∠A +∠B =90° ……2分 证法2:延长CD 至点E ,使得DE =CD ,连接AE 、BE .∵AD =DB ,DE =CD . ∴四边形ACBE 是平行四边形. 又∵∠ACB =90°, ∴□ACBE 是矩形. ∴AB =CE , 又∵CD =12CE∴CD =12AB ……7分23.(本题9分)解:(1)设y 与x 之间的函数表达式为y =kx +b .根据题意,当x =0时,y =40;当x =50时,y =0. 所以⎩⎨⎧40=b 0=50k +b ,解得⎩⎨⎧k =-0.8b =40.所以,y 与x 之间的函数表达式为y =-0.8x +40. ……3分(2) P (20,24) 点燃20分钟,甲乙两根蜡烛剩下的长度都是24 cm .……5分 (3)设甲蜡烛剩下的长度y 甲与x 之间的函数表达式为y 甲=mx +n . 根据题意,当x =0时,y 甲=48;当x =20时,y 甲=24.所以⎩⎨⎧48=n 24=20m +n ,解得⎩⎨⎧m =-1.2n =48.所以,y 甲与x 之间的函数表达式为y 甲=-1.2x +48.因为甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍,所以 -1.2x +48=1.1(-0.8x +40) 解得 x =12.5答:点燃12.5分钟,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍. ……9分 24.(本题8分)(第22题)E解:(1)如图,作BH ⊥AC ,垂足为H .在Rt △BHC 中,sin C =BH BC =12,即BC =2BH .在Rt △BHA 中,sin A =BH AB =22,即AB =2BH .∴thi A =BCAB=2. ……3分(2)60或120. ……5分 (3)在Rt △ABC 中,thi A =BCAB.在Rt △BHA 中,sin A =BHAB.在Rt △BHC 中,sin C =BH BC =12,即BC =2BH .∴thi A =2sin A . ……8分25.(本题8分)(1)y A =16(1-x )2, y B =12(1-x ) (1+2x ). ……2分 (2)由题意得 16(1-x )2=12(1-x ) (1+2x )解得:x 1=110, x 2=1.∵0<x <1,∴x =110. ……4分 (3)当0<x <110时,y A >y B ,且0<y A -y B <4.当110<x <1时,y B >y A , y B -y A =12(1-x ) (1+2x )-16(1-x )2=4(1-x )(10x -1)=-40()x -11202+8110. ∵-40<0,110<x <1 ,∴当x =1120时, y B -y A 取最大值,最大值为8.1. ……6分 ∵8.1>4 ∴当x =1120时,三月份A 、B 两厂产值的差距最大,最大值是8.1万元. ……8分 26.(本题8分) (1)证明:∵ CD ·BC =AC ·CE ∴ CD CA =CECB∵∠DCE =∠ACB . ∴△CDE ∽△CAB ∴∠EDC =∠A =90° ∴ED ⊥AC又∵点D 在⊙O 上,∴AC 与⊙E 相切于点D .……………… 3分 (2)过点E 作EH ⊥AB ,垂足为H ,∴BH =FH .在四边形AHED 中,∠AHE =∠A =∠ADE =90°, ∴四边形AHED 为矩形, ∴ED =HA ,ED ∥AB , ∴∠B =∠DEC .BACHC(第26题)设⊙O 的半径为r ,则EB =ED =EG =r , ∴BH =FH =r -4,EC =r +5. 在△BHE 和△EDC 中,∵∠B =∠DEC ,∠BHE =∠EDC , ∴△BHE ∽△EDC . ∴BH ED =BE EC ,即 r -4 r =rr +5. ∴r =20.即⊙E 的半径为20……………………………………………………6分 (3)130 ……………………………………………………8分 27.(本题9分)(1) (2)①……2分……6分② 62-6≤CD ≤5. ……9分ACBD。
2019年江苏省南京市中考数学一模试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.sin55°与 cos35°之间的关系( )A .0sin 55cos35o <B .00sin 55cos5>C .00sin 55cos351+=D .sin 55cos35o o =2.若k 满足23153k k +≥⎧⎪⎨−≤⎪⎩,则化简|2||1|||k k k +−−+得( ) A .3k + B .3k − C .31k + D .1k +3.图中几何体的左视图是( )4.在△ABC 中,分析下列条件:①有一个角等于60°的等腰三角形;②有两个角等于60°的三角形;③有3条对称钠的三角形;④有两边相的三角形. 其中能说明△ABC 是等边三角形的有( )A . ①B . ①②C . ①②③D . ①②③④5.“a 和b 的平方的和除以c ”可表示为( )A .2()a b c + B .2b a c + C .22a b c + D . 2a b c+ 6.观察下面图案,能通过右边图案平移得到的图案是( )7.如图中的物体的形状属于( )A . 棱柱B .圆柱C .圆锥D .球体8.数轴上A 、B 两点分别是8.2,365,则 A .B 两点间的距离为( ) A .4145 B .2145 C .-1. 6 D .1. 6二、填空题9.已知Rt △ABC 的两直角边的长分别为6cm 和8cm ,则它的外接圆的半径为___________cm .10.若252m y x −=是反比例函数,则m= .11.对2000个数据进行了整理,在频率分布表中,各组的频数之和等于 ,各组的频率之和等于 .12.已知221y x x =−+−+,则y x= . 13.已知某一次函数的图象经过点(-1,2),且函数y 的值随自变量x 减小,请写出一个符合上述条件的函数解析式: .14.已知一个样本1,3,2,5,x ,其平均数是3,则x = .15.已知2x-y=4,则7-6x+3y=________.16.某中学组织七年级同学春游,如果租用 45 座客车若干辆,则有 15 人没有座位;如果 租用同样数量的 60 座客车,则多出一辆车,其余车辆恰好坐满,则租用的客车有 辆.17.当m= ,n= 时,32m x y 与33n xy −是同类项.三、解答题18.如图,已知直线MN 和MN 外一点A ,请用尺规作图的方法完成下列作图:(1)作出以A 为圆心与MN 相切的圆;(2)在MN 上求一点B ,使∠ABM =30°(保留作图迹,不要求写作法、证明)19.一张圆桌旁有四个座位,A 先生在如图所示的座位上,B 、C 、D 三人随机坐到其他三个座位上,求A 与B 不相邻而坐的概率.31.20.已知:如图AB BC AC AD DE AE==,求证:∠1 =∠2.21.如图,正方形ABCD 中,在AB 的延长线上取一点E ,使AC=BE ,连结DE 交BC 于F ,求∠DFB 的度数.22.如图,□ABCD 中,AQ ,BM ,CM ,DQ 分别是∠DAB ,∠ABC ,∠BCD,∠CDA 的平分线,AQ 与BM 交于点P ,CM 与DQ 交于点N ,求证:MQ=PN .23.如图,已知在梯形ABCD 中,AD ∥BC ,E ,F 分别是AB ,CD 的中点,连结EF .求证:EF∥BC, EF=12(AD+BC).24.指出下列命题是真命题还是假命题,若是假命题,请给出反例.(1)线段垂直平分线上的点到线段的两个端点的距离相等;(2)负数没有有平方根;(3)如果a b=,那么a b=.25.(1)画出如图所示的几何体的三视图;(2)在如图所示的4×4的方格(小正方形的边长为1)上画出长度为5的线段.26.如图,在直线a,b,c,d 构成的角中,已知∠1 =∠3,∠2=110°,求∠4 的度数.27.已知△ABC中,请画出:①AB边上的高线;②AC的中垂线;③∠BAC的角平分线.(要求保留作图痕迹,不写作法)28.在如图所示的图案中,黑白两色的直角三角形都全等. 将它作为一个游戏盘,游戏规则是:按一定距离向盘中投镖一次,扎在黑色区域为甲胜,扎在白色区域为乙胜. 你认为这个游戏公平吗?为什么?29.求下列各式中的x:(1)30.008x=(2) 32160x+=的平方根之和30.某商店在销售中发现:某品牌童装平均每天可售出20件,每件赢利40元.为了迎“六一”儿童节,商场决定适当地降价,以扩大销售量,增加赢利,经市场调查发现,如果每件童装每降低l元,那么平均每天就可多售出2件,要想平均每天在销售这种童装上赢利1200元,那么每件童装应降价多少元?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.A3.A4.C5.D6.C7.A8.D二、填空题9.510.m=2 或一2.2000,l12.21 13. 如1y x =−+(答案不唯一)14.415.-516.517.1,1三、解答题18.略.19.20.在△ABC 和△ADE 中,AB BC AC AD DE AE==,∴△ABC ∽△ADE. ∴∠BAC=∠DAE,∴∠BAD=∠CAE .在△ABD 和△ACE 中,AB AC AD AE=,∠BAD=∠CAE,∴△ABC ∽△CAE,∴∠1=∠2 21.112.5°22.证四边形PQNM 是矩形23.连结DE 并延长,交CB 的延长线于点G ,证△ADE ≌△BGE ,得EF 是△DGC 的中位线即可24.(1)真命题;(2)真命题;(3)假命题.如:当1a =−,1b =时,11−=,但-l ≠1略26.110°27.略28.公平,理由略29.(1)x=0.2 (2)x=-6 30.降价 10 元或 20 元。
2019年江苏省南京市中考数学试卷及解析(word版)一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2019年江苏南京)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.分析:根据轴对称图形与中心对称图形的概念求解.解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选C.点评:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.(2019年江苏南京)计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a6分析:根据积的乘方等于每个因式分别乘方,再把所得的幂相乘,可得答案.解:原式=﹣a2×3=﹣a6.故选:D.点评:本题考查了幂的乘方与积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘.3.(2019年江苏南京)若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A.1:2 B.2:1 C.1:4 D.4:1分析:根据相似三角形面积的比等于相似比的平方计算即可得解.解:∵△ABC∽△A′B′C′,相似比为1:2,∴△ABC与△A′B′C′的面积的比为1:4.故选C.点评:本题考查了相似三角形的性质,熟记相似三角形面积的比等于相似比的平方是解题的关键.4.(2019年江苏南京)下列无理数中,在﹣2与1之间的是()A.﹣B.﹣C.D.分析:根据无理数的定义进行估算解答即可.解:A.,不成立;B.﹣2,成立;C.,不成立;D.,不成立,故答案为B.点评:此题主要考查了实数的大小的比较,解答此题要明确,无理数是不能精确地表示为两个整数之比的数,即无限不循环小数.5.(2019年江苏南京)8的平方根是()A.4 B.±4 C.2D.分析:直接根据平方根的定义进行解答即可解决问题.解:∵,∴8的平方根是.故选D.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.6.(2019年江苏南京)如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4) D.(,)、(﹣,4)分析:首先过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,易得△CAF≌△BOE,△AOD∽△OBE,然后由相似三角形的对应边成比例,求得答案.解:过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A 作AF∥x轴,交点为F,∵四边形AOBC是矩形,∴AC∥OB,AC=OB,∴∠CAF=∠BOE,在△ACF和△OBE中,,∴△CAF≌△BOE(AAS),∴BE=CF=4﹣1=3,∵∠AOD+∠BOE=∠BOE+∠OBE=90°,∴∠AOD=∠OBE,∵∠ADO=∠OEB=90°,∴△AOD∽△OBE,∴,即,∴OE=,即点B(,3),∴AF=OE=,∴点C的横坐标为:﹣(2﹣)=﹣,∴点D(﹣,4).故选B.点评:此题考查了矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2019年江苏南京)﹣2的相反数是,﹣2的绝对值是.分析:根据相反数的定义和绝对值定义求解即可.解:﹣2的相反数是2,﹣2的绝对值是2.点评:主要考查了相反数的定义和绝对值的定义,要求熟练运用定义解题.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.8.(2019年江苏南京)截止2019年底,中国高速铁路营运里程达到11000km,居世界首位,将11000用科学记数法表示为.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将11000用科学记数法表示为:1.1×104.故答案为:1.1×104.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.(2019年江苏南京)使式子1+有意义的x的取值范围是.分析:根据被开方数大于等于0列式即可.解:由题意得,x≥0.故答案为:x≥0.点评:本题考查的知识点为:二次根式的被开方数是非负数.10.(2019年江苏南京)2019年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm):168,166,168,167,169,168,则她们身高的众数是cm,极差是cm.分析:根据众数的定义找出这组数据中出现次数最多的数,再根据求极差的方法用最大值减去最小值即可得出答案.解:168出现了3次,出现的次数最多,则她们身高的众数是168cm;极差是:169﹣166=3cm;故答案为:168;3.点评:此题考查了众数和极差,众数是一组数据中出现次数最多的数;求极差的方法是最大值减去最小值.11.(2019年江苏南京)已知反比例函数y=的图象经过点A(﹣2,3),则当x=﹣3时,y=.分析:先把点A(﹣2,3)代入y=求得k的值,然后将x=﹣3代入,即可求出y的值.解:∵反比例函数y=的图象经过点A(﹣2,3),∴k=﹣2×3=﹣6,∴反比例函数解析式为y=﹣,∴当x=﹣3时,y=﹣=2.故答案是:2.点评:本题考查了反比例函数图象上点的坐标特征.利用待定系数法求得一次函数解析式是解题的关键.12.(2019年江苏南京)如图,AD是正五边形ABCDE的一条对角线,则∠BAD=.分析:设O是正五边形的中心,连接OD、OB,求得∠DOB的度数,然后利用圆周角定理即可求得∠BAD的度数.解:设O是正五边形的中心,连接OD、OB.则∠DOB=×360°=144°,∴∠BAD=∠DOB=72°,故答案是:72°.点评:本题考查了正多边形的计算,正确理解正多边形的内心和外心重合是关键.13.(2分)(2019年江苏南京)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为cm.分析:先根据圆周角定理得到∠BOD=2∠BCD=45°,再根据垂径定理得到BE=AB=,且△BOE为等腰直角三角形,然后根据等腰直角三角形的性质求解.解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为2.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.14.(2019年江苏南京)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.分析:易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.解:圆锥的底面周长=2π×2=4πcm,设圆锥的母线长为R,则:=4π,解得R=6.故答案为:6.点评:本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.15.(2019年江苏南京)铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为cm.分析:设长为3x,宽为2x,再由行李箱的长、宽、高之和不超过160cm,可得出不等式,解出即可.解:设长为3x,宽为2x,由题意,得:5x+30≤160,解得:x≤26,故行李箱的长的最大值为78.故答案为:78cm.点评:本题考查了一元一次不等式的应用,解答本题的额关键是仔细审题,找到不等关系,建立不等式.16.(2019年江苏南京)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x …﹣1 0 1 2 3 …y …10 5 2 1 2 …则当y<5时,x的取值范围是.分析:根据表格数据,利用二次函数的对称性判断出x=4时,y=5,然后写出y<5时,x的取值范围即可.解:由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y<5时,x的取值范围为0<x<4.故答案为:0<x<4.点评:本题考查了二次函数与不等式,观察图表得到y=5的另一个x的值是解题的关键.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(2019年江苏南京)解不等式组:.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,就是不等式组的解集.解:,解①得:x≥1,解②得:x<2,则不等式组的解集是:1≤x<2.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.18.(2019年江苏南京)先化简,再求值:﹣,其中a=1.分析:原式通分并利用同分母分式的减法法则计算,约分得到最简结果,将a的值代入计算即可求出值.解:原式=﹣==﹣,当a=1时,原式=﹣.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(2019年江苏南京)如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么?分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明;(2)根据邻边相等的平行四边形是菱形证明.(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;(2)解:当AB=BC时,四边形DBEF是菱形.理由如下:∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线,∴DE=BC,∵AB=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.20.(2019年江苏南京)从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率;(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.分析:(1)由从甲、乙、丙3名同学中随机抽取环保志愿者,直接利用概率公式求解即可求得答案;(2)利用列举法可得抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,然后利用概率公式求解即可求得答案.解:(1)∵从甲、乙、丙3名同学中随机抽取环保志愿者,∴抽取1名,恰好是甲的概率为:;(2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,∴抽取2名,甲在其中的概率为:.点评:本题考查的是列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21.(2019年江苏南京)为了了解某市120000名初中学生的视力情况,某校数学兴趣小组,并进行整理分析.(1)小明在眼镜店调查了1000名初中学生的视力,小刚在邻居中调查了20名初中学生的视力,他们的抽样是否合理?并说明理由.(2)该校数学兴趣小组从该市七、八、九年级各随机抽取了1000名学生进行调查,整理他们的视力情况数据,得到如下的折线统计图.请你根据抽样调查的结果,估计该市120000名初中学生视力不良的人数是多少?分析:(1)根据学生全部在眼镜店抽取,样本不具有代表性,只抽取20名初中学生,那么样本的容量过小,从而得出答案;(2)用120000乘以初中学生视力不良的人数所占的百分比,即可得出答案.解:(1)他们的抽样都不合理;因为如果1000名初中学生全部在眼镜店抽取,那么该市每个学生被抽到的机会不相等,样本不具有代表性;如果只抽取20名初中学生,那么样本的容量过小,样本不具有广泛性;(2)根据题意得:×120000=72000(名),该市120000名初中学生视力不良的人数是72000名.点评:此题考查了折线统计图,用到的知识点是用样本估计总体和抽样调查的可靠性,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.22.(8分)(2019年江苏南京)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为 2.6(1+x)2万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.分析(1)根据增长率问题由第1年的可变成本为2.6万元就可以表示出第二年的可变成本为2.6(1+x),则第三年的可变成本为2.6(1+x)2,故得出答案;(2)根据养殖成本=固定成本+可变成本建立方程求出其解即可.解:(1)由题意,得第3年的可变成本为:2.6(1+x)2,故答案为:2.6(1+x)2;(2)由题意,得4+2.6(1+x)2=7.146,解得:x1=0.1,x2=﹣2.1(不合题意,舍去).答:可变成本平均每年增长的百分率为10%.点评:本题考查了增长率的问题关系的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据增长率问题的数量关系建立方程是关键.23.(2019年江苏南京)如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)分析:设梯子的长为xm.在Rt△ABO中,根据三角函数得到OB,在Rt△CDO中,根据三角函数得到OD,再根据BD=OD﹣OB,得到关于x的方程,解方程即可求解.解:设梯子的长为xm.在Rt△ABO中,cos∠ABO=,∴OB=AB•cos∠ABO=x•cos60°=x.在Rt△CDO中,cos∠CDO=,∴OD=CD•cos∠CDO=x•cos51°18′≈0.625x.∵BD=OD﹣OB,∴0.625x﹣x=1,解得x=8.故梯子的长是8米.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.24.(2019年江苏南京)已知二次函数y=x2﹣2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?分析:(1)求出根的判别式,即可得出答案;(2)先化成顶点式,根据顶点坐标和平移的性质得出即可.(1)证明:∵△=(﹣2m)2﹣4×1×(m2+3)=4m2﹣4m2﹣12=﹣12<0,∴方程x2﹣2mx+m2+3=0没有实数解,即不论m为何值,该函数的图象与x轴没有公共点;(2)解:y=x2﹣2mx+m2+3=(x﹣m)2+3,把函数y=(x﹣m)2+3的图象延y轴向下平移3个单位长度后,得到函数y=(x﹣m)2的图象,它的顶点坐标是(m,0),因此,这个函数的图象与x轴只有一个公共点,所以,把函数y=x2﹣2mx+m2+3的图象延y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.点评:本题考查了二次函数和x轴的交点问题,根的判别式,平移的性质,二次函数的图象与几何变换的应用,主要考查学生的理解能力和计算能力,题目比较好,有一定的难度.25.(2019年江苏南京)从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?分析:(1)由速度=路程÷时间就可以求出小明在平路上的速度,就可以求出返回的时间,进而得出途中休息的时间;(2)先由函数图象求出小明到达乙地的时间就可以求出B的坐标和C的坐标就可以由待定系数法求出解析式;(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,根据距离甲地的距离相等建立方程求出其解即可.解:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15﹣5=10,小明骑车在上坡路的速度为:15+5=20.∴小明返回的时间为:(6.5﹣4.5)÷2+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1﹣0.5﹣0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意,得,解得:,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2+b2,由题意,得,解得:,∴y=﹣20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意,得10t+1.5=﹣20(t+0.15)+16.5,解得:t=0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.点评:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一元一次方程的运用,解答时求出一次函数的解析式是关键.26.(2019年江苏南京)如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O为△ABC的内切圆.(1)求⊙O的半径;(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若⊙P与⊙O相切,求t的值.分析:(1)求圆的半径,因为相切,我们通常连接切点和圆心,设出半径,再利用圆的性质和直角三角形性质表示其中关系,得到方程,求解即得半径.(2)考虑两圆相切,且一圆已固定,一般就有两种情形,外切与内切.所以我们要分别讨论,当外切时,圆心距等于两圆半径的和;当内切时,圆心距等于大圆与小圆半径的差.分别作垂线构造直角三角形,类似(1)通过表示边长之间的关系列方程,易得t的值.解:(1)如图1,设⊙O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,则AD=AF,BD=BE,CE=CF.∵⊙O为△ABC的内切圆,∴OF⊥AC,OE⊥BC,即∠OFC=∠OEC=90°.∵∠C=90°,∴四边形CEOF是矩形,∵OE=OF,∴四边形CEOF是正方形.设⊙O的半径为rcm,则FC=EC=OE=rcm,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,∴AB==5cm.∵AD=AF=AC﹣FC=4﹣r,BD=BE=BC﹣EC=3﹣r,∴4﹣r+3﹣r=5,解得r=1,即⊙O的半径为1cm.(2)如图2,过点P作PG⊥BC,垂直为G.∵∠PGB=∠C=90°,∴PG∥AC.∴△PBG∽△ABC,∴.∵BP=t,∴PG=,BG=.若⊙P与⊙O相切,则可分为两种情况,⊙P与⊙O外切,⊙P与⊙O内切.①当⊙P与⊙O外切时,如图3,连接OP,则OP=1+t,过点P作PH⊥OE,垂足为H.∵∠PHE=∠HEG=∠PGE=90°,∴四边形PHEG是矩形,∴HE=PG,PH=CE,∴OH=OE﹣HE=1﹣,PH=GE=BC﹣EC﹣BG=3﹣1﹣=2﹣.在Rt△OPH中,由勾股定理,,解得t=.②当⊙P与⊙O内切时,如图4,连接OP,则OP=t﹣1,过点O作OM⊥PG,垂足为M.∵∠MGE=∠OEG=∠OMG=90°,∴四边形OEGM是矩形,∴MG=OE,OM=EG,∴PM=PG﹣MG=,OM=EG=BC﹣EC﹣BG=3﹣1﹣=2﹣,在Rt△OPM中,由勾股定理,,解得t=2.综上所述,⊙P与⊙O相切时,t=s或t=2s.点评:本题考查了圆的性质、两圆相切及通过设边长,表示其他边长关系再利用直角三角形求解等常规考查点,总体题目难度不高,是一道非常值得练习的题目.27.(2019年江苏南京)【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A,则△ABC≌△DEF.分析:(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE的延长线于H,∵∠B=∠E,且∠B、∠E都是钝角,∴180°﹣∠B=180°﹣∠E,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.点评:本题考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.。
2019年江苏省南京市中考数学试卷题号一二三四总分得分一、选择题(本大题共6小题,共12.0分)1.2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是()A. 0.13×105B. 1.3×104C. 13×103D. 130×1022.计算(a2b)3的结果是()A. a2b3B. a5b3C. a6bD. a6b33.面积为4的正方形的边长是()A. 4的平方根B. 4的算术平方根C. 4开平方的结果D. 4的立方根4.实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A. B.C. D.5.下列整数中,与10-√13最接近的是()A. 4B. 5C. 6D. 76.如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A. ①④B. ②③C. ②④D. ③④二、填空题(本大题共10小题,共20.0分)7.-2的相反数是______;1的倒数是______.28.计算14-√28的结果是______.√79.分解因式(a-b)2+4ab的结果是______.10.已知2+√3是关于x的方程x2-4x+m=0的一个根,则m=______.11.结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵______,∴a∥b.12.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有______cm.13. 为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,得到下表:视力 4.7以下 4.7 4.8 4.9 4.9以上 人数102988093127根据抽样调查结果,估计该区12000名初中学生视力不低于4.8的人数是______. 14. 如图,PA 、PB 是⊙O 的切线,A 、B 为切点,点C 、D 在⊙O上.若∠P =102°,则∠A +∠C =______.15. 如图,在△ABC 中,BC 的垂直平分线MN 交AB 于点D ,CD 平分∠ACB .若AD =2,BD =3,则AC 的长______.16. 在△ABC 中,AB =4,∠C =60°,∠A >∠B ,则BC 的长的取值范围是______. 三、计算题(本大题共2小题,共14.0分) 17. 计算(x +y )(x 2-xy +y 2)18. 解方程:xx−1-1=3x 2−1.四、解答题(本大题共9小题,共74.0分)19. 如图,D 是△ABC 的边AB 的中点,DE ∥BC ,CE ∥AB ,AC 与DE 相交于点F .求证:△ADF ≌△CEF .20.如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据如图提供的信息,请再写出两个不同类型的结论.21.某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天,其中有一天是星期二的概率是______.22.如图,⊙O的弦AB、CD的延长线相交于点P,且AB=CD.求证:PA=PC.23.已知一次函数y1=kx+2(k为常数,k≠0)和y2=x-3.(1)当k=-2时,若y1>y2,求x的取值范围.(2)当x<1时,y1>y2.结合图象,直接写出k的取值范围.24.如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D 处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)25.某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?26.如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.小明的作法1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.2.以点D为圆心,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.27.【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1-x2|+|y1-y2|.【数学理解】(1)①已知点A(-2,1),则d(O,A)=______.②函数y=-2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是______.(2)函数y=4(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使xd(O,C)=3.(3)函数y=x2-5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)答案和解析1.【答案】B【解析】解:13000=1.3×104故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.【答案】D【解析】解:(a2b)3=(a2)3b3=a6b3.故选:D.根据积的乘方法则解答即可.本题主要考查了幂的运算,熟练掌握法则是解答本题的关键.积的乘方,等于每个因式乘方的积.3.【答案】B【解析】解:面积为4的正方形的边长是,即为4的算术平方根;故选:B.已知正方形面积求边长就是求面积的算术平方根;本题考查算术平方根;熟练掌握正方形面积与边长的关系,算术平方根的意义是解题的关键.4.【答案】A【解析】解:因为a>b且ac<bc,所以c<0.选项A符合a>b,c<0条件,故满足条件的对应点位置可以是A.选项B不满足a>b,选项C、D不满足c<0,故满足条件的对应点位置不可以是B、C、D.故选:A.根据不等式的性质,先判断c的正负.再确定符合条件的对应点的大致位置.本题考查了数轴上点的位置和不等式的性质.解决本题的关键是根据不等式的性质判断c的正负.5.【答案】C【解析】解:∵9<13<16,∴3<<4,∴与最接近的是4,∴与10-最接近的是6.故选:C.由于9<13<16,可判断与4最接近,从而可判断与10-最接近的整数为6.此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.6.【答案】D【解析】解:先将△ABC绕着B'C的中点旋转180°,再将所得的三角形绕着B'C'的中点旋转180°,即可得到△A'B'C';先将△ABC沿着B'C的垂直平分线翻折,再将所得的三角形沿着B'C'的垂直平分线翻折,即可得到△A'B'C';故选:D.依据旋转变换以及轴对称变换,即可使△ABC与△A'B'C'重合.本题主要考查了几何变换的类型,在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分.在旋转变换下,对应线段相等,对应直线的夹角等于旋转角.7.【答案】2 2【解析】解:-2的相反数是2;的倒数是2,故答案为:2,2.根据只有符号不同的两个数互为相反数,乘积为的两个数互为倒数,可得答案.本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8.【答案】0【解析】解:原式=2-2=0.故答案为0.先分母有理化,然后把二次根式化为最简二次根式后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.9.【答案】(a+b)2【解析】解:(a-b)2+4ab=a2-2ab+b2+4ab=a2+2ab+9b2=(a+b)2.故答案为:(a+b)2.直接利用多项式乘法去括号,进而合并同类项,再利用公式法分解因式得出答案.此题主要考查了运用公式法分解因式,正确应用公式是解题关键.10.【答案】1【解析】解:把x=2+代入方程得(2+)2-4(2+)+m=0,解得m=1.故答案为1.把x=2+代入方程得到关于m的方程,然后解关于m的方程即可.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.11.【答案】∠1+∠3=180°【解析】解:∵∠1+∠3=180°,∴a∥b(同旁内角互补,两直线平).故答案为:∠1+∠3=180°.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.本题主要考查了平行的判定,两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.12.【答案】5【解析】解:由题意可得:杯子内的筷子长度为:=15,则筷子露在杯子外面的筷子长度为:20-15=5(cm).故答案为:5.根据题意直接利用勾股定理得出杯子内的筷子长度,进而得出答案.此题主要考查了勾股定理的应用,正确得出杯子内筷子的长是解决问题的关键.13.【答案】7200【解析】解:估计该区12000名初中学生视力不低于4.8的人数是12000×=7200(人),故答案为:7200.用总人数乘以样本中视力不低于4.8的人数占被调查人数的比例即可得.本题主要考查用样本估计总体,用样本的数字特征估计总体的数字特征(主要数据有众数、中位数、平均数、标准差与方差).一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.14.【答案】219°【解析】解:连接AB,∵PA、PB是⊙O的切线,∴PA=PB,∵∠P=102°,∴∠PAB=∠PBA=(180°-102°)=39°,∵∠DAB+∠C=180°,∴∠PAD+∠C=∠PAB+∠DAB+∠C=180°+39°=219°,故答案为:219°.连接AB,根据切线的性质得到PA=PB,根据等腰三角形的性质得到∠PAB=∠PBA=(180°-102°)=39°,由圆内接四边形的性质得到∠DAB+∠C=180°,于是得到结论.本题考查了切线的性质,圆内接四边形的性质,等腰三角形的性质,正确的作出辅助线是解题的关键.15.【答案】√10【解析】解:作AM⊥BC于E,如图所示:∵CD平分∠ACB,∴==,设AC=2x,则BC=3x,∵MN是BC的垂直平分线,∴MN⊥BC,BN=CN=x,∴MN∥AE,∴==,∴NE=x,∴BE=BN+EN=x,CE=CN-EN=x,由勾股定理得:AE2=AB2-BE2=AC2-CE2,即52-(x)2=(2x)2-(x)2,解得:x=,∴AC=2x=;故答案为:.作AM⊥BC于E,由角平分线的性质得出==,设AC=2x,则BC=3x,由线段垂直平分线得出MN⊥BC,BN=CN=x,得出MN∥AE,得出==,NE=x,BE=BN+EN=x,CE=CN-EN=x,再由勾股定理得出方程,解方程即可得出结果.本题考查了线段垂直平分线的性质、角平分线的性质、平行线分线段成比例定理、勾股定理等知识;熟练掌握线段垂直平分线的性质和角平分线的性质,由勾股定理得出方程是解题的关键.16.【答案】4<BC≤8√33【解析】解:作△ABC的外接圆,如图所示:∵∠BAC>∠ABC,AB=4,当∠BAC=90°时,BC是直径最长,∵∠C=60°,∴∠ABC=30°,∴BC=2AC,AB=AC=4,∴AC=,∴BC=;当∠BAC=∠ABC时,△ABC是等边三角形,BC=AC=AB=4,∵∠BAC>∠ABC,∴BC长的取值范围是4<BC≤;故答案为:4<BC≤.作△ABC的外接圆,求出当∠BAC=90°时,BC是直径最长=;当∠BAC=∠ABC时,△ABC是等边三角形,BC=AC=AB=4,而∠BAC>∠ABC,即可得出答案.本题考查了三角形的三边关系、直角三角形的性质、等边三角形的性质;作出△ABC的外接圆进行推理计算是解题的关键.17.【答案】解:(x+y)(x2-xy+y2),=x3-x2y+xy2+x2y-xy2+y3,=x3+y3.故答案为:x3+y3.【解析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.18.【答案】解:方程两边都乘以(x+1)(x-1)去分母得,x(x+1)-(x2-1)=3,即x2+x-x2+1=3,解得x=2检验:当x=2时,(x+1)(x-1)=(2+1)(2-1)=3≠0,∴x=2是原方程的解,故原分式方程的解是x=2.【解析】方程两边都乘以最简公分母(x+1)(x-1)化为整式方程,然后解方程即可,最后进行检验.本题考查了分式方程的求解,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.19.【答案】证明:∵DE∥BC,CE∥AB,∴四边形DBCE是平行四边形,∴BD=CE,∵D是AB的中点,∴AD=BD,∴AD=EC,∵CE∥AD,∴∠A =∠ECF ,∠ADF =∠E ,∴△ADF ≌△CEF (ASA ).【解析】依据四边形DBCE 是平行四边形,即可得出BD=CE ,依据CE ∥AD ,即可得出∠A=∠ECF ,∠ADF=∠E ,即可判定△ADF ≌△CEF .本题主要考查了平行四边形的判定与性质以及全等三角形的判定,两角及其夹边分别对应相等的两个三角形全等.20.【答案】解:(1)这5天的日最高气温和日最低气温的平均数分别是x −高=23+25+23+25+245=24,x −低=21+22+15+15+175=18, 方差分别是S 高2=(23−24)2+(25−24)2+(23−24)2+(25−24)2+(24−24)25=0.8,S 低2=(21−18)2+(22−18)2+(15−18)2+(15−18)2+(17−18)25=8.8, ∴S 高2<S 低2,∴该市这5天的日最低气温波动大;(2)25日、26日、27日的天气依次为大雨、中雨、晴,空气质量依次良、优、优,说明下雨后空气质量改善了.【解析】(1)方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;(2)用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s 2来表示,计算公式是:s 2=[(x 1-)2+(x 2-)2+…+(x n -)2](可简单记忆为“方差等于差方的平均数”).本题考查了方差,正确理解方差的意义是解题的关键.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.21.【答案】23【解析】 解:(1)画树状图如图所示:共有12个等可能的结果,其中有一天是星期二的结果有6个,∴甲同学随机选择两天,其中有一天是星期二的概率为=;(2)乙同学随机选择连续的两天,共有3个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四);其中有一天是星期二的结果有2个,即(星期一,星期二),(星期二,星期三),∴乙同学随机选择连续的两天,其中有一天是星期二的概率是;故答案为:.(1)由树状图得出共有12个等可能的结果,其中有一天是星期二的结果有6个,由概率公式即可得出结果;(2)乙同学随机选择连续的两天,共有3个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四);其中有一天是星期二的结果有2个,由概率公式即可得出结果.本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.22.【答案】证明:连接AC,∵AB=CD,∴AB⏜=CD⏜,∴AB⏜+BD⏜=BD⏜+CD⏜,即AD⏜=CB⏜,∴∠C=∠A,∴PA=PC.【解析】连接AC,由圆心角、弧、弦的关系得出=,进而得出=,根据等弧所对的圆周角相等得出∠C=∠A,根据等角对等边证得结论.本题考查了圆心角、弧、弦的关系,圆周角定理,等腰三角形的判定等,熟练掌握性质定理是解题的关键.23.【答案】解:(1)k=-2时,y1=-2x+2,根据题意得-2x+2>x-3,解得x<3;5(2)当x=1时,y=x-3=-2,把(1,-2)代入y1=kx+2得k+2=-2,解得k=-4,当-4≤k<0时,y1>y2;当0<k≤1时,y1>y2.【解析】(1)解不等式-2x+2>x-3即可;(2)先计算出x=1对应的y2的函数值,然后根据x<1时,一次函数y1=kx+2(k 为常数,k≠0)的图象在直线y2=x-3的上方确定k的范围.本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.24.【答案】解:延长AB交CD于H,则AH⊥CD,在Rt△AHD中,∠D=45°,∴AH=DH,在Rt△AHC中,tan∠ACH=AH,CH∴AH=CH•tan∠ACH≈0.51CH,,在Rt△BHC中,tan∠BCH=BHCH∴BH=CH•tan∠BCH≈0.4CH,由题意得,0.51CH-0.4CH=33,解得,CH=300,∴EH=CH-CE=220,BH=120,∴AH=AB+BH=153,∴DH=AH=153,∴HF=DH-DF=103,∴EF=EH+FH=323,答:隧道EF的长度为323m.【解析】延长AB交CD于H,利用正切的定义用CH表示出AH、BH,根据题意列式求出CH,计算即可.本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.25.【答案】解:设扩充后广场的长为3xm,宽为2xm,依题意得:3x•2x•100+30(3x•2x-50×40)=642000解得x1=30,x2=-30(舍去).所以3x =90,2x =60,答:扩充后广场的长为90m ,宽为60m .【解析】设扩充后广场的长为3xm ,宽为2xm ,根据矩形的面积公式和总价=单价×数量列出方程并解答.题考查了列二元一次方程解实际问题的运用,总价=单价×数量的运用,解答时找准题目中的数量关系是关键.26.【答案】(1)证明:∵DE =DG ,EF =DE ,∴DG =EF ,∵DG ∥EF ,∴四边形DEFG 是平行四边形,∵DG =DE ,∴四边形DEFG 是菱形.(2)如图1中,当四边形DEFG 是正方形时,设正方形的边长为x .在Rt △ABC 中,∵∠C =90°,AC =3,BC =4,∴AB =√32+42=5,则CD =35x ,AD =54x ,∵AD +CD =AC ,∴35x +54x =3,∴x =6037,∴CD =35x =3637,观察图象可知:0≤CD <3637时,菱形的个数为0.如图2中,当四边形DAEG 是菱形时,设菱形的边长为m .∵DG ∥AB , ∴CD CA =DG AB ,∴3−m 3=m 5, 解得m =158, ∴CD =3-158=98,如图3中,当四边形DEBG 是菱形时,设菱形的边长为n .∵DG ∥AB ,∴CG CB =DG AB ,∴4−n 4=n 5, ∴n =209,∴CG =4-209=169,∴CD =√(209)2−(169)2=43, 观察图象可知:当0≤CD <3637或43<CD ≤98时,菱形的个数为0,当CD =3637或98<CD ≤43时,菱形的个数为1,当3637<CD ≤98时,菱形的个数为2.【解析】(1)根据邻边相等的四边形是菱形证明即可.(2)求出几种特殊位置的CD 的值判断即可.本题考查相似三角形的判定和性质,菱形的判定和性质,作图-复杂作图等知识,解题的关键是学会寻找特殊位置解决问题,属于中考常考题型,题目有一定难度.27.【答案】3 (1,2)【解析】解:(1)①由题意得:d(O,A)=|0+2|+|0-1|=2+1=3;②设B(x,y),由定义两点间的距离可得:|0-x|+|0-y|=3,∵0≤x≤2,∴x+y=3,∴,解得:,∴B(1,2),故答案为:3,(1,2);(2)假设函数的图象上存在点C(x,y)使d(O,C)=3,根据题意,得,∵x>0,∴,,∴,∴x2+4=3x,∴x2-3x+4=0,∴△=b2-4ac=-7<0,∴方程x2-3x+4=0没有实数根,∴该函数的图象上不存在点C,使d(O,C)=3.(3)设D(x,y),根据题意得,d(O,D)=|x-0|+|x2-5x+7-0|=|x|+|x2-5x+7|,∵,又x≥0,∴d(O,D)=|x|+|x2-5x+7|=x+x2-5x+7=x2-4x+7=(x-2)2+3,∴当x=2时,d(O,D)有最小值3,此时点D的坐标是(2,1).(4)如图,以M为原点,MN所在的直线为x轴建立平面直角坐标系xOy,将函数y=-x的图象沿y轴正方向平移,直到与景观湖边界所在曲线有交点时停止,设交点为E,过点E作EH⊥MN,垂足为H,修建方案是:先沿MN方向修建到H处,再沿HE方向修建到E处.理由:设过点E的直线l1与x轴相交于点F.在景观湖边界所在曲线上任取一点P,过点P作直线l2∥l1,l2与x轴相交于点G.∵∠EFH=45°,∴EH=HF,d(O,E)=OH+EH=OF,同理d(O,P)=OG,∵OG≥OF,∴d(O,P)≥d(O,E),∴上述方案修建的道路最短.(1)①根据定义可求出d(O,A)=|0+2|+|0-1|=2+1=3;②由两点间距离:d(A,B)=|x1-x2|+|y1-y2|及点B是函数y=-2x+4的图象上的一点,可得出方程组,解方程组即可求出点B的坐标;(2)由条件知x>0,根据题意得,整理得x2-3x+4=0,由△<0可证得该函数的图象上不存在点C,使d(O,C)=3.(3)根据条件可得|x|+|x2-5x+7|,去绝对值后由二次函数的性质可求出最小值;(4)以M为原点,MN所在的直线为x轴建立平面直角坐标系xOy,将函数y=-x的图象沿y轴正方向平移,直到与景观湖边界所在曲线有交点时停止,设交点为E,过点E作EH⊥MN,垂足为H,修建方案是:先沿MN方向修建到H处,再沿HE方向修建到E处,可由d(O,P)≥d(O,E)证明结论即可.考查了二次函数的综合题,涉及的知识点有新定义,解方程(组),二次函数的性质等.第21页,共21页。
2019年江苏省南京市中考数学第二次模拟考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.若AD 为△ABC 的高,AD=1,BD=1,DC=3,则∠BAC 等于( ) A .105°或15°B .15°C .75°D .105°2.如图,四边形ABCD 为⊙O 的内接四边形,E 是BC 延长线上的一点,已知100BOD ∠=,则DCE ∠的度数为( )A .40°B .60°C .50°D .80°3.在等边三角形、平行四边形、矩形和圆这四个图形中,既是轴对称图形又是中心对称图形的有( ) .1个B .2个C .3个D .4个4.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若OA =2,则BD 的长为( )A .4B .3C .2D .15.下列语句中,正确的是 ( ) A .面积相等的两个三角形是全等三角形 B .三边对应相等的两个三角形全等 C .全等的两个三角形是轴对称图形 D .以上说法都不对6.若代数式237x −的值为 5,则x 为( ) A . 1x = 或2x = B .2x =−C .1x =±D .2x =±7.如图,把边长为2的正方形的局部进行图①~图④的变换,拼成图⑤,那么图⑤的面积是( )A .18B .16C .12D .88.A 厂库存钢材为100吨,每月用去15吨;B 厂库存钢材82吨,每月用去9吨.若经过x 个月后,两厂库存钢材相等,则x =( )A D OB C EA .3B .5C .2D .49.有一旅客带了30 kg 的行李乘飞机.按民航规定,旅客最多可免费携带20 k9的行李,超重部分每千克按飞机票价的1.5%支付行李费,现该旅客支付了120元的行李费,则他的飞机票价是( ) A .600元B .800元C .1000元D .1200元二、填空题10.已知sinA =23,则cosA = .tanA = . 11.如图,△ABC 的角平分线 BD 、CE 交于点0,∠A=36°,AB=AC ,则与△ABC 相似的三角形有 .12.如图所示,在矩形ABCD 中,横向阴影部分是矩形,另一阴影部分是平行四边形,依照图中所标注数据,计算可知空白部分的面积是 .13.直线3y x =−与32y x =−+的位置关系为 .(填“平行"或“相交"). 14.一个正方形的面积为21236a a ++(6a >−),则它的边长为 . 15.已知1a +1b =92()a b +,则b a a b +=_______.16.某工厂要生产 a 个零件,原计划每天生产 x 个,后来由于供货需要,每天多生产 b 个零件,则可提前 天完成.17.爷爷病了,需要挂100毫升的药液,小明守候在旁边,观察到输液流量是每分钟3毫升,输液10分钟后,吊瓶的空出部分容积是50毫升(如图),利用这些数据,计算整个吊瓶的容积是 毫升. 解答题三、解答题18.在平面直角坐标系中,AOB △的位置如图所示,已知90AOB ∠=,AO BO =,点A的坐标为(31)−,. (1)求点B 的坐标;(2)求过A O B ,,三点的抛物线的解析式;(3)设点B 关于抛物线的对称轴l 的对称点为1B ,求1AB B △的面积.19.如图,已知直线1y x m =+与x 轴、y 轴分别交于点A 、B ,与双曲线2ky x=(x <0)分别交于点C 、D ,且C 点的坐标为(1−,2). (1)分别求出直线AB 及双曲线的解析式; (2)求出点D 的坐标;(3)利用图象直接写出:当x 在什么范围内取值时,1y >2y .20. 下图是一个食品包装盒的侧面展开图. (1)请写出这个包装盒的多面体形状的名称;(2)请根据图中所标的尺寸,计算这个多面体的侧面积和全面积(侧面积与两个底面积之和).21.有一个抛两枚硬币的游戏,规则是:若出现两个正面,则甲赢;若出现一正一反,则乙 1赢;若出现两个反面,则甲、乙都不赢. (1)这个游戏是否公平?请说明理由;(2)如果你认为这个游戏不公平,那么请你改变游戏规则,设计一个公平的游戏; 如果你认为这个游戏公平,那么请你改变游戏规则,设计一个不公平的游戏.22.在如图的网格中有一个格点三角形ABC ,请在图中画一个与△ABC•相似且相似比不等于1的格点三角形.23.如图,已知线段 AB ,利用直尺和圆规将它分成3: 4 的两条线段.24.如图,将矩形纸片ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,连结AE .证明:(1)BF DF =.BAC(2)AE BD ∥.25.某气象研究中心观测一场沙尘暴从发生到结束的全过程,开始时风速平均增加2 km /h ,4 h 后,沙尘暴经过开阔的荒漠地,风速平均增加4 km /h ,一段时间风速保持不变.当沙尘暴遇到绿色植被区时,其风速平均减少l km /h ,最终停止.结合风速与时间的图象(如图所示)回答下列问题:(1)在y 轴括号内填入相应的数值; (2)沙尘暴从发生到结束,共经过多少时间?(3)求出当x ≥25时,风速y(km /h)与时间x(h)之间的函数解析式.26.如图,等腰三角形ABC 的高所在的直线与直角坐标系的y 轴重合,已知其顶点坐标分别为:A(1x −,2y )、B(2x −,1y −)、C(34y −,x ),求顶点A 的坐标.27.当细菌繁殖时,一个细菌分裂成两个,一个细菌在分裂n 次后,数量变成2n个.有一种分裂速度很快的细菌,它每12 min 分裂一次,如果现在盘子里有1000个这样的细菌,那么60 min 后,盘子里有多少个细菌?2 个小时后的数量是 1个小时后的多少倍?28.已知A 、B 、C 、D 是四个点,分别根据下列要求画图. (1)画线段AC ; (2)连结BD ; (3)画射线BC ; (4)画直线CD .29.将下列各数按从小 到大的次序排列,并用“<”号连结起来. 1211−,1413−,2423−,65−,4746−.612142447511132346−<−<−<−<−30.30.00l 0.0l −【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.B4.A5.B6.D7.B8.A9.B二、填空题10.3,511.△COD ,△BOE ,△BCE ,△BCD.12.2ab bc ac c −−+13.平行14.6a +15. 2516. a ax x b−+17. 120三、解答题 18.解:(1)作AC x ⊥轴,垂足为C ,作BD x ⊥轴垂足为D . 则90ACO ODB ∠=∠=,90AOC OAC ∴∠+∠=.又90AOB ∠=,90AOC BOD ∴∠+∠=OAC BOD ∴∠=∠.又,AO BO =ACO ODB ∴△≌△.13OD AC DB OC ∴====,.∴点B 的坐标为(13),.(2)因抛物线过原点,故可设所求抛物线的解析式为2y ax bx =+.将(31)(13)A B −,,,两点代入,得⎩⎨⎧=−=+1393b a b a ,解得51366a b ==;. 故所求抛物线的解析式为251366y x x =+. (3)在抛物线251366y x x =+中,对称轴l 的方程是13210b x a =−=−. 点1B 是B 关于抛物线的对称轴l 的对称点, 故1B 坐标1835⎛⎫−⎪⎝⎭, 在1AB B △中,底边1235B B =,高的长为2.故1AB B S △123232255=⨯⨯=. 19.(1)3+=x y ,xy 2−=;(2)(-2,1);(3)-2<x<-120.(1)这个多面体是六棱柱;(2)侧面积为6ab ;全面积为2336b ab +.21.(1)不公平.21()42P ==正正,21()42P ==正反 ∴甲的概率小于乙的概率.(2)公平游戏:如出现两个正面,则甲赢;出现两个反面,则乙赢.22.略23.如图,点 C 把AB 分成 3:4 的两条线段.24.解:(1)由条件可得ADB EBD ∠=∠(或ABF EDF △≌△),BF DF =∴ (2)由条件可证得AEB DBE ∠=∠(或EAD BDA ∠=∠),AE BD ∴∥25.(1)8,32;(2)57 h;(3)y=-x+57(25≤x≤57)26.∵等腰三角形是轴对称图形,高所在的直线与y轴重合,∴点B与点C关于y轴对称,∴23401x yy x−+−=⎧⎨−=⎩,解得12xy=⎧⎨=⎩,∴10x−=,24y=,∴顶点A的坐标为(0,4) .27.43.210⨯个,32倍28.29.612142447 511132346−<−<−<−<−30.0。
2019年江苏省南京市中考数学复习模拟试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.下列结论错误..的是( ) A .所有的正方形都相似 B .所有的等边三角形都相似 C .所有的菱形都相似D .所有的正六边形都相似2.下列各式21a +,2b −(2b ≥),12−,2(1)x −中,二次根式的个数是( ) A .2 个 B .3 个C .4D .5 个3.编织一副手套收费3.5元,则加工费y (元)与加工件数x (副)之间的函数解析式为( ) A .y=3.5+xB .y=3.5-xC .y=3.5xD . 3.5y x=4.已知(x -3)(x 2+mx+n )的乘积项中不含x 2和x 项,则m ,n 的值分别为( ) A .m=3,n=9B .m=3,n=6C .m=-3,n=-9D .m=-3,n=95.24a x +可表示为( ) A .24a x x +B .24a x x x ⋅⋅C .22a x x +⋅D .24()a x x ⋅二、填空题6.如图是一张电脑光盘的表面,两个圆的圆心都是点O ,大圆的弦AB 所在直线是小圆的切线,切点为C .已知大圆的半径为5cm ,小圆的半径为1cm ,则弦AB 的长度为 cm .7. 已知二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,它的顶点的横坐标为-1,由图象可知关于x 的方程ax 2+bx +c =0的两根为x 1=1,x 2=_________. 8.如图,AB 是⊙O 的直径,C D E ,,是⊙O 上的点,则12∠+∠=.9.如图,在⊙O 中,弦AB ⊥弦CD 于E ,OF ⊥AB 于F ,OG ⊥CD 于G ,若AE=8cm ,EB=4cm ,则OG=___________cm .10.已知□ABCD 的两条对角线相交于直角坐标系的原点0,且点A ,B 的坐标分别为A(-1,-5),B(-1,2),则C ,D 的坐标分别为 .11.甲、乙两台机器分别灌装每瓶标准质量为500g 的矿泉水,从甲、乙灌装的矿泉水中分别随机抽取了30瓶,测算得它们实际质量的方差是2 4.8S =甲g 2,2 3.6S =乙 g 2,那么 (填“甲”或“乙”)机器灌装的矿泉水质量比较稳定.12.如图所示,点B 在AE 上,且∠CAB=∠DAB ,要使△ABC ≌△ABD ,可补充的一个条件是(写一个即可): .13.已知23x −和14x +互为相反数,则x = . 14.当 m= 时,方程(1)4m x x m −=−的解是-4.三、解答题15.已知:如图,在Rt △ABC 中,AB=AC ,∠A= 90°, 点D 为 BC 上的一点,M 为BC 的中点, 作DF ⊥AB 于点F ,DE ⊥AC 于点E. 连结 MF ,ME ,EF. (1)求证:DF=AE ;(2)判断△MEF 是何种特殊三角形,并给出证明; (3)若BC=6,BD=2,求△MEF 的面积.16.计算下列各式:(1)4+3×(-2)3+33(2) 11(37)()(3)88−⨯−−−⨯(3)200532(1)(3)4(8)9−+−⨯−−÷− (4) 2008200945()()54⨯−17.一个三角形一边长为a b +,另一边长比这条边大2a b +,第三边长比这条边小3a b −,求这个三角形的周长 C.+a b2518.如图,若∠l与∠2互补,且∠l=60°,求∠3、∠4、∠5、∠6、∠7、∠8的度数.19.请写出图中互相垂直的直线和互相平行的直线.(至少8对)20.某中学为了了解该校学生的课余活动情况,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制了如下两幅不完整的统计图(图1,图2),请你根据统计图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少名学生?(2)“其他”在扇形统计图中所占的圆心角是多少度?(3)补全条形统计图.21.如图,为测河宽,小丽在河对岸岸边任意选取一点A ,再在河这边B 处观察A ,此时视线BA 与河岸BD 所成的夹角为600;小丽沿河岸BD 向前走了50米到CA 与河岸BD 所成的夹角为450.根据小丽提供的信息能测出河宽吗?若能,请写出求解过程;若不能,请说明理由.(结果精确到1米)22.如图所示,CD ⊥AB ,垂足为 D ,点 F 是BC 上任意一点,FE ⊥AB ,垂足为 E ,且∠ 1 =∠2 ,∠3 = 80°,求∠BCA 的度数.23.如图,矩形ABCD 是供一辆机动车停放的车位示意图.请你参考图中数据,计算车位所占街道的宽度EF .(参考数据:64.040sin ≈︒,77.040cos ≈︒,84.040tan ≈︒,结果精确到0.1m .)NM QP ED CBA24.如图,MN 为半圆O 的直径,半径OA ⊥MN ,D 为OA 的中点,过点D 作BC ∥M:N ,求证:(1)四边形 ABOC 为菱形;(2)∠MNB= 18∠BAC .25.在△ABC 中,AD 是高,矩形PQMN 的顶点P 、N 分别在AB 、AC 上,QM 在边BC 上.若BC=8cm ,AD=6cm ,且PN=2PQ ,求矩形PQMN 的周长.26.如图,已知AB 是⊙0的直径,CD ⊥AB ,垂足为D ,CE 切⊙0于点F ,交AB 的延长线于点E .求证:EF·EC=E0·ED .27.如图所示,河对岸有一棵树,在 C 点折断刚好倒在另一岸的A 点处,AB=l2m ,已知树高 l8m ,小明想通过这棵折断后的树通过这条河,由于各种原因,小明通过坡度大于12的斜坡会有危险,请.问小明通过 AC 会有危险吗?28.如图,在半径为27m的图形广场中央点 0上空安装了一个照明光源S,S 射向地面的光束为圆锥形,其轴截面SAB 的顶角为 120°,求光源离地面的垂直高度. (精确到0.1 m)29.某同学在电脑上玩扫雷游戏,如图所示的区域内 5处有雷. (即 5 个方格有雷)(1)这位同学第一次点击区域内任一小方块,触雷的可能性有多大?(2)若他已扫完了30 个小方块发现均无雷,再一次点击下一个未知的小方块,触雷的可能性有多大?30.如图,在△ABC中,AE是∠BAC的角平分线,AD是BC边上的高,∠B=40°,∠C=60°,求∠EAD的度数.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.C4.A5.D二、填空题6.7.x2=-38.909.210.C(1,5) D(1,-2)11.乙12.AC=AD 或∠C=∠D 等13.1314. 4三、解答题 15.(1)略 (2)等腰直角三角形,提示:证△AFM ≌△CEM (3)2.516.(1)7;(2)5;(3)193;(4)54− 17.25a b +18.∠3=∠4=∠2=∠7=120°,∠1=∠5=∠6=∠8=60°19.互相垂直的直线:AA 1⊥AB ,AA 1⊥A l B 1,BB 1⊥AB ,BB 1⊥A 1B 1,CC 1⊥BC ,CC 1⊥B 1C 1 ,CC 1⊥CD , CC 1⊥C 1D 1,……互相平行的直线:A 1A ∥BB 1,AA 1∥DD 1,AA 1∥CC 1、,A 1B 1∥AB ,BC ∥B 1C 1、CD ∥C 1D 1,AD ∥A 1D 1,BB 1∥CC 1,……20.解 (1) 20÷20%=100 (人)(2)“娱乐”人数=100×40%=40(人) “其他”人数=100-30-20-40=10 (人) “其他”在扇形统计图中所占的圆心角=360°×10100=36° (3) 略21.能测出河宽.过点A 作 AE ⊥BC ,垂足为E ,设河宽为X 米, 在Rt △AEB 中,tan ∠ABE=BEAE ,∴BE =ABE AE ∠tan =x 33在Rt △AEC 中, ∵∠ACE=45°,∴EC=AE=x,∵ BE + EC =BC , ∴33x+x=50,∴ x ≈32(米)答:河宽约为 32 米.22.80°23.在Rt △CDF 中,CD =5.4,∠DCF =40o , ∴DF =CD ·sin40o ≈5.4×0.64≈3.46.在Rt △ADE 中,AD =2.2,∠ADE =∠DCF =40o , ∴DE =AD ·cos40o ≈2.2×0.77≈1.69. ∴EF =DF +DE ≈5.15≈5.2(m ). 即车位所占街道的宽度为5.2m .24.(1)∵OA ⊥MN ,MN 为直径,∴点A 为⌒MN 中点,即⌒AM = ⌒AN ,∵ BC ∥MN ,⌒BM =⌒CN ,∴⌒AM -⌒BM = ⌒AN -⌒CN ,∴⌒AB =⌒AC ,∴AB=AC ,∠AOB=∠AOC ,∵OB=OC ,D 为中点,∴.OD ⊥BC ,BD=DC ,∴四边形 ABDC 为菱形. (2)∵BC ∥MN ,∴∠1=∠MNB ,∵OB=ON ,∴∠2=∠MNB ,∴∠1=∠2=12∠CBO=14∠ABO ,∵四边形 ABOC 为菱形,∴∠BAC=2∠BAO=2∠ABO ,∴∠MNB= 18∠BAC .25.14.4 cm..26.连结0F ,由CD ⊥AB ,CE 切⊙0于点F 可得∠CDE=∠0FE=Rt ∠,又∠E=∠E ∴△CDE ∽△△0FE ,∴EFEDEO EC =,即EF ·EC=E0·ED . 27.设 BC=x ,则 AC=18-x,则222(18)12x x −=+,x= 5 , 18 -x= 13, ∴51tan 122BC A AB ==<,∴小明通过 AC 不会有危险. 28.如图所示,∠ASB= 120°,SO ⊥AB ,SA=SB ,∴∠ASO=60°.∵AO= 27 , ∠AOS= 90°,∴0015.6tan 60AO S ===≈(m)∴光源离地面的垂直高度是 15.6.m29.(1)518016P ==;(2)515010P ==30.10°。
数学试卷 第1页(共8页) 数学试卷 第2页(共8页)绝密★启用前江苏省南京市2019年初中学业水平考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共12分)一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13 000亿美元.用科学记数法表示13 000是( )A .50.1310⨯B .41.310⨯C .31310⨯D .213010⨯ 2.计算()32a b 的结果是( )A .23a bB .53a bC .6a bD .63a b 3.面积为4的正方形的边长是( )A .4的平方根B .4的算术平方根C .4开平方的结果D .4的立方根4.实数a 、b 、c 满足a >b 且ac <bc ,它们在数轴上的对应点的位置可以是( )ABC D5.下列整数中,与10( )A .4B .5C .6D .76.如图,'''A B C △是由ABC △经过平移得到的,'''A B C △还可以看作是ABC △经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是( )A .①④B .②③C .②④D .③④第Ⅱ卷(非选择题 共108分)二、填空题(本大题共10小题,每小题2分,共20分.请把答案填在题中的横线上) 7.2-的相反数是 ;12的倒数是 . 8.-的结果是 .9.分解因式()24a b ab -+的结果是 .10.已知2+是关于x 的方程240x x m +﹣=的一个根,则m = .11.结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵ ,∴a b ∥.12.无盖圆柱形杯子的展开图如图所示.将一根长为20 cm 的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有 cm .13.为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,得到下表:视力 4.7以下 4.7 4.8 4.9 4.9以上 人数102988093127根据抽样调查结果,估计该区12 000名初中学生视力不低于4.8的人数是 . 14.如图,P A 、PB 是O 的切线,A 、B 为切点,点C 、D 在O 上.若102P ∠︒=,则A C ∠+∠= .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共8页) 数学试卷 第4页(共8页)15.如图,在ABC △中,BC 的垂直平分线MN 交AB 于点D ,CD 平分ACB ∠.若=2AD ,3BD =,则AC 的长 .16.在ABC △中,4AB =,60C ∠=,A B ∠>∠,则BC 的长的取值范围是 . 三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分7分) 计算()22()x y x xy y +-+18.(本小题满分7分) 解方程:23111x x x -=--.19.(本小题满分7分)如图,D 是ABC △的边AB 的中点,DE BC ∥,CE AB ∥,AC 与DE 相交于点F .求证:ADF CEF ≌.20.(本小题满分8分)如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大; (2)根据如图提供的信息,请再写出两个不同类型的结论.21.(本小题满分8分)某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天,其中有一天是星期二的概率是 .数学试卷 第5页(共8页) 数学试卷 第6页(共8页)22.(本小题满分8分)如图,O 的弦AB 、CD 的延长线相交于点P ,且AB CD =.求证:PA PC =.23.(本小题满分8分)已知一次函数12y kx =+(k 为常数,0k ≠)和23y x =-. (1)当2k =-时,若12y y >,求x 的取值范围.(2)当1x <时,12y y >.结合图象,直接写出k 的取值范围.24.(本小题满分8分)如图,山顶有一塔AB ,塔高33 m .计划在塔的正下方沿直线CD 开通穿山隧道EF .从与E 点相距80m 的C 处测得A 、B 的仰角分别为27°、22°,从与F 点相距50m 的D 处测得A 的仰角为45°.求隧道EF 的长度. (参考数据:tan 220.40︒≈,tan 270.51︒≈.)25.(本小题满分8分)某地计划对矩形广场进行扩建改造.如图,原广场长50m ,宽40m ,要求扩充后的矩形广场长与宽的比为32:.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642 000元,扩充后广场的长和宽应分别是多少米?-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效---------------- 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共8页) 数学试卷 第8页(共8页)26.(本小题满分9分)如图①,在Rt ABC △中,90C ∠=︒,3AC =,4BC =.求作菱形DEFG ,使点D 在边AC 上,点E 、F 在边AB 上,点G 在边BC 上.图1 (1)证明小明所作的四边形DEFG 是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D 的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD 的长的取值范围.27.(本小题满分11分) 【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy ,对两点()11,A x y 和()22,B x y ,用以下方式定义两点间距离:()1212,d A B x x y y +--=.【数学理解】(1)①已知点()2,1A -,则(),d O A = .②函数()2402y x x =-+≤≤的图象如图①所示,B 是图象上一点,(),3d O B =,则点B 的坐标是 .图1 图2 图3(2)函数4(0)y x x=>的图象如图②所示.求证:该函数的图象上不存在点C ,使(),3d O C =.(3)函数()2570y x x x +-=≥的图象如图③所示,D 是图象上一点,求(),d O D 的最小值及对应的点D 的坐标. 【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M 为起点,先沿MN 方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)图2小明的作法1.如②,在边AC 上取一点D ,过点D 作DG AB ∥交BC 于点G .图22.以点D 为圆心,DG 长为半径画弧,交AB 于点E .3.在EB 上截取EF ED =,连接FG ,则四边形DEFG 为所求作的菱形.江苏省南京市2019年初中学业水平考试数学答案解析第Ⅰ卷(选择题)一、选择题 1.【答案】B【解析】413000 1.310=⨯,故选B. 【考点】用科学记数法表示较大的数 2.【答案】D 【解析】原式()32363=ab a b ⋅=,故选D.【考点】积的乘方,幂的乘方 3.【答案】B【解析】面积为4,2是4的算术平方根,故选B. 【考点】算术平方根的意义 4.【答案】A【解析】由a b >,ac bc <知0c <,根据此条件可以判断A 图正确,故选A. 【考点】由数的大小及符号确定点在数轴上的位置 5.【答案】C【解析】,所以3.54,所以 3.54--->,所以10 3.510104--->,即6.5106>,所以最接近6,故选C.用有理数估计无理数的大小,要借助完全平方数实现。
2019年江苏省南京市中考数学全真模拟考试试卷A 卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,在直角坐标系中,⊙O 的半径为1,则直线2y x =−+与⊙O 的位置关系是( )A .相离B .相交C .相切D .以上三种情形都有可能2.如图①表示正六棱柱形状的高大建筑物,图②中的阴影部分表示 该建筑物的俯视图,P 、Q 、M 、N 表示小明在地面上的活动区域,小明想同时看到该建筑物的三个侧面,他应在( ) A .P 区域B .Q 区域C .区域D .区域3.如图,以点O 为圆心的同心圆中,大圆的弦AB 切小圆于点C ,两圆的半径分别为5cm 和3cm ,则AB=( ) A .8cmB .4cmC .234cmD 34cm4.有一对酷爱运动的年轻夫妇给他们 12 个月大的婴儿拼排 3 块分别写有“20”,“08”和“北京”的字块,如果婴儿能够排成“2008 北京”或者“北京 2008”,则他们就给婴儿奖励. 假设该婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是( ) A .16B .14C .13D .125.如图,在平行四边形ABCD 中,E 为CD 上一点,DE:CE=2:3,连结AE 、BE 、BD ,且AE 、BD 交于点F ,则S △DEF :S △EBF :S △ABF 等于( ) A .4:10:25B .4:9:25C .2:3:5D .2:5:256.已知弧所在圆的直径是 8cm ,弧所对的圆周角是10°,则弧长是( ) A .13πcmB .23πcmC .29πcmD .49πcm7.下列图形“等边三角形、平行四边形、正方形、圆、线段、角”,其中是既是轴对称图形,又是中心对称图形的有( ) A .2个 B .3个 C .4个 D .5个 8.底面是n 边形的直棱柱棱的条数共有( )A .2n +B .2nC .3nD .n 9.已知a <0,若-3a n ·a 3的值大于零,则n 的值只能是( )A .n 为奇数B .n 为偶数C .n 为正整数D .n 为整数10.下列各组数中①⎩⎨⎧==22y x ;②⎩⎨⎧==12y x ;③⎩⎨⎧−==22y x ;④⎩⎨⎧==61y x ,是方程104=+y x 的解的有( ) A .1组 B .2组C .3组D .4组11.如图所示,已知∠A=∠D ,∠l=∠2,那么,要得到△ABC ≌△DEF ,还应给出的条件是( ) A .∠E=∠BB .ED=BCC .AB=EFD .AF=CD12.下列物体的形状,类似于圆柱的个数是( ) ①篮球②书本③标枪头④罐头 ⑤水管 A .1个 B .2个 C .3个 D .4个 13.数a 没有平方根,则 a 的取值范围是( )A .0a >B .0a ≥C .0a <D .0a =二、填空题14.太阳光线所形成的投影称为 .15.某口袋中有红色、黄色、蓝色玻璃球 80个.小明通过多次模球实验后,发现摸到红球、黄球、蓝球的频率依次为 20、30、50,则可估计口袋中红球的数目为 ,黄球的数目为 ,蓝球的数目为 .16.矩形的面积为2,一条边长为x ,另一条边长为y ,则y 与x 的函数关系式为(不必写出自变量取值范围)________________. 17.当x 满足 时,3x −+.18.方程48x =有 个解,不等式48x <的解集是 .19.在等腰三角形ABC 中,腰AB 的长为l2cm ,底边BC 的长为6cm ,D 为BC 边的中点,动点P 从点B 出发,以每钞 lcm 的速度沿B A C →→的方向运动,当动点P 重新回到点B 位置时,停止运动. 设运动时间为t ,那么当t = 秒时,过D 、P 两点的直线将△ABC 的周长分成两个部分,使其中的一部分是另一部分的 2倍. 解答题20.一个暗箱里放入除颜色外,其他都相同的 3个红球和 11个黄球,搅拌均匀后,随机任取一个球,取到的是红球的概率是 .21.方程125m n m x y +++=是二元一次方程,则m = ,n = . 22.若(a+2)2+│b-3│=0,则ba =________.三、解答题计算:cos 245°+tan60°•cos30°.24.试用两种方法将已知平行四边形ABCD 分成面积相等的四个部分(要求用文字简述你所设计的两种方法,并画出示意图).25.如图,△AB0的三个顶点的坐标分别为0(0,0),A(5,0),B(2,4). (1)求△OAB 的面积;(2)若0,A 两点的位置不变,P 点在什么位置时,△0AP 的面积是AOAB 面积的2倍; (3)若B(2,4),O(0,0)不变,M 点在x 轴上,M 点在什么位置时,△OBM 的面积是△OAB 面积的2倍.26.“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做些力所能及的家务.王刚同学对部分同学暑假在家做家务的时问进了抽样调查(时间取整上数),所得数据统计如表2: 表2 时间分组/时 0.5~20.5 20.5~40.5 40.5~60.5 60.5~80.5 80.5~100.5 人数20253015lO抽取样本的容量是 ;(2)样本的中位数所在时间段的范围是 ;(3)若该学校有学生1260人,那么大约有多少学生在暑假做家务的时间在40.5~100.5小时之间?27.计算 2222211111(1)(1)(1)(1)(1)23420052006−⋅−⋅−−⋅−的值,从中你可以发现什么规律?28.如图,0 为直线AB 上-点,OC ⊥AB ,∠DOE =90°,反向延长射线OE 得直线EF ,写出图 中与∠AOF 相等的一个角,并说明理由.29.把-12 写成两个整数的积的形式(要求写出所有可能)30.计算: (用简便方法) (1) (+1.3) +(-0.8)+2.7+(-0. 6); (2)13( 2.25)(3)(3)(0.125)84−+−+−++ (3)4( 6.74)(1)( 1.74)( 1.8)5++++−+−【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.A4.C5.A6.D7.B8.C9.B10.B11.D12.B13.C二、填空题 14. 平行投影15.16,24,4016.xy 2=17. 3x ≥18.1,x<219.7或l720.31421. 0,1222.-8三、解答题 23. 224.两条对角线;两条对边中点的连线,一组对边四等分连线等等,图略.25.(1)10 (2)P 点的纵坐标为8或-8,横坐标为任意实数 (3)M(10,0)或M(-10,0)26.(1)100;(2)40.5~60.5小时;(3)∵3015101260693100++⨯=,∴大约有693名学生在暑假做家务的时间在40.5~100.5小时之间.27.20074012.规律:22221111(1)(1)(1)(1)234n −⋅−⋅−−化简后剩下两项,首项是(112−),最后一项是(11n+),结果即为12n n +28.答案不唯一. 如:∠BOE=∠AOF,理由是“对顶角相等”;∠COD=∠AOF,理由是“同角的余角相等29.-12 =1×(-12) =(-1)×12=2×(-6) =(-2)×6=3×(-4)=(-3)×430.(1)2.6 (2)-9 (3)5。
2019年江苏省南京市中考数学全真模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.右边物体的主视图是( )2.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (x y ,),那么它们各掷一次所确定的点P 落在已知抛物线24y x x =−+上的概率为( )A . 118B .112C .19D .163.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若OA =2,则BD 的长为( )A .4B .3C .2D .1 4.在菱形ABCD 中,若∠A :∠B=2:1,则∠CAD 的平分线AE 与边CD 间的关系是( )A .相等B .互相垂直但边CD 不一定被AE 平分C .不垂直但边CD 被AE 平分D .垂直且边CD 被AE 平分5.如图,下列说法中。
正确的是( )A .∠1与∠4是同位角B .∠l 与∠3是同位角C .∠2与∠4是同位角D .∠2与∠3是同位角6.下列计算中正确的是( )A .2233546y yx x y ⋅=B .3213423(2)(4)8n n n n n x y x y x y +−+−−−=C . 22222()()n n n n x y xy x y −+−−=−D .23226(7)(5)2a b ab c a b c =− 7.三角形的一边长为(3a b +)cm ,这条边上的高为2a cm ,这个三角形的面积为( )A .5a b + cm 2B . 262a ab + cm 2C . 23a ab + cm 2D . 232a ab + cm 28.如图所示,将一张正方形纸片沿图①中虚线剪开后,能拼成图②中的四个图形,则其中轴对称图形的个数是( )A .1个B .2个C .3个D .4个9.下面两图是某班全体学生上学时,乘车、步行、骑车的人数分布条形统计图和扇形统计图(两图均不完整),则下列结论中错误的是( )A . 该班总人数为50人B . 骑车人数占总人数的20%C . 乘车人数是骑车人数的2.5倍D . 步行人数为30人10.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖.参加这个游戏的观众有三次翻牌的机会.某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是( )A .41B .61C .51D .203 二、填空题11.一只口袋内装有3个红球,3 个白球,5个黄球,这些球除颜色外没有其它区别,从中任意取一球,则取得红球的概率为 .12.如图所示,以五边形的各顶点为圆心,l cm 长为半径,画五个等圆,则图中阴影部分的面积之和为 cm 2.13.(1)x 的 3 倍不小于 9,用不等式表示为 ,它的解集为 ; (2)x 与 2 的和不大于 4,用不等式表示为 ,它的解集为 ;(3)x 的相反数的 2倍与13的差小于23,用不等式表示为 ,它的解集为 .14.等腰直角三角形的斜边上的中线长为 1,则它的面积是 .15.分解因式3()4()a b c b c +−+= .16.甲、乙两绳共长 17米,如果甲绳去掉15,乙绳增加1米,则两绳等长,设甲、乙两绳长分别为x 、y ,则可得方程组 .17.当3=x 或5−=x 时,代数式c bx x ++2的值都等于1,则bc 的值为 。
初三学情调研试卷(Ⅰ)数 学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上. 3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.下列计算结果为负数的是A .-1+2B .|-1|C .(-2)2D .-2-12.计算a 5·(-1a)2的结果是A .-a 3B .a 3C .a 7D .a 103.若a <22<b ,其中a 、b 为两个连续的整数,则ab 的值为A .2B .5C .6D .124.如图是一几何体的三视图,这个几何体可能是A .三棱柱B .三棱锥C .圆柱D .圆锥5.如图,已知a ∥b ,∠1=115°,则∠2的度数是A .45°B .55°C .65°D .85°6.在学习“一次函数与二元一次方程”时,我们知道了两个一次函数图像的交点坐标与其相应的二元一次方程组的解之间的关系.请通过此经验推断:在同一平面直角坐标系中,函数y =5x 2-3x +4与y =4x 2-x +3的图像交点个数有A .0个B .1个C .2个D .无数个二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案主视图左视图俯视图(第4题)a b12(第5题)直接填写在答题卡...相应位置....上) 7.若式子x -2在实数范围内有意义,则x 的取值范围是 . 8.若a -b =3, a +b =-2,则a 2-b 2= .9.据统计,2016年春节“黄金周”(2月7日至13日)期间,南京共接待游客4 880 000人. 将4 880 000用科学记数法表示为 .10.若△ABC ∽△A'B'C',相似比为1:3,则△ABC 与△A'B'C'的面积比为 . 11.已知圆锥的底面半径为1cm ,母线长为3cm ,则其侧面积为 cm 2(结果保留π).12.已知关于x 的方程x 2+mx -3=0的一个根是1,则它的另一个根是 .13.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示.请你根据表中数据选一人参加比赛,最合适的人选是 .14.在同一平面直角坐标系中,正比例函数y =k 1x 的图像与反比例函数y =k 2x的图像一个交点的坐标是(-2,3),则它们另一个交点的坐标是 .15.如图,在正十边形A 1A 2A 3A 4A 5A 6A 7A 8A 9A 10中,连接A 1A 4、A 1A 7,则∠A 4A 1A 7= °.16.如图①,在等边△ABC中,CD⊥AB,垂足为D,⊙O的圆心与点D重合,⊙O与线段CD交于点E,且CE=4cm.将⊙O沿DC方向向上平移1cm后,如图②,⊙O恰与△ABC的边AC、BC相切,则等边△ABC的边长为cm.A5A6A7A8A910A1A2A3 A4(第15题)三、解答题(本大题共有11小题,共计88分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(6分)先化简,再求值:(1a -1b )÷a 2-b 2ab,其中a =2+1,b =2-1.18.(6分)解不等式组⎩⎪⎨⎪⎧ x +92≥4,2x -3<0,并写出不等式组的整数解.19.(7分)如图,在四边形ABCD 中,AB ∥CD ,点E 、F 在对角线AC 上,且∠ABF =∠CDE ,AE =CF .(1)求证:△ABF ≌△CDE ;(2)当四边形ABCD 满足什么条件时,四边形BFDE 是菱形?为什么?20.(8分)“低碳环保,你我同行”.近两年,南京市区的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A 、D 、C 、E 在同一条直线上,CD =30cm ,DF =20cm ,AF =25cm ,FD ⊥AE 于点D ,座杆CE =15cm ,且∠EAB =75°. (1)求AD 的长;(2)求点E 到AB 的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)21.(7分)甲、乙两名同学从《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目中随机选择一个观看.图①图②(第20题)MFE DCBA(1)甲同学观看《最强大脑》的概率是 ;(2)求甲、乙两名同学观看同一节目的概率.22.(8分)“世界那么大,我想去看看”一句话红遍网络,随着国际货币基金组织正式宣布人民币2016年10月1日加入SDR (特别提款权),以后出国看世界更加方便.为了解某区6 000名初中生对“人民币加入SDR ”知晓的情况,某校数学兴趣小组随机抽取区内部分初中生进行问卷调查,将问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不了解”四个等级,并将调查结果整理分析,得到下列图表:某区抽取学生对“人民币加入SDR ”知晓情况频数分布表某区抽取学生对“人民币加入SDR ”知晓情况扇形统计图非常了解 26%比较了解基本了解不了解(1)本次问卷调查抽取的学生共有人,其中“不了解”的学生有人;(2)在扇形统计图中,学生对“人民币加入SDR”基本了解的区域的圆心角为°;(3)根据抽样的结果,估计该区6000名初中生对“人民币加入SDR”了解的有多少人(了解是指“非常了解”、“比较了解”和“基本了解”)?23.(8分)某商场将进货价为每只30元的台灯以每只40元售出,平均每月能售出600只.调查表明,这种台灯的售价每上涨1元,其销售量将减少10只.当这种台灯的售价定为多少元时,每个月的利润恰为10 000元?24.(9分)货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发2.4h 后休息,直至与货车相遇后,以原速度继续行驶.设货车出发x h后,货车、轿车分别到达离甲地y1km和y2 km的地方,图中的线段OA、折线BCDE分别表示y1、y2与x之间的函数关系.(1)求点D的坐标,并解释点D的实际意义;(2)求线段DE所在直线的函数表达式;(3)当货车出发h时,两车相距200km25.(8分)数学活动课上,小君在平面直角坐标系中对二次函数图像的平移进行了研究. 图①是二次函数y =(x -a )2+a3(a 为常数)当a =-1、0、1、2时的图像.当a 取不同值时,其图像构成一个“抛物线簇”.小君发现这些二次函数图像的顶点竟然在同一条直线上!(1)小君在图①中发现的“抛物线簇”的顶点所在直线的函数表达式为 ;(2)如图②,当a =0时,二次函数图像上有一点P (2,4).将此二次函数图像沿着(1)中发现的直线平移,记二次函数图像的顶点O 与点P 的对应点分别为O 1、P 1.(第25题)若点P1到x轴的距离为5,求平移后二次函数图像所对应的函数表达式.26.(10分)如图,直线AB交⊙O于C、D两点,CE是⊙O的直径,CF平分∠ACE交⊙O于点F,连接EF,过点F作FG∥ED交AB于点G.(1)求证:直线FG是⊙O的切线;(2)若FG=4,⊙O的半径为5,求四边形FGDE27.(11分)问题提出平面上,若点P与A、B、C三点中的任意两点均构成等腰三角形,则称点P是A、B、C三点的巧妙点.若A、B、C三点构成三角形,也称点P是△ABC的巧妙点.初步思考(1)如图①,在等边△ABC的内部和外部各作一个△ABC的巧妙点.(尺规作图,不写作法,保留作图痕迹)(2)如图②,在△ABC中,AB=AC,∠BAC=36°,点D、E是△ABC的两个巧妙点,深入研究(3)在△ABC中,AB=AC,若存在一点P,使PB=BA,P A=PC.点P可能为△ABC 的巧妙点吗?若可能,请画出示意图,并直接写出∠BAC的度数;若不可能,请说明理由.数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共计12分)二、填空题(每小题2分,共计20分)7.x ≥2 8.-6 9.4.88×106 10.1: 9 11.3π 12.-3 13.丁 14.(2,-3) 15.54° 16.1433三、解答题(本大题共11小题,共计88分)17.(本题6分)解:原式=(b -a ab )·ab(a +b )(a -b )································································· 2分=-1a +b. ···················································································· 4分当a =2+1,b =2-1时,原式=- 1 (2+1)+(2-1)=- 1 22=- 24. ···································· 6分18.(本题6分)解:解不等式①,得x ≥-1. ···································································· 2分解不等式②,得x <32. ······································································· 4分所以不等式组的解集是-1≤x <32. ························································ 5分不等式组的整数解为-1、0、1. ·························································· 6分19.(本题7分)解:(1)∵AB ∥CD ,∴∠BAC =∠DCA .∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE .又∵∠ABF =∠CDE ,∴△ABF ≌△CDE . ····································································· 3分(2)当四边形ABCD 满足AB =AD 时,四边形BEDF 是菱形. ·················· 4分连接BD 交AC 于点O ,由(1)△ABF≌△CDE 得AB=CD,BF=DE,∠AFB=∠CED,∴BF∥DE.∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形.又∵AB=AD,∴□ABCD是菱形.∴BD⊥AC.∵BF=DE,BF∥DE,∴四边形BEDF是平行四边形,∴□BEDF是菱形.······································································ 7分20.(本题8分)解:(1)在Rt△ADF中,由勾股定理得,AD=AF 2-FD2=252-202=15(cm). ······································· 3分(2)AE=AD+CD+EC=15+30+15=60(cm). ···································· 4分过点E作EH⊥AB于H,在Rt△AEH中,sin∠EAH=EHAE, ··················································· 6分∴EH =AE ·sin ∠EAH =AB ·sin75°≈ 60×0.97=58.2(cm ).答:点E 到AB 的距离为58.2 cm . ·················································· 8分21.(本题7分)解:(1)13 . ·························································································· 2分(2)分别用A ,B ,C 表示《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目,用表格列出所有可能出现的结果:一共有9种可能的结果,它们是等可能的,其中符合要求的有3种. P (甲、乙两名同学观看同一节目)= 39 = 13.答:甲、乙两名同学观看同一节目的概率为 13. ································· 7分22.(本题8分)解:(1)100,20. ··················································································· 2分(2)72. ·························································································· 4分(3)6 000×80%=4 800人.答:估计该校6 000名初中生中对“人民币加入SDR”了解的有4 800人.···· 8分23.(本题8分)解法一:设这种台灯的售价上涨x元,( 600-10x ) ( 40+x-30)=10 000, ················································· 4分解得x1 =10,x2=40,·································································· 6分∴当x=10时,40+x=50,当x=40时,40+x=80; ························ 7分解法二:设这种台灯的售价为x元,[600-10(x-40)] (x-30)=10 000,·················································· 4分解得x1 =50,x2=80,·································································· 7分答:当这种台灯的售价定为50或80元时,每个月的利润恰为10 000元.··········· 8分24.(本题9分)解:(1)求出点坐标D ( 4,300 ).······························································ 2分点D是指货车出发4h后,与轿车在距离A地300 km处相遇.·············· 3分(2)求出点坐标E ( 6.4,0 ).······························································· 4分设DE 所在直线的函数表达式为y =kx +b ,将点D ( 4,300 ),E ( 6.4,0)代入y =kx +b 得:⎩⎪⎨⎪⎧4k +b =300,6.4k +b =0, 解得 ⎩⎪⎨⎪⎧b =800,k =-125, ∴DE 所在直线的函数表达式为y =-125x +800. ····························· 7分(3) 2或5. ····················································································· 9分25.(本题8分)解:(1)y = 13x . ··················································································· 2分(2)点O 1的坐标为 ( 3,1) 或 (-27,-9) ············································· 4分平移后的二次函数的表达式为y =(x -3)2 +1或y =(x +27)2 -9. ·········· 8分26.(本题10分)证明:(1)连接FO ,∵ OF =OC ,∴ ∠OFC =∠OCF .∵CF 平分∠ACE ,∴∠FCG =∠FCE .∴∠OFC =∠FCG .E∵ CE 是⊙O 的直径,∴∠EDG =90°,又∵FG ∥ED ,∴∠FGC =180°-∠EDG =90°,∴∠GFC +∠FCG =90°∴∠GFC +∠OFC =90°,即∠GFO =90°,∴OF ⊥GF , ···················································································· 4分又∵OF 是⊙O 半径,∴FG 与⊙O 相切. ··········································································· 5分(2)延长FO ,与ED 交于点H , 由(1)可知∠HFG =∠FGD =∠GDH =90°,∴四边形FGDH 是矩形.∴FH ⊥ED ,∴HE =HD .又∵四边形FGDH 是矩形,FG =HD ,(第26题)DGCBA(第26题)∴HE=FG=4.∴ED=8. ·························································································7分∵在R t△OHE中,∠OHE=90°,∴OH=OE2-HE2=52-42=3.∴FH=FO+OH=5+3=8. ·······························································9分S四边形FGDH=12(FG+ED)·FH=12×(4+8)×8=48. ································ 10分27.(本题11分)解:(1)画对1个巧妙点给一分. ······························································· 2分(2)∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=72°,∵AD=AB,AB=AC,BD=BC,∴△ADB≌△ABC.同理:△ACE≌△ABC.∴∠BAD=∠BAC=∠CAE=36°,∠ADB=∠ABD=∠ABC=72°,∴∠DAE=∠BAD+∠BAC+∠CAE=108°,∵AD=AB=AC=AE,∴∠ADE =∠AED =36°=∠BAD ,∴∠BDM =∠BDA -∠MDA =36°,∠BMD =∠ADM +∠DAM =72°=∠ABD ,∴DB =DM . ············································································· 5分 ∵∠DBM =∠ABD ,∠AED =∠BAD ,∴△DAM ∽△DEA ,∴DM DA =DA DE,DA 2 =D M ·DE , ∵DM =DB ,∴DA 2 =D B ·DE . ··················································· 7分(3)第一种如图①或图②(只需画一个即可),∠BAC =60°.B A CPC第二种如图③,∠BAC =36°; 第三种如图④,∠BAC =108°; 第四种如图⑤,∠BAC =120°.以上共四种:60°、36°、108°、120°. ········································ 11分(第27题) 图⑤ 图④ 图③ (第27题) 图② 图① B AC PB ACP CB P。
2019年江苏省南京市中考数学模拟考试试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,以Rt ABC △的直角边AC 所在的直线为轴,将ABC △旋转一周,所形成的几何体的俯视图是( )2.已知⊙O 的半径为6cm ,如果一条直线和圆心O 的距离为5cm ,那么这条直线和这个圆的位置关系为( ) A .相离B .相交C .相切D .相切或相离3.计算:tan 245°-1= .( ) 4.不等式组201x x −<⎧⎨≥⎩的解集为( ) A .1≤x<2 B .x ≥1 C .x<2 D .无解 5.若点A (m ,n )在第三象限,则点B (m −,n )在( )A . 第一象限B .第二象限C .第三象限D . 第四象限 6.把多项式(m+1)(m-1)+(m-1)提取公因式(m-1)后,余下的部分是( ) A .m+1B .2mC .2D .m+27.结果为2a 的式子是( )A .63a a ÷B .24−⋅a aC .12()a −D .42a a −8.把△ABC 先向左平移1 cm ,再向右平移2 cm ,再向左平移3 cm 。
再向右平移4 cm , ……,经这样移动l00次后,最后△ABC 所停留的位置是( ) A .△ABC 左边50 cm B .△ABC 右边50 cm C .△ABC 左边l mD .△ABC 右边l m9.已知∠AOB=150°,0C 平分∠AOB ,OD 在∠AOB 的内部,且∠AOD=13∠AOB ,则∠COD= ( ) A .15°B .25°C .35°D .45°10.如图,已知AD=BD ,C 为AD 中点,以下等式不正确的是( )A .DC=13CBB .CB=34ABC .AD=23BCD .CB=13(AB+AC )二、填空题11.如图,以△ABC 两边AB ,AC 向外作正三角形△ABD ,△ACE ,四边形ADFE 是平行四边形,当∠BAC= 时,□ADFE 是矩形.12.在:①有两边和一角对应相等的两个三角形全等;②两边和其中一边上的高对应相等的两个三角形全等;③斜边相等的两个等腰直角三角形全等中,正确的命题是 . 13. 一元二次方程20ax bx c ++=(0a ≠)的求根公式是x = ,(24b ac − 0) 14.若代数式31−x 有意义,则实数x 的取值范围是 .15.若12−=+b a ,1−=ab ,则22b ab a ++= .16.已知一次函数y x a =−+与y x b =+的图象相交于点(m ,8),则a+b= .17.两个装有乒乓球的盒子,其中一个装有2个白球1个黄球,另一个装有1个白球2个黄球.现从这两个盒中随机各取出一个球,则取出的两个球一个是白球一个是黄球的概率为 .18.已知||2x ≤,且x 为整数,那么x 为 .三、解答题19.身高 1.6m 的小明在课外数学活动小组的户外活动中,准备利用太阳光线和影子测旗杆AB 的高度. 如图所示,在小亮的帮助下,小明圆满地完成了任务.(1)他们必须测出哪几条线段的长?(2)若旗杆的影长为 4m ,小明的影长为1.2m ,请你帮小明计算出旗杆的长.20.如图,张斌家居太阳光住的甲楼 AB 面向正北,现计划在他家居住的楼前修建一座 乙楼 CD ,楼高约为 l8m ,两楼之间的距离为 21m ,已知冬天的太阳高度最低时,光线与水平线的夹角为 30°.(1)试求乙楼 CD 的影子落在甲楼 AB 上的高 BE 的长;(2)若让乙楼的影子刚好不影响甲楼,则两楼之间的距离至少应是多少?21.求当23a =−,2b =时,代数式2242009a b a +−+的值.22.若y 是x 的一次函数,当x=2时,y=2,当x=一6时,y=6. (1)求这个一次函数的关系式; (2)当x=8时,函数y 的值; (3)当函数y 的值为零时,x 的值; (4)当1≤y<4时,自变量x 的取值范围.23.如图,∠AOB=60°,AO=10,点P 在OB 上,根据以下条件,分别求出OP 的长(或范围).(1)△AOP 是等边三角形; (2)△AOP 是直角三角形; (3)△AOP 是钝角三角形.24.某市有人口l00万,在环境保护日,该市第一中学八年级学生调查了10户居民一天产生的生活垃圾,情况如下表:户 数 3 2 1 3 1 每户平均人数(人) 2 3 4 3 5 每户平均产生垃圾 的数量(kg)2.53.54.55.56.5(1)在这一天中,这10户居民平均每户产生多少kg 垃圾?(结果精确到0.1 kg) (2)在这一天中,这10户居民平均每人产生多少kg 垃圾?(结果精确到0.1 kg)25.如图所示,在甲、乙两地之间要修一条公路,从甲地测得公路的走向是北偏东55°(即∠α),如果甲、乙两地同时开工,那么在乙地公路按是多少度施工时,才能使公路准确接通?26.写一个多项式,再把它分解因式(要求:多项式含有字母m 和n ,系数、次数不限,并能先用提取公因式法再用公式法分解).27.为加快西都大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程. 如 果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过 6 个月才能完成. 现在甲、乙两队先共同施工 4个月,剩下的由乙队单独施工,则刚好如期完成. 问原来规定修好这条公路需多长时间?28.解下列方程:(1)223x x =;(2)2(1)40x +−=;(3)2690x x −+=;(4)22(2)(21)x x +=+29.同时抛掷两枚普通的骰子. 把朝上的点数之和作为结果. 则所得的结果有几种可能性?如果掷出的结果是“8 点”,则甲胜,掷出的结果是“9 点”.则乙胜,他们的赢的机会相同吗?为什么?30.如图所示,历史上最有名的军师诸葛孔明,率精兵与司马仲对阵,孑L明一挥羽扇.军阵瞬时由图①变为图②.其实只移动了其中3“骑”而已,请问如何移动?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.B3.4.A5.D6.D7.B8.B9.B10.D二、填空题11. 150°12.②③13.14.3>x 15.224−16.1617. 5918. -2,-1,0, 1, 2三、解答题 19.(1)必须测出旗杆的影长 AC 和小明的影长DF.(2) ∵EF ∥BC,DE ∥AB ,∴∠EFD=∠BCA ,∠EDF=∠BAC=90°, ∴△ABC ∽△DEF ,∴AB DE AC DF =,∵4 1.6161.23AB ⨯==m ∴旗杆高为163m. 20.(1)tan 30o CG GE =,21CG ==(18BE DG ==−m(2)tan 30o CD DF =18DF=,∴18DF ⋅=答:(1)乙搂落在甲楼上的影子长(18−m ;(2)两楼之间的距离至少是18 m .21.201022.(1)132y x =−+;(2)-1;(3)6;(4)-2<x ≤423.(1)OP=10 (2)OP=5或20 (3)0<OP<5或 OP>2024.(1)4.2 kg ;(2)1:4 kg25.125°26.)2)(2(42−+=−n n m m mn (答案不唯一) .27.12 个月28.(1)10x =,232x =;(2)11x =,23x =−;(3)123x x ==;(4)11x =−,21x = 29.它们的结果有36种可能;不同,甲赢的机会大,理由略30.略。
中考数学模拟试卷(解析版)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=42,则△CEF的面积是()A.22B2C.32D.2解析:A【解析】【详解】解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=2,22,AB BG∴AE=2AG=4;∴S△ABE=12AE•BG=1442822⨯⨯=.∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1,∵AB∥FC,∴△ABE∽△FCE,∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=14S△ABE=22.故选A.【点睛】本题考查1.相似三角形的判定与性质;2.平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.2.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为( )A.4 B..5 C.6 D.8解析:C【解析】【详解】解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得AB DEBC EF=,即123EF =,解得EF=6,故选C.3.“赶陀螺”是一项深受人们喜爱的运动.如图所示是一个陀螺的立体结构图.已知底面圆的直径AB=8 cm ,圆柱的高BC =6 cm ,圆锥的高CD =3 cm ,则这个陀螺的表面积是( )A .68π cm 2B .74π cm 2C .84π cm 2D .100π cm 2解析:C【解析】 试题分析:∵底面圆的直径为8cm ,高为3cm ,∴母线长为5cm ,∴其表面积=π×4×5+42π+8π×6=84πcm 2,故选C .考点:圆锥的计算;几何体的表面积.4.如图,在Rt△ABC 中,∠C=90°,∠CAB 的平分线交BC 于D ,DE 是AB 的垂直平分线,垂足为E ,若BC=3,则DE 的长为( )A .1B .2C .3D .4解析:A【解析】 试题分析:由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,∵DE 垂直平分AB , ∴DA=D B ,∴∠B=∠DAB,∵AD 平分∠CAB,∴∠CAD=∠DAB, ∵∠C=90°,∴3∠CAD=90°, ∴∠CAD=30°, ∵AD 平分∠CAB,DE⊥AB,CD⊥AC, ∴CD=DE=BD , ∵BC=3, ∴CD=DE=1 考点:线段垂直平分线的性质5.如图,二次函数2y ax bx =+的图象开口向下,且经过第三象限的点P.若点P 的横坐标为1-,则一次函数()y a b x b =-+的图象大致是( )A .B .C .D .解析:D【解析】【分析】根据二次函数的图象可以判断a 、b 、a b -的正负情况,从而可以得到一次函数经过哪几个象限,观察各选项即可得答案.【详解】由二次函数的图象可知,a 0<,b 0<,当x 1=-时,y a b 0=-<,()y a b x b ∴=-+的图象经过二、三、四象限,观察可得D 选项的图象符合,故选D .【点睛】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是关键.6.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D . 解析:B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A 、C 、D 都不是中心对称图形,只有B 是中心对称图形. 故选B.7.已知电流I (安培)、电压U (伏特)、电阻R (欧姆)之间的关系为U I R=,当电压为定值时,I 关于R 的函数图象是( ) A . B . C . D . 解析:C【解析】【分析】根据反比例函数的图像性质进行判断.【详解】 解:∵U I R=,电压为定值, ∴I 关于R 的函数是反比例函数,且图象在第一象限,故选C .【点睛】本题考查反比例函数的图像,掌握图像性质是解题关键.8.已知关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程x 2+bx+a=0的根B .0一定不是关于x 的方程x 2+bx+a=0的根C .1和﹣1都是关于x 的方程x 2+bx+a=0的根D .1和﹣1不都是关于x 的方程x 2+bx+a=0的根解析:D【解析】【分析】根据方程有两个相等的实数根可得出b=a+1或b=-(a+1),当b=a+1时,-1是方程x 2+bx+a=0的根;当b=-(a+1)时,1是方程x 2+bx+a=0的根.再结合a+1≠-(a+1),可得出1和-1不都是关于x 的方程x 2+bx+a=0的根.【详解】∵关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根, ∴()()2210{2410a b a +≠-+V ==, ∴b=a+1或b=-(a+1).当b=a+1时,有a-b+1=0,此时-1是方程x 2+bx+a=0的根;当b=-(a+1)时,有a+b+1=0,此时1是方程x 2+bx+a=0的根.∵a+1≠0,∴a+1≠-(a+1),∴1和-1不都是关于x 的方程x 2+bx+a=0的根.故选D .【点睛】。
2019年江苏省南京市中考数学全真模拟试卷 _1 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,将矩形ABCD 沿AE 折叠,已知∠CED ′=60°则∠AED 等于( )A .75°B .60°C .55°D .50°2.下列语句不是命题的为 ( )A .对顶角相等B .两条直线相交而成的相等的角都是对顶角C .画线段AB=3 cmD .若a ∥b ,b ∥c ,则a ∥c3. 下列各式计算正确的是( )A .253565⨯=B .3533315⨯=C .352532530⨯=⨯⨯=D .3255810⨯= 4.若干名工人某天生产同一种零件,生产的零件数整理成条形图(如图所示).设他们生 产零件的平均数为a ,中位数为b ,众数为c ,则a ,b ,c 的大小关系为 .5.2”时,最恰当的假设是( )A 2B 2C 2D 2 6.在△ABC 中,∠A 是锐角,那么△ABC 是( ) A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 7.如果237m n −=,那么823m n −+等于( ) A .15B .1C .7D .8 8.两个数的差为负数,这两个数( ) A .都是负数B .一个是正数,一个是负数C .减数大于被减数D . 减数小于被减数二、填空题9.如图是一张电脑光盘的表面,两个圆的圆心都是点O ,大圆的弦AB 所在直线是小圆的切线,切点为C .已知大圆的半径为5cm ,小圆的半径为1cm ,则弦AB 的长度为 cm . 10.如图表示甲骑电动自行车和乙驾驶汽车沿相同的路线行驶45km ,由A 地到B 地时,行驶的路程y(km)与经过的时间x(h)之间的函数关系.请根据这个行驶过程中的图象填空: 汽车出发 h 与电动自行车相遇;电动自行车的速度为 /h ;汽车的速度为km /h ;汽车比电动自行车早 h 到达B 地.11.已知直线y x k =−+与直线322k y x −=−的交点在第二象限内,求k 的取值范围. 12.如图,1l ⊥2l ,3l ⊥2l ,1l 3l ,则理由是 .13.方程组⎩⎨⎧=−=+13y x y x 的解为_________. 14.如图,∠BAC=800,∠ACE=1400,则∠ABD= 度.15.多项式21x +加上一个单项式后,能成为一个整式的平方,则加上的单项式可以是 . (填上一个正确的结论即可,不必考虑所有可能的情况)16.四条长度分别是2,3,4,5的线段,任选3条可以组成 个三角形.17.太阳的半径约是69660千米,用科学记数法表示(保留3个有效数字)约是 千米.三、解答题18.小华与小红用5张同样规格的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张.规则如下:当两张硬纸片上的图形可拼成电灯或小人时,小华得1分;(图1) 当两张硬纸片上的图形可拼成房子或小山时,小红得1分(如图2).问题:游戏规则对双方公平吗?请说明理由;若你认为不公平,如何修改游戏规则才能使游戏对双方公平?19.如图,在直角梯形ABCD 中,AB ∥CD ,∠C=Rt ∠,AB=AD=10cm ,BC=8cm. 点P 从点A 出发,以每秒3cm 的速度沿线段AB 方向运动,点Q 从点D 出发,每秒2cm 的速度沿线段DC 方向向点C 运动. 已知动点P ,Q 同时出发,当点Q 运动到点C 时,P ,Q 运动停止,设运动时间为 t (s).(1)求CD 的长;(2)当四边形PBQD 为平行四边形时,求四边形PBQD 的周长;(3)在点P ,点 Q 的运动过程中,是否存在某一时刻,使得△BPQ 的面积为 20 cm 2若存在,请求出所有满足条件的t 的值;若不存在,请说明理由.20.写出定理“直角三角形斜边上的中线等于斜边的一半”的逆命题,•这个逆命题是真命题吗?请证明你的判断.21.如图, 在△ABC 中, ∠B = 90°, 点P 从点 A 开始沿AB 边向点B 以 1cm / s 的速度移动, Q 从点B 开始沿 BC 边向C 点以 2 cm / s 的速度移动, 如果点P 、Q 分别从A 、B 同时出发, 几秒钟后, △PBQ 的面积等于8 cm 222.如图,在△ABC 中,∠BAC=60°,AE 是△ABC 中与∠BAC 相邻的外角的平分线,且房子 电灯 小山小人 (图2)AE∥BC,则△ABC是等边三角形吗?为什么?23.一个矩形的长为a,宽为b,在图(1)中将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1B1B2A2(即阴影部分).(1) (2)(3) (4)在图(2)中,将折线A1A2A3向右平移1个单位到B1B2B3,得到封闭图形A1A2A3B3B2B1(即阴影部分).(1)在图3中,请你类似地画出一条有两个折点的折线,同样向右平移1个单位,从而得到一个封闭图形,并用斜线表示出;(2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积:S1=•______,S2=_________,S3=________.(3)联想与探索.如图(4),在一块草地上有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示的草地面积是多少?并请说明你的猜想是正确的.24.如图,在△ABC和△DEF中,AC=DF,AE=BD,BC=EF,则∠C=∠F,请说明理由(填空).解:∵ AE=BD(已知)∴ = ∴ = 在△ABC 和△DEF 中===∴△ABC ≌△DEF ( )∴∠C=∠F ( )25.已知直线1l ∥2l , 点 A ,B ,C 在直线1l 上,点E ,F ,H 在2l 上,任意取三个点连成一个三角形. 求:(1)连成△ABD 的概率;(2)连成△ABD 或△DEB 的概率;(3)连成的三角形有两个顶点在直线2l 上的概率.26.一个锐角的余角是这个锐角的补角的14,求这个角的度数.27.为了了解某校七年级学生的视力情况,抽测了一批同学的视力,检测结果如下表:视力情况差 中 良 优 合计 人数(人) 7 20 3百分比(%) 14100 请你将表格空白部分补充完整.28.一正方形的面积为 10cm 2,求以这个正方形的边为直径的圆的面积. ( 取 3.14)29.用计算器求值:(1)0.84÷4+(-0.79)×2;(2)49.75-0.252;(3)2.7×(0.5+6.3)-25÷4 5(4)12×(5.63-3.31)×112-25.30.芜湖供电公司分时电价执行时段分为平、谷两个时段,平段为8:00~22:00,14小时,谷段为22:00~次日8:00,10小时.平段用电价格在原销售电价基础上每千瓦时上浮0.03元,谷段电价在原销售电价基础上每千瓦时下浮0.25元,小明家5月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付费42.73元.(1)问小明该月支付的平段、谷段电价每千瓦时各为多少元?(2)如不使用分时电价结算, 5月份小明家将多支付电费多少元?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.C4.b>a>c5.C6.D7.B8.C二、填空题9.10.0.5,9,45,211.11k −<<12.∥,在同一平面内,垂直于同一条直线的两条直线互相平行13.21x y =⎧⎨=⎩ 14. 12015.44x ,2x ±等 16.317.6.97×104三、解答题18.(1)这个游戏对双方不公平. ∵310P =(拼成电灯);110P =(拼成小人);3()10P =拼成房子;3()10P =拼成小山, ∴小华平均每次得分为31411101010⨯+⨯=(分); 小红平均每次得分为33611101010⨯+⨯=(分). ∵410<610,∴游戏对双方不公平. (2)改为:当拼成的图形是小人时小华得3分,其余规则不变,就能使游戏对双方公平.(答案不惟一)19.(1)16 cm (2)(8813+存在,53t =s 或395s 20.逆命题:一边上的中线等于这边的一半的三角形是直角三角形,是真命题.证明如下:如图,已知△ABC 中,CD 是AB 边上的中线,CD=12AB . 求证:△ABC 是直角三角形.证明:∵CD 是AB 边上的中线,CD=12AB ,•∴CD=AD=BD ,∴∠1=∠A ,∠2=∠B ,∵∠1+∠2+∠A+∠B=180°,∴∠1+∠2=90°,•即∠ACB=90°,∴△ABC 是直角三角形21.2s 或4s .22.△ABC 是等边三角形.说明三个内角都是60°23.(1)略,(2)b(a-1), b(a-1) ,b(a-1),(3)b(a-1)24.AE-BE ,BD-BE ,AB ,DE ,AC ,DF ,AB ,DE ,BC ,EF ,SSS ,全等三角形的角相等. 25. (1)130;(2)115;(3)3526.60°27.表中依次填:20,50;40,40,628.7. 85cm 229.(1)-1.37 (2)796 (3)12. 11 (4)108.3630.解:(1)设原销售电价为每千瓦时x 元,根据题意得:40(0.03)60(0.25)42.73x x ⨯++⨯−=,40 1.2601542.73x x ++−=10042.7313.8x =+,0.5653x =.∴当0.5653x =时,0.030.5953x +=;0.250.3153x −=.答:小明家该月支付平段电价为每千瓦时0.5953元、谷段电价每千瓦时0.3153元.(2) 1000.565342.7313.8⨯−=(元)答::如不使用分时电价结算,小明家5月份将多支付13.8元.。
2019届江苏省南京市中考模拟数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重中之重.其中推进燃煤电厂脱硫改造15000 000千瓦是《政府工作报告》中确定的重点任务之一.将数据15 000 000用科学记数法表示为( )A. 15×106B. 1.5×107C. 1.5×108D. 0.15×1082. -4的绝对值是()A. B. C. 4 D. ﹣43. 计算结果正确的是()A. (﹣2x2)3=﹣6x6B. x2•x3=x6C. 6x4÷3x3=2xD. x2+x3=2x54. 长度的各种线段,可以组成三角形的是()A. 1,2,3B. 1,5,5C. 3,3,6D. 3,5,1二、选择题5. 如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()A.80° B.100° C.110° D.130°6. 下列数据是某班六位同学定点投篮(每人投10个)的情况,投进篮筐的个数为6,9,8,4,0,3,这组数据的平均数、中位数和极差分别是A.6,6,9 B.6,5,9 C.5,6,6 D.5,5,9三、填空题7. 的算术平方根为.8. 代数式有意义时,实数x的取值范围是__________.9. 分解因式:x2﹣y2﹣3x﹣3y=__________.10. 比较大小:2______5(填“>,<,=”).11. 化简:﹣=_______.12. 若一元二次方程有两个不相等的实数根,则c的值可以是(写出一个即可).13. 如图,已知C,D是以AB为直径的半圆周上的两点,O是圆心,半径OA=2,∠COD=120°,则图中阴影部分的面积等于.14. 如图,∠B=∠D=90°,BC=DC,∠1=40°,则∠2= 度.15. 如图,在Rt△ABC中,∠BAC=90°,AB=AC=16cm, AD为BC边上的高.动点P从点A 出发,沿A→D方向以cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t秒(0<t<8),则t=______秒时,S1=2S2.四、解答题16. 如图,在正方形网格中有一个边长为4的平行四边形ABCD(Ⅰ)平行四边形ABCD的面积是____;(Ⅱ)请在如图所示的网格中,将其剪拼成一个有一边长为6的矩形,画出裁剪线(最多两条),并简述拼接方法____________________.17. 解不等式组:.18. 解方程:.19. 在一次“社会主义核心价值观”知识竞赛中,四个小组回答正确题数情况如图,求这四个小组回答正确题数的平均数.20. 如图,将给出的4张扑克牌摆成第一行的样子,然后将其中的1张牌旋转180°成第二行的样子,你能判断出被旋转过的1张牌是哪一张吗?为什么?21. 如果,在△ABC中,AD是高,AE是∠BAC的平分线,∠BAC=54°,∠C=70°.求∠EAD的度数.22. 城区学校组织“书香谜缘”灯谜竞猜比赛.某校拟从3名男生(以A1、A2、A3表示)和2名女生(以B1、B2表示)中选取3人组队参赛.(1)若从5位备选学生中随机选取1人担任队长,则选取到男生的概率是;(2)若已知男生A1选取为队长,在其余4人中选取2人作为队员,请你用画树状图或列表的方法表示所有等可能的结果,并求出选取的两队员恰好是1男1女的概率.23. (2014•十堰)某市政府为了增强城镇居民抵御大病风险的能力,积极完善城镇居民医疗保险制度,纳入医疗保险的居民的大病住院医疗费用的报销比例标准如下表:24. 医疗费用范围报销比例标准不超过8000元不予报销超过8000元且不超过30000元的部分50%超过30000元且不超过50000元的部分60%超过50000元的部分70%td25. 如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹);(2)连结AP,若AC=4,BC=8时,试求BP的长.26. 如图,AB切⊙O于点B,OA=5,tanA=,弦BC∥OA(1)求AB的长(2)求四边形AOCB的面积.27. 如图,二次函数y=﹣mx2+4m的顶点坐标为(0,2),矩形ABCD的顶点B.C在x轴上,A、D在抛物线上,矩形ABCD在抛物线与x轴所围成的图形内点A在点D的左侧.(1)求二次函数的解析式;(2)设点A的坐标为(x,y),试求矩形ABCD的周长P关于自变量x的函数解析式,并求出自变量x的取值范围;(3)是否存在这样的矩形ABCD,使它的周长为9?试证明你的结论.28. 旋转变换在平面几何中有着广泛的应用.特别是在解(证)有关等腰三角形、正三角形、正方形等问题时,更是经常用到的思维方法,请你用旋转交换等知识,解决下面的问题.如图1,△ABC与△DCE均为等腰直角三角形,DC与AB交于点M,CE与AB交于点N.(1)以点C为中心,将△ACM逆时针旋转90°,画出旋转后的△A′CM′(2)在(1)的基础上,证明AM2+BN2=MN2.(3)如图2,在四边形ABCD中,∠BAD=45°,∠BCD=90°,AC平分∠BCD,若BC=4,CD=3,则对角线AC的长度为多少?(直接写出结果即可,但在图中保留解决问题的过程中所作辅助线、标记的有关计算数据等)参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】。
绝密★启用前|2019年中考考前最后一卷【江苏A 卷】数学(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本大题共6个小题,每小题2分,共12分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1的值是A .–2B .2或–2C .4D .22.计算a ·a 3的结果是A .a 4B .–a 4C .a –3D .–a 33.如图,几何体的左视图是A .B .C .D .4.设n 1,那么n 值介于下列哪两数之间A .1与2B .2与3C .3与4D .4与55.下表是某校合唱团成员的年龄分布:年龄/岁13141516频数515x10–x对于不同的x ,下列关于年龄的统计量不会发生改变的是A .平均数、中位数B .中位数、方差C .众数、中位数D .平均数、方差6.如图,O 是正六边形ABCDEF 的外接圆,P 是弧AB 上一点,则CPD ∠的度数是A .30︒B .40︒C .45︒D .60︒第Ⅱ卷二、填空题(本大题共10小题,每小题2分,共20分)7.如果数a 与2互为相反数,那么a =__________.8.目前我国每年可利用的淡水资源总量约为38050亿立方米,是世界上严重缺水的国家之一.38050用科学记数法表示为__________.9.计算:–1)=__________.10.若分式13x -有意义,则x 的取值范围是__________.11.甲,乙两家汽车销售公司根据近几年的销售量分别制作了如图所示的统计图,从2014~2018年,这两家公司中销售量增长较快的是_____公司(填“甲”或“乙”).12.已知x =–1是一元二次方程ax 2+bx –2=0的一个根,那么b –a 的值等于___________.13.如图,ABC △≌EDB △,6AC =,8AB =,则AE =__________.14.如图,已知正五边形ABCDE ,AF ∥CD ,交DB 的延长线于点F ,则∠DFA =__________.15.如图,在△ABC 中,∠ACB =90°,∠A =30°,以点C 为圆心,CB 长为半径作弧,交AB 于点D ;再分别以点B 和点D 为圆心,大于12BD 的长为半径作弧,两弧相交于点E ,作射线CE 交AB 于点F ,若AF =6,则BC 的长为__________.16.已知正方形MNOK 和正六边形ABCDEF 边长均为2,把正方形放在正六边形中,使OK 边与AB 边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B 顺时针旋转,使KM 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使MN 边与CD 边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B ,M 之间距离的最小值是__________.三、解答题(本大题共11小题,共88分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分7分)化简:24222x xx x x ⎛⎫++÷⎪--⎝⎭.18.(本小题满分7分)解不等式组3347713x xxx+>+⎧⎪-⎨-≥⎪⎩()并写出它的所有整数解....19.(本小题满分8分)如图,四边形ABCD是平行四边形,BE、DF分别是∠ABC、∠ADC的平分线,且与对角线AC分别相交于点E、F.求证:AE=CF.20.(本小题满分8分)一销售某品牌冰箱的公司有营销人员14人,销售部为制定销售人员月销售冰箱定额(单位:台),统计了14人某月的销售量如下表:每人销售台数201713854人数112532(1)这14位营销员该月销售冰箱的平均数、众数和中位数分别是多少?(2)你认为销售部经历给这14为营销员定出每月销售冰箱的定额为多少台才比较合适?并说明理由.21.(本小题满分8分)一个不透明袋子中有1个红球和n个白球,这些球除颜色外无其他差别.(1)从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到红球的频率稳定在0.25,求n的值.(2)在(1)的条件下,从袋中随机摸出两个球,求两个球颜色不同的概率.22.(本小题满分8分)图1所示的是某超市入口的双翼闸门,如图2,当它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°,求当双翼收起时,可以通过闸机的物体的最大宽度.23.(本小题满分8分)如图,BD 是菱形ABCD 的对角线.(1)请用直尺和圆规作AB 的垂直平分线EF ,垂足为点E ,交AD 于点F ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,连接BF ,若∠CBD =75°,求∠DBF 的度数.24.(本小题满分8分)如图,AC 、BD 是以AB 为直径的半圆的两条切线,AD 与半圆交于点E ,连接CE ,过点E 作EF ⊥CE ,交AB 于点F .(1)若 AE 的度数为140°,求∠D 的度数;(2)求证:△ACE ∽△BFE .25.(本小题满分9分)甲、乙两车都从A 地驶向B 地,并以各自的速度匀速行驶.甲车比乙车早行驶,甲车途中休息了0.5h.设甲车行驶时间为()h x ,下图是甲、乙两车行驶的距离()km y 与()h x 的函数图象,根据题中信息回答问题:(1)填空:m =______,a =______;(2)当乙车出发后,求乙车行驶路程()km y 与()h x 的函数解析式,并写出相应的x的取值范围;(3)当甲车行驶多长时间时,两车恰好相距50km?请直接写出答案.26.(本小题满分8分)某学习小组在研究函数y=16x3–2x的图象与性质时,已列表、描点并画出了图象的一部分.27.(本小题满分9分)我们知道,如图1,AB是⊙O的弦,点F是AFB的中点,过点F作EF⊥AB于点E,易得点E是AB的中点,即AE=E B.⊙O上一点C(AC >BC),则折线ACB称为⊙O的一条“折弦”.(1)当点C在弦AB的上方时(如图2),过点F作EF⊥AC于点E,求证:点E 是“折弦ACB”的中点,即AE=EC+CB.………………内………………○………………装………………○………………订………………○………………线………………○………………………………外………………○………………装………………○………………订………………○………………线………………○………………学校:______________姓名:_____________班级:_______________考号:______________________(2)当点C 在弦AB 的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE 、EC 、CB 满足怎样的数量关系?直接写出,不必证明.(3)如图4,已知Rt △ABC 中,∠C =90°,∠BAC =30°,Rt △ABC 的外接圆⊙O 的半径为2,过⊙O 上一点P 作PH ⊥AC 于点H ,交AB 于点M ,当∠PAB =45°时,求AH 的长.12019年中考考前最后一卷【江苏A 卷】数学·参考答案123456DACBCA 7.−28.3.805×1049.110.x ≠311.甲12.–213.214.36°15.416.17.【参考答案】x .【全解全析】原式24222x x x x x ⎛⎫+=-÷⎪--⎝⎭(4分)2422x x x x -+=÷-()()2222x x x x x -++=÷-()()2222x x x x x -+=⨯-+x =.(7分)18.【参考答案】原不等式组的解集是2 2.x -≤<原不等式组的所有整数解为2-,1-,0,1.【全解全析】()3347713x x x x ⎧+>+⎪⎨--≥⎪⎩①②,由①得2x <,由②得2x ≥-,(4分)∴原不等式组的解集是2 2.x -≤<∴原不等式组的所有整数解为2-,1-,0,1.(7分)19.【参考答案】证明见全解全析.【全解全析】∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∠ABC =∠ADC ,∴∠BAE =∠DCF .(2分)2∵BE 、DF 分别是∠ABC 、∠ADC 的平分线,∴∠ABE =12∠ABC ,∠CDF =12∠ADC ,∴∠ABE =∠CDF .(4分)在△ABE 与△CDF 中,∵ABE CDFAB CDBAE DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE ≌△CDF (ASA ),∴AE =CF .(8分)20.【参考答案】(1)平均数是9,众数是8,中位数是8;(2)每月销售冰箱的定额为8台比较合适.因为中位数和众数都是8,是大部分人能够完成的台数.【全解全析】(1)平均数:201171132855342914⨯+⨯+⨯+⨯+⨯+⨯=,(2分)众数:8,(4分)中位数:8.(6分)(2)每月销售冰箱的定额为8台比较合适.因为中位数和众数都是8,是大部分人能够完成的台数.(8分)21.【参考答案】(1)3;(2)12.【全解全析】(1)利用频率估计概率得到摸到绿球的概率为0.25,则11n+=0.25,解得n =3;(4分)(2)画树状图为:共有12种等可能的结果数,其中两次摸出的球的颜色不同的结果共有6种,所以两次摸出的球颜色不同的概率=612=12.(8分)22.【参考答案】通过闸机的物体的最大宽度为64cm.【全解全析】如图所示:过点A作AE⊥CP于点E,过点B作BF⊥DQ于点F,在Rt△ACE中,AE=sin30°×AC=12×54=27(cm),同理可得BF=27cm,(4分)又∵点A与B之间的距离为10cm,∴通过闸机的物体的最大宽度为:27+10+27=64(cm).答:通过闸机的物体的最大宽度为64cm.(8分)23.【参考答案】(1)见全解全析;(2)45°.【全解全析】(1)如图,EF 为所作;(3分)(2)∵四边形ABCD是菱形,∴AD∥BC,∠ABD=∠CBD=75°,∴∠ABC=150°,(5分)∵AD∥BC,∴∠A=180°–∠ABC=180°–150°=30°,∵EF垂直平分AB,∴AF=BF,∴∠A=∠FBA=30°,∴∠DBF=∠ABD–∠FBA=75°–30°=45°.(8分)24.【参考答案】(1)70°.(2)证明见全解全析.【全解全析】(1)∵ AE的度数为140°,AB为直径,∴ BE的度数为40°,∴∠BAD=20°,∵BD为半圆的切线,∴∠ABD=90°,∴∠D=70°.(3分)(2)∵AB为半圆的直径,∴∠AEB=90°,∴∠AEF+∠BEF=90°,∵EF⊥CE,∴∠CEF=90°,∴∠AEF+∠AEC=90°,∴∠AEC=∠BEF,(5分)∵AC为半圆的切线,∴∠CAB=90°,34∴∠CAE +∠BAE =90°,(7分)∵AB 为半圆的直径,∴∠AEB =90°,∴∠ABE +∠BAE =90°,∴∠CAE =∠ABE ,∴△ACE ∽△BFE .(8分)25.【参考答案】(1)1;40.(2)【全解全析】(1)1;40.(2)80160y x =-(2 5.25x ≤≤);(3)当甲车行驶74h 或94h 或194h 或234h 时,两车恰好相距50km .1.50.51m =-=; 甲车匀速行驶,120403.50.5a ∴==-.故答案为:1;40.(2)设乙行驶路程y kx b =+,依题意得,203.5120k b k b +=⎧⎨+=⎩,解得80160k b =⎧⎨=-⎩.∴乙行驶路程80160y x =-.当260km y =时,80160260x -=,解得, 5.25x =.∴自变量x 取值范围为2 5.25x ≤≤.(7分)(3)当甲车行驶74h 或94h 或194h 或234h 时,两车恰好相距50km .(9分)设甲在后一段路程y mx n =+,依题意得,1.5403.5120m n m n +=⎧⎨+=⎩,解得4020m n =⎧⎨=-⎩.∴甲在后一段路程()40201.57y x x =-≤≤.①当12x ≤≤时,由两车相距50km 得,402050x -=,解得74x =.②当2 5.25x <≤时,若两车相距50km ,则()40208016050x x ---=,5解得91944x =或.③当5.257x <≤时,乙车已到达目的地,两车相距50km ,则()260402050x --=,解得234x =.综上可知,当甲车行驶74h 或94h 或194h 或234h 时,两车恰好相距50km .26.【参考答案】(1)见全解全析.(2)3.(3)见全解全析.【全解全析】(1)补全函数图象如图所示.(3分)(2)3.(5分)如图1,作出直线y =–2的图象,由图象知,函数y =16x 3–2x 的图象和直线y =–2有三个交点,∴方程16x 3–2x =–2实数根的个数为3,故答案为3;(3)由图象知,①此函数在实数范围内既没有最大值,也没有最小值,②此函数在x<–2和x>2,y随x的增大而增大,③此函数图象过原点,④此函数图象关于原点对称.(8分)27.【参考答案】(1)见全解全析;(2)结论AE=EC+CB不成立,新结论为:CE=BC+AE.(3)AH的长1-1.+【全解全析】(1)如图1,在AC上截取AG=BC,连接FA,FG,FB,FC,∵点F是AFB的中点,∴FA=FB,(2分)在△FAG和△FBC中,FA FBFAG FBCAG BC=⎧⎪∠=∠⎨⎪=⎩,∴△FAG≌△FBC(SAS),∴FG=FC,∵FE⊥AC,∴EG=EC,∴AE=AG+EG=BC+CE;(4分)(2)结论AE=EC+CB不成立,新结论为:CE=BC+AE.(5分)理由:如图2,67在CA 上截取CG =CB ,连接FA ,FB ,FC ,FG ,∵点F 是 AFB 的中点,∴FA =FB , FA FB =,∴∠FCG =∠FCB ,在△FCG 和△FCB 中,CG CBFCG FCB FC FC=⎧⎪∠=∠⎨⎪=⎩,∴△FCG ≌△FCB (SAS ),∴FG =FB ,∴FA =FG ,∵FE ⊥AC ,∴AE =GE ,∴CE =CG +GE =BC +AE ;(3)在Rt △ABC 中,AB =2OA =4,∠BAC =30°,∴122BC AB AC ===,当点P 在弦AB 上方时,如图3,在CA 上截取CG =CB ,连接PA ,PB ,PC ,PG ,∵∠ACB =90°,∴AB 为⊙O 的直径,∴∠APB =90°,∵∠PAB =45°,∴∠PBA =45°=∠PAB ,∴PA =PB ,∠PCG =∠PCB ,在△PCG 和△PCB 中,CG CBPCG PCB PC PC=⎧⎪∠=∠⎨⎪=⎩,8∴△PCG ≌△PCB (SAS ),∴PG =PB ,∴PA =PG ,∵PH ⊥AC ,∴AH =GH ,∴AC =AH +GH +CG =2AH +BC,∴22AH =+,∴ 1.AH =(7分)当点P 在弦AB 下方时,如图4,在AC 上截取AG =BC ,连接PA ,PB ,PC ,PG .∵∠ACB =90°,∴AB 为⊙O 的直径,∴∠APB =90°,∵∠PAB =45°,∴∠PBA =45°=∠PAB ,∴PA =PB ,在△PAG 和△PBC 中,AG BCPAG PBC PA PB=⎧⎪∠=∠⎨⎪=⎩,∴△PAG ≌△PBC (SAS ),∴PG =PC ,∵PH ⊥AC ,∴CH =GH ,∴AC =AG +GH +CH =BC +2CH ,∴22CH =+,∴1CH =-,∴)11AH AC CH =-==,即:当∠PAB =45°时,AH1-1.(9分)。
2019年江苏省南京市玄武区中考数学一模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.PM2.5是大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣6D.2.5×10﹣52.下列计算正确的是()A.a•a2=a3B.a+a=a2C.(a2)3=a5D.a2(a+1)=a3+13.数轴上点A、B表示的数分别是a、3,它们之间的距离可以表示为()A.a+3B.a﹣3C.|a+3|D.|a﹣3|4.下列水平放置的四个几何体中,左视图是四边形的几何体共有()A.1个B.2个C.3个D.4个5.一辆汽车从A地驶往B地,前路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h.设普通公路长、高速公路长分别为xkm、ykm,则可列方程组为()A.B.C.D.6.如图,四边形ABCD和四边形AEFG均为正方形,连接CF,DG,则=()A.B.C.D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.若二次根式在实数范围内有意义,则x的取值范围是.8.方程﹣=0的解为.9.分解因式:2x2﹣8x+8=.10.若一个反比例函数的图象经过点(3,2),则该反比例函数图象也经过点(﹣1,).11.如图,在△ABC中,点M、N分别在边AB、AC上,且MN∥BC.若AM=2,BM=5,MN=2,则BC=.12.设x1,x2是一元二次方程x2﹣6x+m=0的两个根,且x1+x2﹣x1x2=﹣1,则m=.13.如图,在⊙O中,OA是半径,弦BC⊥OA,D为上一点,连接OB、AD、CD,若∠OBC =50°,则∠ADC=°.14.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.15.如图,在正八边形ABCDEFGH中,连接AG、HE交于点M,则∠GME=°.16.在△ABC中,AB=AC=5,BC=6,P、Q分别为边BC、AB上的两个点,若△APQ是等腰三角形且△BPQ是直角三角形,则AQ=.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)(1)计算:(3.14﹣π)0+﹣1﹣×.(2)解不等式组:18.(6分)先化简,再求值:,其中x=﹣1.19.(9分)甲乙两人在相同条件下完成了10次射击训练,两人的成绩如图所示.根据以上信息,整理分析数据如下:(1)完成表格;(2)根据训练成绩,你认为选派哪一名队员参赛更好?为什么?20.(7分)一只不透明的袋子中装有分别标注数字为1、2、3的三个小球,这些球除标注的数字外都相同.(1)搅匀后从中任意摸出一个球,标注的数字恰好为2的概率是;(2)搅匀后从中任意摸出一个球,记录下数字后放回袋中并搅匀,再从袋中任意摸出一个球,求两次数字的和大于3的概率.21.(8分)如图,在▱ABCD中,E、F为边BC上两点,BF=CE,AE=DF.(1)求证:△ABE≌△DCF;(2)求证:四边形ABCD是矩形.22.(8分)甲、乙两地之间有一条笔直的公路,快车和慢车分别从甲、乙两地同时出发,沿这条公路匀速相向而行,快车到达乙地后停止行驶,慢车到达甲地后停止行驶.已知快车速度为120km/h.下图为两车之间的距离y(km)与慢车行驶时间x(h)的部分函数图象.(1)甲、乙两地之间的距离是km;(2)点P的坐标为(4,),解释点P的实际意义.(3)根据题意,补全函数图象(标明必要的数据).23.(7分)如图,为了测量建筑物CD的高度,小明在点E处分别测出建筑物AB、CD顶端的仰角∠AEB=30°,∠CED=45°,在点F处分别测出建筑物AB、CD顶端的仰角∠AFB=45°,∠CFD=70°.已知建筑物AB的高度为14m,求建筑物CD的高度(精确到0.1m).(参考数据:tan70°≈2.75,≈1.41,≈1.73.)24.(8分)已知二次函数y=x2﹣2mx+2m﹣1(m为常数).(1)求证:不论m为何值,该二次函数的图象与x轴总有公共点.(2)求证:不论m为何值,该二次函数的图象的顶点都在函数y=﹣(x﹣1)2的图象上.(3)已知点A(a,﹣1)、B(a+2,﹣1),线段AB与函数y=﹣(x﹣1)2的图象有公共点,则a的取值范围是.25.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交边AC于点D(点D不与点A重合),交边BC于点E,过点E作EF⊥AC,垂足为F.(1)求证:EF是⊙O的切线;(2)若AD=7,BE=2.①求⊙O的半径;②连接OC交EF于点M,则OM=.26.(9分)某企业销售某商品,以“线上”与“线下”相结合的方式一共销售了100件.设该商品线下的销售量为x(10≤x≤90)件,线下销售的每件利润为y1元,线上销售的每件利润为y2元.下图中折线ABC、线段DE分别表示y1、y2与x之间的函数关系.(1)当x=40时,线上的销售量为件;(2)求线段BC所表示的y1与x之间的函数表达式;(3)当线下的销售量为多少时,售完这100件商品所获得的总利润最大?最大利润是多少?27.(9分)如图,一张半径为3cm的圆形纸片,点O为圆心,将该圆形纸片沿直线l折叠,直线l 交⊙O于A、B两点.(1)若折叠后的圆弧恰好经过点O,利用直尺和圆规在图中作出满足条件的一条直线l(不写作法,保留作图痕迹),并求此时线段AB的长度.(2)已知M是⊙O内一点,OM=1cm.①若折叠后的圆弧经过点M,则线段AB长度的取值范围是.②若折叠后的圆弧与直线OM相切于点M,则线段AB的长度为cm.2019年江苏省南京市玄武区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.【分析】根据合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识求解即可求得答案.【解答】解:A、a•a2=a3,故A选项正确;B、a+a=2a,故B选项错误;C、(a2)3=a6,故C选项错误;D、a2(a+1)=a3+a2,故D选项错误.故选:A.【点评】本题主要考查了合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识,解题的关键是熟记法则.3.【分析】根据数轴上两点间的距离是大数减小数,可得答案.【解答】解:∵点A、B在数轴上分别表示有理数a、3,∴A、B两点之间的距离可以表示为:|a﹣3|.故选:D.【点评】本题考查绝对值的意义、数轴上两点间的距离.理解数轴上两点间的距离与绝对值的关系是解决问题的关键.4.【分析】四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,正方体是正方形,由此可确定答案.【解答】解:因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体,故选:B.【点评】考查立体图形的左视图,关键是根据圆柱是矩形,圆锥是等腰三角形,球是圆,正方体是正方形解答.5.【分析】设普通公路长、高速公路长分别为xkm、ykm,由普通公路占总路程的结合汽车从A 地到B地一共行驶了2.2h,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设普通公路长、高速公路长分别为xkm、ykm,依题意,得:.故选:C.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.6.【分析】连接AC和AF,证明△DAG∽△CAF可得的值.【解答】解:连接AC和AF,则,∵∠DAG=45°﹣∠GAC,∠CAF=45°﹣GAC,∴∠DAG=∠CAF.∴△DAG∽△CAF.∴.故选:B.【点评】本题主要考查了正方形的性质、相似三角形的判定和性质,解题的关键是构造相似三角形.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.8.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x+3﹣4x=0,解得:x=3,经检验x=3是分式方程的解.故答案为:x=3【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.9.【分析】先提公因式2,再用完全平方公式进行因式分解即可.【解答】解:原式=2(x2﹣4x+4)=2(x﹣2)2.故答案为2(x﹣2)2.【点评】本题考查了提公因式法与公式法的综合运用,是基础知识要熟练掌握.10.【分析】设反比例函数解析式为y=,则把(3,2)代入可求出k的值,从而得到反比例函数解析式,然后计算自变量为﹣1所对应的函数值即可.【解答】解:设反比例函数解析式为y=,把(3,2)代入得k=3×2=6,所以反比例函数解析式为y=,当x=﹣1时,y==﹣6.故答案为﹣6.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.11.【分析】根据相似三角形的性质与判定即可求出答案.【解答】解:∵MN∥BC,∴△AMN∽△ACB,∴,∵AB=AM+BM=7,∴,∴BC=7,故答案为:7.【点评】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.12.【分析】由根与系数的关系可得x1+x2=6,x1x2=m,代入x1+x2﹣x1x2=﹣1,即可求出m的值.【解答】解:∵x1,x2是一元二次方程x2﹣6x+m=0的两个根,∵x1+x2=6,x1x2=m,∵x1+x2﹣x1x2=﹣1,∴6﹣m=﹣1,解得m=7.故答案为7.【点评】本题考查了根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1•x2=.13.【分析】根据垂径定理可得=,根据圆周角定理可得∠BOA=2∠ADC,进而可得答案.【解答】解:如图,∵BC⊥OA,∠OBC=50°,∴∠BOA=40°∵OA是⊙O的半径,弦BC⊥OA,∴=,∴∠BOA=2∠ADC=40°,故答案是:20.【点评】此题主要考查了圆周角定理和垂径定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.14.【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【解答】解:圆锥的底面周长=2π×2=4πcm,设圆锥的母线长为R,则:=4π,解得R=6.故答案为:6.【点评】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.15.【分析】根据正求出多边形的内角和公式∠AHG,根据等腰三角形的性质、三角形内角和定理求出∠HAG,计算即可.【解答】解:∵八边形ABCDEFGH是正八边形,∴∠AHG=(8﹣2)×180°÷8=135°,AH=HG,∠AHE=90°,∴∠HAG=(180°﹣135°)÷2=22.5°,∴∠GME=∠AMH=90°﹣∠HAG=67.5°,故答案为:67.5°,【点评】本题考查的是正多边形和圆的有关计算,掌握正多边形的内角的求法是解题的关键.16.【分析】分两种情形分别求解:①如图1中,当AQ=PQ,∠QPB=90°时,②当AQ=PQ,∠PQB=90°时;根据相似三角形的性质列方程即可得到结论.【解答】解:过A作AD⊥BC于D,∵AB=AC=5,BC=6,∴AD=4,①如图1中,当AQ=PQ,∠QPB=90°时,设AQ=PQ=x,∵PQ∥AD,∴△BPQ∽△BDA,∴=,∴=,∴x=,∴AQ=;②当AQ=PQ,∠PQB=90°时,设AQ=PQ=y.∵△BQP∽△BDA,∴=,∴=,∴y=.综上所述,满足条件的AQ的值为或.故答案为:或.【点评】本题考查勾股定理、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.【分析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)分别求出每个不等式的解集,再根据口诀即可得出答案.【解答】解:(1)原式=1+2﹣4=﹣1.(2)由①得:x≤2,由②得:x>1,∴不等式组的解集为1<x≤2.【点评】本题主要考查解一元一次不等式组,解题的关键是掌握解一元一次不等式的基本步骤.18.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=•=x+1,当x=﹣1时,原式=﹣1+1=.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.【分析】(1)依据平均数、中位数以及方差的计算公式,即可得到结果;(2)依据甲乙两人平均成绩一样,甲射击成绩的方差小于乙,即可得出甲的成绩更加稳定,所以选择甲去参赛.【解答】解:(1)甲的平均成绩为:(5+6×2+7×4+8×2+9)=7(环),乙成绩的中位数为:=7.5,乙成绩的方差为:[(2﹣7)2+(4﹣7)2+(6﹣7)2+(8﹣7)2+(7﹣7)2+(7﹣7)2+(8﹣7)2+(9﹣7)2+(9﹣7)2+(10﹣7)2]=5.4,故答案为:7;7.5;5.4;(2)我选择甲去参赛.因为甲乙两人平均成绩一样,甲射击成绩的方差小于乙,所以甲的成绩更加稳定,所以选择甲去参赛.【点评】本题考查方差的定义与意义:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.20.【分析】(1)直接根据概率公式计算可得;(2)列举所有等可能结果,再根据概率公式计算可得.【解答】解:(1)搅匀后从中任意摸出一个球,标注的数字恰好为2的概率是,故答案为:;(2)所有可能出现的结果有:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共有9种,它们出现的可能性相同,所有的结果中,满足“两次数字的和大于3”(记为事件A)的结果有6种,所以P(A)==.【点评】本题主要考查列表法与树状图法求概率,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.21.【分析】(1)根据平行四边形的性质得到AB=DC.根据全等三角形的判定定理即可得到结论.(2)根据全等三角形的性质得到∠B=∠C.根据平行四边形的性质得到AB∥CD.根据矩形的判定定理即可得到结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=DC.∵BF=CE,∴BF﹣EF=CE﹣EF,∴BE=CF.∵在△ABE和△DCF中,,∴△ABE≌△DCF(SSS);(2)证明:∵△ABE≌△DCF,∴∠B=∠C.∵四边形ABCD是平行四边形,∴AB∥CD.∴∠B+∠C=180°.∴∠B=∠C=90°.∵四边形ABCD是平行四边形,∠B=90°,∴四边形ABCD是矩形.【点评】本题考查了矩形的判定,全等三角形的判定和性质,平行四边形的性质,正确的识别图形是解题的关键.22.【分析】(1)观察图象,两车之间的距离与慢车的行驶时间之间的感受图象;(2)观察图象,根据慢车行驶2.4小时时,两车之间的距离为0,求出慢车的行驶的速度,再求出当x=4时的路程;(3)根据两地之间的距离480km,画出图象即可.【解答】解:(1)从图象可以看出,两地之间的距离是480km;故答案为:480;(2)从图象中可以看出,慢车行驶2.4小时时,两车之间的距离为0,即相遇,∴慢车的速度为:480÷2.4﹣120=200﹣120=80,∴当x=4时,快车已经到达乙地,此时两车之间的距离就是慢车行驶的路程,∴当x=4时,两车之间的距离为:4×80=320,∴点P的纵坐标为:320,实际意义为:两车出发了4小时后,相距320km,此时快车到达了乙地,故答案为:320;(3)慢车距离甲地还有480﹣320=160km,需要用时:160÷80=2(小时),∴2小时后到达甲地,∴图象如图所示.【点评】本题主要考查一次函数的应用,解决此题的关键是能根据慢车行驶2.4小时时,两车相遇,求出慢车的行驶速度.23.【分析】设CD=x m.想办法构建方程即可解决问题.【解答】解:设CD=x m.∵在Rt△BAE中,tan∠AEB=,∴AE==14.∵在Rt△BAF中,∠AFB=45°,∴AF=AB=14,∴EF=AE+AF=14+14.∵在Rt△DCE中,∠CED=45°,∴EC=CD=x.∵在Rt△DCF中,tan∠CFD=,∴CF==.∴x﹣=14+14.∴x=≈=22×2.73=60.06≈60.1 m.因此,建筑物CD的高度为60.1 m.【点评】本题考查解直角三角形的应用,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.24.【分析】(1)计算判别式的值得到△≥0,从而根据判别式的意义得到结论;(2)利用配方法得到二次函数y=x2﹣2mx+2m﹣1的顶点坐标为(m,﹣(m﹣1)2),然后根据二次函数图象上点的坐标特征进行判断;(3)先计算出抛物线y=﹣(x﹣1)2与直线y=﹣1的交点的横坐标,然后结合图象得到a+2≥0且a≤2.【解答】(1)证明:∵△=4m2﹣4(2m﹣1)=4m2﹣8m+4=4(m﹣1)2≥0,所以不论m为何值,该二次函数的图象与x轴总有公共点;(2)证明:y=x2﹣2mx+2m﹣1=(x﹣m)2﹣(m+1)2,二次函数y=x2﹣2mx+2m﹣1的顶点坐标为(m,﹣(m﹣1)2)当x=m时,y=﹣(x﹣1)2=﹣(m﹣1)2,所以不论m为何值,该二次函数的图象的顶点都在函数y=﹣(x﹣1)2的图象上;(3)当y=﹣1时,y=﹣(x﹣1)2=﹣1,解得x1=0,x2=2,当a+2≥0且a≤2时,线段AB与函数y=﹣(x﹣1)2的图象有公共点,所以a的范围为﹣2≤a≤2.故答案为﹣2≤a≤2.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.25.【分析】(1)连接OE.根据等腰三角形的性质得到∠OEB=∠C,根据平行线的性质得到∠OEF+∠AFE=180°.根据切线的判定定理即可得到结论;(2)①连接BD,AE,根据圆周角定理得到∠ADB=90°,∠AEB=90°,求得AE⊥BC.根据勾股定理即可得到结论;②根据勾股定理得到BD==,CD=1,根据相似三角形的性质得到EM=,根据勾股定理即可得到结论.【解答】(1)证明:连接OE.∵在△ABC中,AB=AC,∴∠B=∠C.∵OB=OE,∴∠OBE=∠OEB.∴∠OEB=∠C,∴OE∥AC.∴∠OEF+∠AFE=180°.∵EF⊥AC于点F,∴∠EFA=90°.∴∠OEF=90°,∴OE⊥EF.∵OE⊥EF于点E,OE是⊙O的半径,∴EF是⊙O的切线;(2)①解:连接BD,AE,∵AB是⊙O的直径,∴∠ADB=90°,∠AEB=90°,∴AE⊥BC.∵在△ABC中,AB=AC,∴CE=BE=2,∴BC=2BE=4,∵∠ADB+∠CDB=180°,∴∠CDB=90°.在Rt△ADB中,∠ADB=90°,∴BD2=AB2﹣AD2.在Rt△CDB中,∠CDB=90°,∴BD2=BC2﹣CD2.∴AB2﹣AD2=BC2﹣CD2.设CD=x,则AB=AC=7+x.∴(7+x)2﹣72=42﹣x2,∴x=1.∴AB=7+x=8.∴r=AB=4.②解:∵AD=7,AB=AC=8,∴BD==,CD=1,∵BE=CE=2,EF∥BD,∴EF=BD=,CF=CD=,∵AB=AC,AE⊥BC,∴∠BAE=∠CAE,∴=,∴OE⊥BD,∴OE⊥EF,∴OE∥CF,∴△CFM∽△OEM,∴=,∴=,∴EM=,∴OM==.故答案为:.【点评】本题考查了切线的判定和性质,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.26.【分析】(1)根据“线上”与“线下”相结合的方式一共销售了100件.可求得线上的销售量;(2)用待定系数法解答便可;(3)根据已知条件求出线上与线下的利润与x的函数关系,进而得总利润与x的函数关系式,再根据函数的性质和求最值的方法继续解答便可.【解答】解:(1)100﹣40=60(件),故答案为:60;(2)设y1=kx+b(k、b为常数,k≠0),∵图象过点B(70,125)、C(90,105),∴解得:∴y1=﹣x+195(70≤x≤90).(3)设总利润为W元.因为线下的销售量为x件,所以线上的销售量为(100﹣x)件;根据图象知,线上的每件利润y2为100元.当10≤x≤70时,设y1=k1x+b1(k1、b1为常数,k1≠0),∵图象过点A(10,155)、B(70,125),∴解得:,∴y1=﹣x+160(10≤x≤70).∴W1=﹣x2+160x+100(100﹣x)=﹣x2+60x+10000=﹣(x﹣60)2+11800.∴当x=60时,此时W1的最大值为11800.当70≤x≤90时,y1=﹣x+195,∴W2=﹣x2+195x+100(100﹣x)=﹣x2+95x+10000=﹣(x﹣47.5)2+12256.25.∵a=﹣1<0,∴当70≤x≤90时,W2随x的增大而减小,∴当x=70时,此时W2的最大值为11750,综上,当x=60时,W的最大值为11800.答:当线下的销售量为60件时,总利润最大,最大值为11800元.【点评】本题是一次函数与二次比函数的应用的综合题,主要考查了用待定系数法求一次函数函数的解析式,二次函数的实际应用,求二次函数的最值关键是熟记利润、成本、售价的关系.27.【分析】(1)连接AO,直线l垂直平分PO.OH=PO=,在Rt△AHO中即可求解;(2)分两种情况求解;(3)过O作弦AB的垂直与圆交于点D,与弧AB交于点C,与AB交于点E,过M作OM的垂线,两条垂线的交点为O',翻折连接AO,得到OO'垂直平分AB,O'为弧ABM所在圆的圆心,OO'=,在Rt△ACO中即可求解;【解答】解:(1)如图,直线l为所求.连接AO,∵点P与点O关于直线l对称,∴直线l垂直平分PO.∴OH=PO=.在Rt△AHO中,∵AH2+HO2=AO2,∴AH==.在⊙O中,∵PO⊥AB,PO为半径,∴AB=2AH=3;(2)如图1:∵弧AB翻折与M重合,OM=1,∴DM =1,在Rt △ADM 中,AM =3,∴AD =2,∴AB =4; 如图2:∵弧AB 翻折与M 重合,OM =1,∴MD =2,在Rt △ADM 中,AM =3,∴AD =,∴AB =2;∴2≤AB ≤4;故答案为2≤AB ≤4; (3)如图3:过O 作弦AB 的垂直与圆交于点D ,与弧AB 交于点C ,与AB 交于点E ,过M 作OM 的垂线,两条垂线的交点为O ',翻折连接AO ,∴OO '垂直平分AB ,O '为弧ABM 所在圆的圆心,∵折叠后的圆弧与直线OM 相切于点M ,∴MO '=3,CO =DO ',在Rt △OO 'M 中,OM =1,∴OO '=,在Rt △ACO 中,EO =,AO =3, ∴AE =,∴AB =;故答案为;【点评】本题考查圆的翻折,垂径定理,圆的切线,解直角三角形;熟练用垂径定理,在直角三角形中求边,分类讨论折叠的情况是解题的关键.。
江苏省南京市2019年中考数学模拟试卷一.选择题(满分12分,每小题2分)1.下列计算中正确的是()A.a2+b3=2a5B.a4÷a=a4C.a2•a4=a8D.(﹣a2)3=﹣a6 2.下列说法中正确的是()A.带根号的数是无理数B.无理数不能在数轴上表示出来C.无理数是无限小数D.无限小数是无理数3.计算2﹣1的结果是()A.0 B.C.1 D.24.在下列关于x的方程中,是二项方程的是()A.x3=x B.x3=0 C.x4﹣x2=1 D.81x4﹣16=0 5.如图,在平面直角坐标系中,将点P(﹣4,2)绕原点O顺时针旋转 90°,则其对应点Q的坐标为()A.(2,4)B.(2,﹣4)C.(﹣2,4)D.(﹣2,﹣4)6.如图①是半径为2的半圆,点C是弧AB的中点,现将半圆如图②方式翻折,使得点C 与圆心O重合,则图中阴影部分的面积是()A.B.﹣C.2+D.2﹣二.填空题(满分20分,每小题2分) 7.若使代数式有意义,则x 的取值范围是 .8.根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为 . 9.计算﹣= .10.为了考察甲、乙两块地小麦的长势,分别从中随机抽出10株苗,测得苗高如图所示,若S 甲2和S 乙2分别表示甲、乙两块地苗高数据的方差,则S 甲2 S 乙2(填“>”“<”或“=”)11.已知x 1,x 2是关于x 的方程x 2+(3k +1)x +2k 2+1=0的两个不相等实数根,且满足(x 1﹣1)(x 2﹣1)=8k 2,则k 的值为 .12.已知圆锥的底面半径为3,母线长为7,则圆锥的侧面积是 .13.如图,平行四边形ABCD 中,过对角线BD 上一点P 作EF ∥BC ,GH ∥AB ,且CG =2BG ,连接AP ,若S △APH =2,则S 四边形PGCD = .14.如图,在△ABC 中,D 、E 分别为边BC 、AB 的中点,AD 、CE 相交于O ,AB =8,BC =10,AC =6,求OD = .15.平面直角坐标系中一点P(m﹣3,1﹣2m)在第三象限,则m的取值范围是.16.《九章算术》是我国古代数学成就的杰出代表作,书中记载:“今有圆材埋壁中,不知大小.以锯锯之,深1寸,锯道长1尺,问经几何?“其意思为:“如图,今有一圆形木材埋在墙壁中,不知其大小用锯子去锯这个木材,锯口深1寸(即DE=1寸),锯道长1尺(即弦AB=1尺),问这块圆形木材的直径是多少?”该问题的答案是(注:1尺=10寸)三.解答题(共11小题,满分88分)17.(12分)(1)解不等式组:(2)化简:18.(7分)如图,菱形ABCD中,DF⊥AB交AC于点E,垂足为F,EF=2,DE=4,(1)求BE的长度;(2)求菱形ABCD的面积.19.(7分)现有甲、乙、丙三人组成的篮球训练小组,他们三人之间进行互相传球练习,篮球从一个人手中随机传到另外一个人手中计作传球一次,共连续传球三次.(1)若开始时篮球在甲手中,则经过第一次传球后,篮球落在丙的手中的概率是;(2)若开始时篮球在甲手中,求经过连续三次传球后,篮球传到乙的手中的概率.(请用画树状图或列表等方法求解)20.(7分)图1是某市2009年4月5日至14日每天最低气温的折线统计图.(1)图2是该市2007年4月5日至14日每天最低气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;(2)在这10天中,最低气温的众数是,中位数是,方差是.(3)请用扇形图表示出这十天里温度的分布情况.21.(7分)随着无人机的应用范围日益广泛,无人机已走进寻常百姓家,如图,小明在我市体训基地试飞无人机.为测量无人机飞行的高度AB,小明在C点处测得∠ACB=45°,向前走5米,到达D点处测得∠ADB=40°.求无人机飞行的高度AB.(参考数据: 1.4,sin40°≈0.6,cos40°≈0.6,tan40°≈0.8.)22.(8分)已知:函数y=ax2﹣(1﹣3a)x+2a﹣1,完成下列题目.(1)当a取何值时,二次函数y=ax2﹣(1﹣3a)x+2a﹣1的对称性轴是x=﹣2?(2)求证:a取任何实数,函数y=ax2﹣(1﹣3a)x+2a﹣1与x轴都有交点.(3)已知不论a取任何实数,函数y=ax2﹣(1﹣3a)x+2a﹣1都经过确定的点,请直接写出定点坐标:.23.(7分)尺规作图:任意画一条线段线段,然后将其七等分.24.(8分)某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t 的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾区安置点从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值:C D总计/tA200B x300总计/t240 260 500 (2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调动方案.25.(7分)如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:D F是⊙O的切线;(2)若OB=BF,EF=4,求AD的长.26.(8分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)当销售单价为70元时,每天的销售利润是多少?(2)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式,并求出自变量x的取值范围;(3)如果该企业每天的总成本不超过7000元,那么销售单价为多少元时,每天的销售利润最大?最大利润是多少?(每天的总成本=每件的成本×每天的销售量)27.(10分)我们定义:如图1、图2、图3,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′,当α+β=180°时,我们称△AB'C′是△ABC的“旋补三角形”,△AB′C′边B'C′上的中线AD 叫做△ABC的“旋补中线”,点A叫做“旋补中心”.图1、图2、图3中的△AB′C′均是△ABC的“旋补三角形”.(1)①如图2,当△ABC为等边三角形时,“旋补中线”AD与BC的数量关系为:AD=BC;②如图3,当∠BAC=90°,BC=8时,则“旋补中线”AD长为.(2)在图1中,当△ABC为任意三角形时,猜想“旋补中线”AD与BC的数量关系,并给予证明.参考答案一.选择题1.解:A、不是同类项不能合并,故A错误;B、同底数幂的除法底数不变指数相减,故B错误;C、同底数幂的乘法底数不变指数相加,故C错误;D、积的乘方等于乘方的积,故D正确;故选:D.2.解:A、如=2,不是无理数,故本选项错误;B、无理数都能在数轴上表示出来,故本选项错误;C、无理数是无限不循环小数,即无理数都是无限小数,故本选项正确;D、如1.33333333…,是无限循环小数,是有理数,故本选项错误;故选:C.3.解:2﹣1=,故选:B.4.解:A.x3=x即x3﹣x=0不是二项方程;B.x3=0不是二项方程;C.x4﹣x2=1,即x4﹣x2﹣1=0,不是二项方程;D.81x4﹣16=0是二项方程.故选:D.5.解:作图如下,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON,在△PMO和△ONQ中,∵,∴△PMO≌△ONQ,∴PM=ON,OM=QN,∵P点坐标为(﹣4,2),∴Q点坐标为(2,4),故选:A.6.解:连接OC交MN于点P,连接OM、ON,由题意知,OC⊥MN,且OP=PC=1,在Rt△MOP中,∵OM=2,OP=1,∴cos∠POM==,AC==,∴∠POM=60°,MN=2MP=2,∴∠AOB=2∠AOC=120°,则图中阴影部分的面积=S半圆﹣2S弓形MCN=×π×22﹣2×(﹣×2×1)=2﹣π,故选:D.二.填空7.解:∵分式有意义,∴x的取值范围是:x+2≠0,解得:x≠﹣2.故答案是:x≠﹣2.8.解:4400000000=4.4×109.故答案为:4.4×1099.解:原式=2﹣3=﹣.故答案为:﹣.10.解:从整体上看,甲的10株麦苗比较集中,整齐,而乙的则显得分散,乙的离散程度较大,因此乙的方差也大, 故答案为:<11.解:∵x 1,x 2是关于x 的方程x 2+(3k +1)x +2k 2+1=0的两个实数根, ∴x 1+x 2=﹣(3k +1),x 1x 2=2k 2+1.∵(x 1﹣1)(x 2﹣1)=8k 2,即x 1x 2﹣(x 1+x 2)+1=8k 2, ∴2k 2+1+3k +1+1=8k 2, 整理,得:2k 2﹣k ﹣1=0, 解得:k 1=﹣,k 2=1.∵关于x 的方程x 2+(3k +1)x +2k 2+1=0的两个不相等实数根, ∴△=(3k +1)2﹣4×1×(2k 2+1)>0, 解得:k <﹣3﹣2或k >﹣3+2,∴k =1. 故答案为:1.12.解:圆锥的侧面积=×2π×3×7=21π. 故答案为21π.13.解:∵EF ∥BC ,GH ∥AB ,∴四边形HPFD 、四边形PGCF 是平行四边形, ∵S △APH =2,CG =2BG , ∴S △DPH =2S △APH =4,∴平行四边形HPFD 的面积=8,∴平行四边形PGCF 的面积=×平行四边形HPFD 的面积=4, ∴S 四边形PGCD =4+4=8, 故答案为:8.14.解:∵AB =8,BC =10,AC =6, ∴AB 2+AC 2=BC 2, ∴∠BAC =90°,∵D为BC的中点,∴AD=BC=×10=5,∵D、E分别为BC和AB的中点,∴DE=AC,DE∥AC,∴△DOE∽△AOC,∴==,∴DO=AD=.故答案为:.15.解:∵点P(m﹣3,1﹣2m)在第三象限,∴,解得:0.5<m<3,故答案为:0.5<m<316.解:延长CD,交⊙O于点E,连接OA,由题意知CE过点O,且OC⊥AB,则AD=BD=AB=5(寸),设圆形木材半径为r,则OD=r﹣1,OA=r,∵OA2=OD2+AD2,∴r2=(r﹣1)2+52,解得r=13,所以⊙O的直径为26寸,故答案为:26寸.三.解答17.解:(1),解①得:x>2.5,解②得:x>4,则原不等式组的解集是:x>4;(2)原式=•=•=.18.解:(1)∵ABCD是菱形,∴AD=AB,∠DAE=∠BAE,在△ADE和△ABE中,∵,∴△ADE≌ABE,∴DE=BE=4,即BE的长度为4.(2)∵BE=4,EF=2,DF⊥AB,∴∠ABE=30°,∴BF=2,∠ADF=30°,∵EF=2,DE=4,∴DF=6,∴AF=2,∴AB=AF+BF=4,∴菱形的面积=AB×DF=24.19.解:(1)经过第一次传球后,篮球落在丙的手中的概率为;故答案为:;(2)画树状图如图所示:由树形图可知三次传球有8种等可能结果,三次传球后,篮球传到乙的手中的结果有3种,∴篮球传到乙的手中的概率为.20.【解答】解:(1)由图1可知,8℃有2天,9℃有0天,10℃有2天,补全统计图如图;(2)根据条形统计图,7℃出现的频率最高,为3天,所以,众数是7;按照温度从小到大的顺序排列,第5个温度为7℃,第6个温度为8℃,所以,中位数为(7+8)=7.5;平均数为(6×2+7×3+8×2+10×2+11)=×80=8,所以,方差= [2×(6﹣8)2+3×(7﹣8)2+2×(8﹣8)2+2×(10﹣8)2+(11﹣8)2],=(8+3+0+8+9),=×28,=2.8;故答案为:7,7.5,2.8;(3)6℃的度数,×360°=72°,7℃的度数,×360°=108°,8℃的度数,×360°=72°,10℃的度数,×360°=72°,11℃的度数,×360°=36°,作出扇形统计图如图所示.21.解:设AB=xm,在Rt△ABC中,由tan45°=,得BC=AB=xm,在Rt△ABD中,由tan40°=,得BD=x,∵BD﹣BC=CD,∴x﹣x=5,∴x=20,答:无人机飞行的高度AB为20米;22.解:(1)函数的对称轴为:x==﹣2,解得:a=﹣1;(2)△=b2﹣4ac=(1﹣3a)2﹣4a(2a﹣1)≥0,解得:a为任意实数;(3)y=ax2﹣(1﹣3a)x+2a﹣1=a(x2+3x+2)﹣(x+1),x2+3x+2=1,函数过定点(﹣2,﹣1)、(1,0),故答案为(﹣2,﹣1)、(1, 0).23.解:从线段AB的端点A引射线AO,在射线AO上依次截取AM=MN=NP=PH=HQ=QG=GK,连接KB,过点M、N、P、H、Q、G分别作KB的平行线,分别交AB于H、C、D、E、F、G,则点H、C、D、E、F、G为线段AB的七等份点.24.解:(1)填表如下:C D总计/tA(240﹣x)(x﹣40)200B x(300﹣x)300总计/t240 260 500 依题意得:20(240﹣x)+25(x﹣40)=15x+18(300﹣x)解得:x=200两个蔬菜基地调运蔬菜的运费相等时x的值为200.(2)w与x之间的函数关系为:w=20(240﹣x)+25(x﹣40)+15x+18(300﹣x)=2x+9200 由题意得:∴40≤x≤240∵在w=2x+9200中,2>0∴w随x的增大而增大∴当x=40时,总运费最小此时调运方案为:(3)由题意得w=(2﹣m)x+9200∴0<m<2,(2)中调运方案总费用最小;m=2时,在40≤x≤240的前提下调运方案的总费用不变;2<m<15时,x=240总费用最小,其调运方案如下:25.解:(1)如图,连接OD,BD,∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,在Rt△BDC中,∵BE=EC,∴DE=EC=BE,∴∠1=∠3,∵BC是⊙O的切线,∴∠3+∠4=90°,∴∠1+∠4=90°,又∵∠2=∠4,∴∠1+∠2=90°,∴DF为⊙O的切线;(2)∵OB=BF,∴OF=2OD,∴∠F=30°,∵∠FBE=90°,∴BE=EF=2,∴DE=BE=2,∴DF=6,∵∠F=30°,∠ODF=90°,∴∠FOD=60°,∵OD=OA,∴∠A=∠ADO=BOD=30°,∴∠A=∠F,∴AD=DF=6.26.解:(1)当销售单价为70元时,每天的销售利润=(70﹣50)×[50+5×(100﹣70)]=4000元;(2)由题得y=(x﹣50)[50+5(100﹣x)]=﹣5x2+800x﹣27500(x≥50).∵销售单价不得低于成本,∴50≤x≤100.(3)∵该企业每天的总成本不超过7000元∴50×[50+5(100﹣x)]≤7000(8分)解得x≥82.由(2)可知y=(x﹣50)[50+5(100﹣x)]=﹣5x2+800x﹣27500∵抛物线的对称轴为x=80且a=﹣5<0∴抛物线开口向下,在对称轴右侧,y随x增大而减小.∴当x=82时,y有最大,最大值=4480,即销售单价为82元时,每天的销售利润最大,最大利润为4480元.27.解:(1)①如图2中,∵△ABC是等边三角形,∴AB=BC=AC=AB′=AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=AB′=BC,故答案为.②如图3中,∵∠BAC=90°,∠BAC+∠B′AC′=180°,∴∠B′AC′=∠BAC=90°,∵AB=AB′,AC=AC′,∴△BAC≌△B′AC′,∴BC=B′C′,∵B′D=DC′,∴AD=B′C′=BC=4,故答案为4.(2)结论:AD=BC.理由:如图1中,延长AD到M,使得AD=DM,连接B′M,C′M∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴AC′=B′M=AC,∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,∴∠BAC=∠MB′A,∵AB=AB′,∴△BAC≌△AB′M,∴BC=AM,∴AD=BC.。