硫酸铜的制备及结晶水的测定(精)
- 格式:ppt
- 大小:1.27 MB
- 文档页数:10
硫酸铜的制备及结晶水的测定一、实验目的1.掌握利用废铜粉制备硫酸铜的方法;2.练习减压过滤、蒸发浓缩和重结晶等基本操作;3.了解结晶水的测定方法,认识物质热稳定性和分子结构的关系。
二、实验原理利用废铜粉灼烧氧化法制备CuSO 4·5H 2O :先将铜粉在空气中灼烧氧化成氧化铜,然后将其溶于硫酸而制得:2Cu + O 2=== 2CuO (黑色)CuO + H 2SO 4=== CuSO 4+ H 2O由于废铜粉不纯,所得CuSO 4溶液中常含有不溶性杂质和可溶性杂质FeSO 4、Fe 2(SO 4)3及其它重金属盐等。
Fe 2+离子需用氧化剂H 2O 2溶液氧化为Fe 3+离子,然后调节溶液pH ≈4.0,并加热煮沸,使Fe 3+离子水解为Fe(OH)3沉淀滤去。
其反应式为2Fe 2++ 2H ++ H 2O 2=== 2Fe 3++ 2H 2OFe 3++ 3H 2O === Fe(OH)3↓+ 3H +CuSO 4·5H 2O 在水中的溶解度,随温度的升高而明显增大,因此粗硫酸铜中的其它杂质,可通过重结晶法使杂质在母液中,从而得到较纯的蓝色水合硫酸铜晶体。
水合硫酸铜在不同的温度下可以逐步脱水,其反应式为CuSO 4·5H 2O === CuSO 4·3H 2O + 2H 2OCuSO 4·3H 2O === CuSO 4·H 2O + 2H 2OCuSO 4·H 2O === CuSO 4+ H 2O 1 mol CuSO 4结合的结晶水的数目为:24H OCuSO n n三、实验仪器及试剂托盘天平,瓷坩埚,泥三角,酒精灯,烧杯(50mL),电炉,布氏漏斗,吸滤瓶,精密pH试纸,蒸发皿,表面皿,水浴锅,量筒(10mL)。
废铜粉, H2SO4(2mol·L-1), H2O2(3%),K3[Fe(CN)6](0.1mol·L-1), NaOH(2mol·L-1),无水乙醇。
硫酸铜晶体结晶水含量测定1. 引言嘿,朋友们,今天我们来聊聊硫酸铜晶体,这可是个神奇的小家伙哦!你可能在实验室里见过它,蓝得发亮,像是从天上掉下来的蓝宝石。
可是,你知道它的结晶水含量到底有多少吗?这可是个有趣的课题,跟着我一起走进这个五光十色的化学世界吧!2. 硫酸铜的基本知识2.1 硫酸铜的构成硫酸铜的化学式是CuSO₄·5H₂O,这个小符号后面的“5H₂O”就告诉我们,它含有五个水分子。
也就是说,每当你看到这些晶体的时候,实际上它们的身边还藏着五位小水分子,默默陪伴。
想想看,像极了我们生活中的好朋友,总是在关键时刻为你撑腰,呵呵。
2.2 硫酸铜的用途硫酸铜不仅仅是个“美丽的花瓶”,它在农业、化工和甚至在日常生活中都有广泛应用。
比如,它能作为农药,帮助农民抵御病虫害;或者用作水处理剂,让我们的水源更加干净。
真是个多才多艺的小家伙呢!3. 结晶水的测定3.1 实验准备那么,既然硫酸铜这么好,我们就得搞清楚它的结晶水到底有多少。
这就需要我们动手来一场小实验。
首先,你需要一些硫酸铜晶体、一个天平、一个烧杯和一些加热工具。
准备好了吗?就像做菜一样,材料到位,接下来就是大显身手的时候了。
3.2 实验步骤接下来,先称取一定量的硫酸铜晶体,记得要精准哦,像买菜时不能斤斤计较,要大方一些。
然后,把它放进烧杯里,准备加热。
小心点,别让它跳出来!加热的时候,注意观察,慢慢地,你会看到晶体的颜色变得越来越浅,水分在一点一点地蒸发。
这个过程就像我们在阳光下晒衣服,水分慢慢挥发,衣服也就干了。
等到晶体完全变成了白色的无水硫酸铜,停下加热,稍微冷却一下,接着再称重。
通过比较加热前后的重量差,就能算出结晶水的含量啦!简单吧?就像一场小侦探游戏,找出水分的“藏身之处”。
4. 数据分析与总结4.1 数据记录这时候,我们得把实验数据认真记录下来,像个小老师一样,不漏掉任何细节。
这样才能确保我们的实验结果真实可靠。
毕竟,“细节决定成败”嘛,不能因为一点小失误就功亏一篑。
硫酸铜晶体里结晶水含量的测定1. 实验原理硫酸铜晶体是一种比较稳定的结晶水合物,当加热到150℃左右时将全部失去结晶水,根据加热前后的质量差,可推算出其晶体的结晶水含量。
2. 实验仪器托盘天平、研钵、玻璃棒、三脚架、泥三角、瓷坩埚、坩埚钳、干燥器、酒精灯、药匙。
3. 操作步骤(1)研磨:在研钵中将硫酸铜晶体研碎。
(防止加热时可能发生迸溅)(2)称量:准确称量一干燥洁净的瓷坩锅质量(Wg )。
(3)再称:称量瓷坩埚+硫酸铜晶体的质量(W 1g )。
(4)加热:小火缓慢加热至蓝色晶体全部变为白色粉末(完全失水),并放入干燥器中冷却。
(5)再称:在干燥器内冷却后(因硫酸铜具有很强的吸湿性),称量瓷坩埚+硫酸铜粉末的质量(W 2g )。
(6)再加热:把盛有硫酸铜的瓷坩埚再加热,再冷却。
(7)再称重:将冷却后的盛有硫酸铜的瓷坩埚再次称量(两次称量误差≤0.1g )。
(8)计算:根据实验测得的结果计算硫酸铜晶体中结晶水的质量分数。
简称:“一磨”、“四称”、“两热”、“一算”。
设分子式为。
4212124212)2)W -W =100%W -W ()()=:1:16018160(W -W 18(W -W CuSO xH Om CuSO m H O x x ⋅⨯==水或水4. 注意事项①称前研细;②小火加热;③在干燥器中冷却;④不能用试管代替坩埚;⑤加热要充分但不“过头”(温度过高CuSO4也分解)。
5. 误差分析(1)偏高的情况①加热温度过高或时间过长,固体部分变为灰白色,因为,黑色的CuO与白色的CuSO4混合,会使固体变为灰白色,因W2偏小,W1-W2数值偏高;②晶体中含有(或坩埚上附有)受热易分解或易挥发的杂质,因W2偏小,W1-W2数值偏高;③加热时搅拌不当使晶体溅出坩埚外或被玻璃带走少量,因W2偏小,W1-W2数值偏高;④实验前晶体有吸潮现象或加热前所用的坩埚未完全干燥,因W1偏大,W1-W2数值偏高。
结晶水含量测定实验今天的实验我们要来测定硫酸铜晶体结晶水的含量。
硫酸铜晶体加热分解成一份硫酸铜和X份水,我们今天要测含量就是测CuSO4▪XH2O中X的值。
实验中要用到电子天平和干燥器,实验室里有4个电子天平和干燥器,都放在前面,由于数量较少,大家使用的时候要有秩序一点,抓紧点时间。
至于坩埚、泥三角等在课堂上已经给大家介绍过了,我就不重复了。
我们重点来看看实验步骤。
1.研磨晶体。
书上要求将硫酸铜晶体仔细研磨成粉末,不能有颗粒状的晶体存在。
提问:如果有颗粒状的晶体存在将会使实验结果怎么样因为由于我们实验室给的晶体已经是比较细的了,所以我们就不用研磨了。
2.称量(干燥)坩埚。
称量前先检查坩埚是不是干燥的,如果有水可以用纸擦干。
我们用坩埚钳移动坩埚,电子天平要先清零(t),再讲坩埚放进去称量。
称量时记得将侧门关上。
测得坩埚的质量是m0.要注意的是,我们每测一个数据都要及时记录下来。
电子天平是精确到的,因此,我们在记录数据的时候也要记到小数点后三位。
3.称量晶体和坩埚。
坩埚质量称好之后,记好数据,不需要将坩埚拿出来,我们就可以直接向坩埚中加入晶体了。
我们要称大约2g晶体,先用药匙直接往坩埚里加,注意观察度数,如果坩埚重,我们就要加药品到度数为20g,当快接近我们所需要的量之后,就像这样(演示打手腕使晶体抖落)。
2g大约只有2药匙。
这样加可以使称得的晶体质量不会过量,可以节省药品。
这时候测得的质量为m2.4.灼烧晶体。
我们将仪器像这样搭好(演示)用坩埚钳将坩埚移动到泥三角上(演示)慢慢加热,并用玻璃棒不断搅拌,但不能太剧烈,有些人这样剧烈搅拌可以会产生什么后果使晶体溅出。
提问:如果晶体溅出则实验结果会怎样因为加热时可以用坩埚钳将坩埚夹住固定,防止它倾倒。
当蓝色完全变为白色时,注意一定要等它完全变白了,才能移去火焰。
有可能我们一直加热仍有一点蓝色,但是硫酸铜已经变成粉末状了,这时候就可以停止加热了。
同时不能加热时间太长,使晶体变黑。
高三实验部硫酸铜晶体中结晶水含量的测定班级姓名学号
实验目的:1 学习测定晶体中结晶水含量的方法。
2 练习坩埚的使用方法,初步学会研磨操作。
3 理解恒重操作在重量实验中的作用。
实验原理:
硫酸铜晶体是一种比较稳定的结晶水合物,当加热到150℃左右时将全部失去结晶水,根据加热前后的质量差,可推算出其晶体的结晶水含量。
实验用品:研钵、三脚架、瓷坩埚、坩埚钳、干燥器、药匙、硫酸铜晶
体、、、、
实验步骤:
1、研磨将硫酸铜晶体研碎,受热均匀,有利于失去全部结晶水;
2、称量首先准确称量干燥洁净的的质量,记为m0;取约2g左右的研细晶体称量,记为m1,该质量是+ 的质量;
3、加热小火慢慢加热,玻棒搅拌,避免局部过热而造成硫酸铜分解或晶体溅失,直至蓝色晶体几乎完全变为;
4、冷却加热后放在干燥器内冷却,避免;
5、再称称量瓷坩埚+未完全失水硫酸铜粉末的质量并记录
6、恒重操作再加热、冷却,再称量,直至为止,记录质量为m2,该质量为+ 的质量。
7、计算
8、再做一次平行实验,取平均值
数据记录:
根据上述数据计算:
第一次实验x= (取小数点后2位,下同)
第二次实验x=
两次实验的平均值x=
本次实验理论值为x=
思考题:
1.判断下列情况会引起x值偏大还是偏小
2. 将5g CuSO4 5H2O加热一段时间,待晶体变为白色后,停止加热,并将所得晶体放在干燥器中冷却,称量的晶体为4.5g。
计算每摩尔该晶体应带有的结晶水数目。
硫酸铜晶体中结晶水含量的测定实验报告单实验目的:本实验旨在通过测定硫酸铜晶体中结晶水含量,掌握含水晶体的水合物的制备和鉴定方法。
实验原理:硫酸铜为含2个结晶水的盐,其化学式为CuSO4·2H2O。
结晶水晶体中的水分子与盐分子通过氢键相连,结构稳定。
根据质量守恒定律,在失去结晶水的情况下,硫酸铜质量减少的部分即为结晶水的质量。
实验中可以通过加热硫酸铜样品,使其脱水,再称重,计算质量差来确定结晶水含量。
实验仪器和药品:仪器:电子天平、烧杯、玻璃棒、火炬药品:硫酸铜晶体样品实验步骤:1.将硫酸铜晶体样品称取0.5g放入干燥烧杯中。
2.使用电子天平准确称重,并记录初始质量。
3.在通风良好的条件下,使用火炬加热烧杯,加热硫酸铜样品。
注意要均匀加热,并用玻璃棒搅拌样品,以促进脱水反应。
直到热效应消失,即加热后的质量基本不再变化为止。
4.关闭火炬,待样品冷却至室温。
5.使用电子天平称重加热后的硫酸铜样品,并记录最终质量。
实验结果:初始质量:0.5g最终质量:0.35g质量差:初始质量-最终质量=0.5g-0.35g=0.15g结晶水的质量:0.15g讨论与分析:根据实验结果,硫酸铜样品中结晶水的质量为0.15g。
根据化学计量学原理,硫酸铜中结晶水的摩尔比为1∶2,因此可计算出结晶水的摩尔质量。
硫酸铜的摩尔质量为:63.5g/mol结晶水的摩尔质量为:18g/mol根据化学计量学计算公式,可得到结晶水的摩尔质量:0.15g × (1 mol/63.5g) × (18g/1 mol) ≈ 0.425mol可以计算得知,硫酸铜晶体中的结晶水的比例约为0.425mol/1mol,即约为42.5%。
结论:在本实验中,通过加热硫酸铜晶体样品,我们测定了硫酸铜晶体中结晶水的含量。
实验结果显示,硫酸铜晶体中的结晶水含量约为42.5%。
通过本实验,我们掌握了含水晶体的水合物制备和鉴定的方法。
“硫酸铜晶体里结晶水含量的测定”1.实验原理硫酸铜晶体中结晶水的质量分数=(硫酸铜晶体和瓷坩埚的质量—无水硫酸铜和瓷坩埚的质量=结晶水的质量)。
2.实验步骤①研磨:在研钵中将硫酸铜晶体研碎。
②称量;准确称量干燥的瓷坩埚的质量,并用此坩埚准确称取一定质量已研碎的硫酸铜晶体。
③加热:加热晶体,使其失去全部结晶水(由蓝色完全变为白色)。
加热装置如图所示(加热时去掉坩埚上盖)。
④称量:在干燥器内冷却后称量,并记下瓷坩埚和无水硫酸铜的质量。
⑤再加热、再称量至恒重:把盛有无水硫酸铜的瓷坩埚再加热,再放入干燥器里冷却后再称量,记下质量。
到连续两次称量的质量相差不超过0.1g为止。
⑥计算:根据实验测得的结果求硫酸铜晶体中结晶水的质量分数。
3.注意事项①晶体加热后一定要放在干燥器内冷却,以保证无水硫酸铜不会从空气中吸收水分而引起测得值偏低(相当于水没有完全失去)。
②晶体要在坩埚底上摊开加热,有利于失去全部结晶水,以免引起测得值偏低。
③加热时间不充分、加热温度过低(未全变白),都会使测得值偏低。
④加热过程中,应慢慢加热(可改垫石棉网),以防因局部过热而造成晶体溅失,引起测量值偏高。
⑤加热温度过高或时间过长,会导致硫酸铜少量分解,使测得值偏高。
4.讨论题解答:分析实验中产生误差的原因设硫酸铜晶体组成CuSO4·xH2O,m1为坩埚和晶体的质量,m2为加热后冷却称量所得坩埚与粉末的质量。
原理:产生误差的原因及误差分析:⑴称量的坩埚不干燥:加热后水分蒸发,这样实验过程减少的质量包括晶体中结晶水的质量和坩埚带有水的质量两部分,因计算时将实验过程减少的质量看作结晶水的质量,这样该过程计算时代入的m1—m2的值偏大,则计算出的w或x偏大。
⑵晶体表面有水:加热后水分蒸发,原理同(1),使得m1—m2的值偏大,则w或x偏大。
⑶晶体不纯,含有不挥发杂质:加热后不挥发性杂质不分解,只有其中的硫酸铜晶体分解,使得m1—m2的值偏小,则w或x偏小。
五水硫酸铜结晶水含量的测定一、实验目的要求:1.了解制备五水硫酸铜晶体的方法。
2.测定硫酸铜的结晶水含量。
二、实验内容:1.五水硫酸铜的提纯。
2.五水硫酸铜晶体自由水的脱去。
3.测定硫酸铜晶体里的结晶水含量。
三、主要仪器设备及药品:仪器设备:电子天平,称量瓶,不锈钢锅(薄壁,内装食盐用于盐浴),温度计(量程在350℃,测量盐浴温度),烘箱(烘干自由水),电炉,滤纸,皮筋。
药品:五水硫酸铜,3公斤食盐左右(用于盐浴加热),无水乙醇。
四、实验原理五水硫酸铜结构:图1 CuSO4·5H2O的晶体结构一般性质硫酸铜CuSO4(硫酸铜晶体:CuSO4·5H2O)分子量249.68。
深蓝色大颗粒状结晶体或蓝色颗粒状结晶粉末,略透明。
有毒,无臭,带有金属涩味。
密度2.2844g/cm-3。
干燥空气中会缓慢风化。
易溶于水,水溶液呈弱酸性。
不溶于乙醇,缓缓溶于甘油。
150℃以上将失去全部水结晶成为白色粉末状无水硫酸铜。
五水硫酸铜有极强的吸水性,把它投入95%乙醇成含水有机物(即吸收水分)而恢复为蓝色结晶体。
失水过程五水硫酸铜晶体失水分三步。
上图中两个仅以配位键与铜离子结合的水分子最先失去,大致温度为102摄氏度。
两个与铜离子以配位键结合,并且与外部的一个水分子以氢键结合的水分子随温度升高而失去,大致温度为113摄氏度。
最外层水分子最难失去,因为它的氢原子与周围的硫酸根离子中的氧原子之间形成氢键,它的氧原子又和与铜离子配位的水分子的氢原子之间形成氢键,总体上构成一种稳定的环状结构,因此破坏这个结构需要较高能量。
失去最外层水分子所需温度大致为258摄氏度。
五、实验步骤:1、在常温下将适量的CuSO4溶解于少量的水中,配置成过饱和溶液,倒掉上层溶液,取未溶解的五水硫酸铜加少量水洗涤三次,再用无水乙醇洗涤三次,将所得试剂尽量滴干(为节约实验时间,可用滤纸将大部分自由水吸干)。
2、将1所得试剂加入称量瓶(不带瓶盖)中,再覆盖上滤纸和皮筋,称重(事先称量无盖称量瓶、滤纸和皮筋的总质量为m0)。