信号与系统课件第五章
- 格式:ppt
- 大小:2.41 MB
- 文档页数:51
第5 章非周期信号实频域分析本章内容傅里叶变换傅里叶变换的概念典型非周期信号的频谱傅里叶变换的性质线性性质,时移性质,频移性质,尺度变换性质,对称性,卷积定理,时域微分积分特性,频域微分积分特性,调制特性非周期信号作用下的系统分析傅里叶变换非周期信号f(T F(jω)∫+∞∞−−=tet f F td )()j (j ωωωωπωd )j (21)(j teF t f ∫+∞=傅里叶反变换=说明:F∫∞−2122d sin )(d cos )()(⎥⎤⎢⎡⎟⎞⎜⎛+⎟⎞⎜⎛=∫∫∞∞t t t f t t t f j F ωωω所以:∫∫∞∞−∞∞−−=tt t f t t t f d sin )(j d cos )(ωωπ2∫∞−π2∞−∫∫∞∞−+=ωωϕωωπd)](cos[)j(21tFωωϕωωd)](sin[)j(j∫∞++tF典型非周期信号的频谱矩形脉冲信号单边指数信号双边指数信号直流信号单位冲激信号符号信号矩形脉冲信号02τ−τ2τE矩形脉冲信号(续)F)(ωj单边指数信号0t单边指数信号(续)1双边指数信号0t双边指数信号(续)直流信号有些函数不满足绝对可积这一充分条件,如1,ε(t ) 等,但傅里叶变换却存在。
2202lim )j (ωααωα+=→F )0()0(≠=ωω因此,直流信号的频谱函数可能为一冲激函数,下面求其大小。
π2=1)(=t f )(∞<<−∞t 不满足绝对可积条件ωωααd 222∫∞∞−+)(d )(122αωαω∫∞∞−+=∞∞−=αωarctan 2直接用定义式不好求解,可用间接的方法。
如:直流信号的频谱函数可看作双边指数信号频谱在α→0时的极限:⎩⎨⎧∞+=0直流信号(续)所以,直流信号的频谱是:单位冲激信号=t fδ)(t)(t符号函数⎩⎨⎧<−>==0101)sgn()(t t t t f 构造函数:[=t11−0可积条件符号函数(续)[] F傅里叶变换对eαjω+本章内容傅里叶变换傅里叶变换的概念典型非周期信号的频谱傅里叶变换的性质线性性质,时移性质,频移性质,尺度变换性质,对称性,卷积定理,时域微分积分特性,频域微分积分特性,调制特性非周期信号作用下的系统分析傅里叶变换的性质线性性质时移性质频移性质尺度变换性质对称性卷积定理时域微分积分特性频域微分积分特性调制特性线性性质== [[解:22‖例:已知f(t), 求F(jω)‖-解: f (t) = f1(t) –g2(t)f1(t) = 1 ↔2πδ(ω)可知:g2(t) ↔2Sa(ω)∴F( jω) = 2πδ(ω) -2Sa(ω)由gτ(t) ↔τSa(ωτ/2)时移性质=[解:‖例求F (j ω)。
第五章傅里叶变换应用于通信系统——滤波、调制与解调5.1 系统的频域分析一.系统响应的付氏变换解法利用卷积定理,可以分析信号在系统中的传输。
设输入信号为e(t),系统的冲激响应为h(t),则系统的零状态响应为:r(t) = e(t) * h(t)令e(t) ⇔ E(ω)h(t)⇔ H(ω)由时域卷积定理得r(t)的付氏变换为:R(ω) = H(ω)⋅E(ω)1.系统函数在频域分析中,将激励用其频谱函数表示,系统用频率特性表示,则系统的输出信号频谱函数就是激励的频谱与系统频率特性的乘积。
系统的功能相当于一个频谱变换器。
H(ω)一般是ω的复函数,可以表示为:2. 系统函数的求法:a) h(t) ⇔ H(ω)b) 从微分方程求得对上式取付氏变换:c) 从电路模型直接写出H(ω):A : R i R (t)-u R (t)B :C i C (t)+u C (t)C : L i L (t)+ -u L (t)例5-1:如图5-1,求h(t)R+2(t)-图5-1解:将上图转换成付氏变换形式:(ω)例5-2:求阶跃信号作用于图5-2所示RC网络的零状态响应u R( t )--图5-2 RC网络从以上两个例子可以看出,利用傅里叶变换形式的系统函数H(jω)从频谱改变的观点解释了激励与响应波形的差异,物理概念比较清楚,但求解过程不如拉普拉斯变换方法简便。
引出H(jω)的重要意义在于研究信号传输的基本特性、建立滤波器的基本概念并理解频响特性的物理意义以下两节研究这方面的问题。
这些理论内容在信号传输和滤波器设计等实际问题中具有十分重要的指导意义。
3.传输函数H(jω)可实现的条件(1)在时域中必须满足当t < 0时,h( t ) = 0,即系统必须是因果系统。
(2)在频域中,其必要条件是∣ H(jω)∣≠ 0,即必须满足佩利—维纳准则:见书P2805.2 信号的无失真传输系统对于信号的作用是多种多样的,如放大、滤波、时延、移相等。