运筹学习题集
- 格式:doc
- 大小:1.29 MB
- 文档页数:38
判断题判断正误,如果错误请更正第五章运输与指派问题1.运输问题中用位势法求得的检验数不唯一。
2.产地数为3,销地数围的平衡运输中,变量组{X11,X13,X22,X33,X34}可作为一组基变量。
3.不平衡运输问题不一定有最优解。
4.m+n-1个变量构成基变量组的充要条件是它们不包含闭合回路。
5.运输问题中的位势就是其对偶变量。
6.含有孤立点的变量组不包含有闭回路。
7.不包含任何闭回路的变量组必有孤立点。
8.产地个数为m销地个数为 n的平衡运输问题的对偶问题有m+n个约束。
9.运输问题的检验数就是对偶问题的松弛变量的值。
10.产地个数为m销地个数为 n的平衡运输问题的系数矩阵为A,则有r(A)〈=m+n-1。
11.用一个常数k加到运价C的某列的所有元素上,则最优解不变。
12.令虚设的产地或销地对应的运价为一任意大于0的常数C(C>0),则最优解不变。
13.若运输问题中的产量或销量为整数则其最优解也一定为整数。
14.运输问题中的单位运价表的每一行都分别乘以一个非0常数,则最优解不变。
15.按最小元素法求得运输问题的初始方案,从任一非基格出发都存在唯一一个闭回路。
16.在指派问题的效率表的某行乘以一个大于零的数最优解不变。
选择题在下列各题中,从4个备选答案中选出一个或从5个备选答案中选出2~5个正确答案。
第五章运输与指派问题1.下列变量组是一个闭回路的有A{x21,x11,x12,x32,x33,x23} B{x11,x12,x23,x34,x41,x13} C {x21,x13,x34,x41,x12} D{x12,x32,x33,x23,x21,x11} D{x12,x22,x32,x33,x23,x21}2.具有M个产地N个销地的平衡运输问题模型具有特征A有MN个变量M+N个约束B有M+N个变量MN个约束C 有MN个变量M+N-1个约束D 有M+N-1个基变量MN-M-N+1个非基变量E 系数矩阵的秩等于M+N-13.下列说法正确的有A 运输问题的运价表第r行的每个cij 同时加上一个非0常数k,其最优调运方案不变。
判断题判断正误,如果错误请更正第五章运输与指派问题1.运输问题中用位势法求得的检验数不唯一。
2.产地数为3,销地数围的平衡运输中,变量组{X11,X13,X22,X33,X34}可作为一组基变量。
3.不平衡运输问题不一定有最优解。
4.m+n-1个变量构成基变量组的充要条件是它们不包含闭合回路。
5.运输问题中的位势就是其对偶变量。
6.含有孤立点的变量组不包含有闭回路。
7.不包含任何闭回路的变量组必有孤立点。
8.产地个数为m销地个数为n的平衡运输问题的对偶问题有m+n个约束。
9.运输问题的检验数就是对偶问题的松弛变量的值。
10.产地个数为m销地个数为n的平衡运输问题的系数矩阵为A,则有r(A)〈=m+n-1。
11.用一个常数k加到运价C的某列的所有元素上,则最优解不变。
12.令虚设的产地或销地对应的运价为一任意大于0的常数C(C>0),则最优解不变。
13.若运输问题中的产量或销量为整数则其最优解也一定为整数。
14.运输问题中的单位运价表的每一行都分别乘以一个非0常数,则最优解不变。
15.按最小元素法求得运输问题的初始方案,从任一非基格出发都存在唯一一个闭回路。
16.在指派问题的效率表的某行乘以一个大于零的数最优解不变。
选择题在下列各题中,从4个备选答案中选出一个或从5个备选答案中选出2~5个正确答案。
第五章运输与指派问题1.下列变量组是一个闭回路的有A{x21,x11,x12,x32,x33,x23} B {x11,x12,x23,x34,x41,x13}C {x21,x13,x34,x41,x12} D{x12,x32,x33,x23,x21,x11} D{x12,x22,x32,x33,x23,x21}2.具有M个产地N个销地的平衡运输问题模型具有特征A有MN个变量M+N个约束B有M+N个变量MN个约束 C 有MN个变量M+N-1个约束 D 有M+N-1个基变量MN-M-N+1个非基变量E 系数矩阵的秩等于M+N-13.下列说法正确的有A 运输问题的运价表第r行的每个cij 同时加上一个非0常数k,其最优调运方案不变。
判断题判断正误,如果错误请更正第二章线形规划的对偶理论1.原问题第i个约束是<=约束,则对偶变量yi>=0.2.互为对偶问题,或则同时都有最优解,或则同时都无最优解.3.原问题有多重解,对偶问题也有多重解.4.对偶问题有可行解,原问题无可行解,则对偶问题具有无界解.5.原问题无最优解,则对偶问题无可行解.6.设X,Y分别为{minZ=CX|AX>=b,X>=0}和{maxw=Yb|YA<=C,Y>=0}的可行解,则有(1)CX<=Yb;(2)CX是w的上界;(3)当X,Y为最优解,CX=Yb;(4)当CX=Yb 时,有YXs+YsX=0;(5)X为最优解且B是最优基时,则Y=C B B-1是最优解;(6)松弛变量Ys的检验数是λs,则X=-λs是基本解,若Ys是最优解, 则X=-λs是最优解.7.原问题与对偶问题都可行,则都有最优解.8.原问题具有无界解,则对偶问题可行.9.若X,Y是原问题与对偶问题的最优解.则X=Y.10.若某种资源影子价格为0,则该资源一定有剩余.11影子价格就是资源的价格.12.原问题可行对偶问题不可行,可用对偶单纯形法计算.13.对偶单纯形法比值失效说明原问题具有无界解.14.对偶单纯形法是直接解对偶问题的一种解法.15.减少一个约束,目标值不会比原来变差.16.增加一个约束,目标值不会比原来变好.17增加一个变量, 目标值不会比原来变差.18.减少一个非基变量, 目标值不变.19.当Cj(j=1,2,3,……,n)在允许的最大范围内同时变化时,最优解不变。
选择题在下列各题中,从4个备选答案中选出一个或从5个备选答案中选出2~5个正确答案。
第二章线性规划的对偶理论1.如果决策变量数列相等的两个线规划的最优解相同,则两个线性规划A约束条件相同B目标函数相同C最优目标函数值相同D以上结论都不对2.对偶单纯形法的最小比值规则是为了保证A使原问题保持可行B使对偶问题保持可行C逐步消除原问题不可行性D逐步消除对偶问题不可行性3.互为对偶的两个线性规划问题的解存在关系A若最优解存在,则最优解相同B原问题无可行解,则对偶问题也无可行解C对偶问题无可行解,原问题可能无可行解D一个问题无界,则另一个问题无可行解E一个问题无可行解,则另一个问题具有无界解4.已知规范形式原问题(max)的最优表中的检验数为(λ1,λ2,……λn),松弛变量的检验数为(λn+1,λn+2,……λn+m),则对偶问题的最优解为A—(λ1,λ2,……λn)B (λ1,λ2,……λn)C —(λn+1,λn+2,……λn+m)D(λn+1,λn+2,……λn+m)5.原问题与对偶问题都有可行解,则A原问题有最优解,对偶问题可能没有最优解B原问题与对偶问题可能都没有最优解C可能一个问题有最优解,另一个问题具有无界解D原问题与对偶问题都有最优解计算题线性规划问题和对偶问题2.1 对于如下的线性规划问题min z = 3x1 + 2x2 +x3s.t. x1+ x2+ x3 ≤15 (1)2x1- x2+ x3≥9 (2)-x1+ 2x2+2x3≤8 (3)x1x2x3 ≥01、写出题目中线性规划问题的对偶问题;2、分别求出原始问题和对偶问题的最优解(求解的次序和方法不限);解答:1、写出题目中线性规划问题的对偶问题;解:max w = 15y1 + 9y2 + 8y3s.t. y1+ 2y2- y3 ≤ 3 (1)y1- y2+ 2y3≤ 2 (2)y1+ y2+ 2y3≤ 1 (3)y1≤0、y2 ≥0、y3 ≤02、分别求出原始问题和对偶问题的最优解(求解的次序和方法不限);解:先将原问题化成以下形式,则有mi n z = 3x1 + 2x2 + x3s.t. x1+ x2+ x3 + x4 = 15 (1)-2x1+ x2- x3+ x5= -9 (2)-x1+ 2x2+2x3+x6 = 8 (3)原始问题的最优解为(X1 X2 X3 X4 X5 X6)=(2,0,5,8,0,0),minz=11对偶问题的最优解为(y1 y2 y3 y4 y5 y6)=(0,7/5,-1/5,0,19/5,0),maxw=11 2.2 对于以下线性规划问题max z = -x1 - 2x2s.t. -2x1 + 3x2≤12 (1)-3x1 + x2≤ 6 (2)x1 + 3x2≥ 3 (3)x1≤0,x2≥01、写出标准化的线性规划问题;2、用单纯形表求出这个线性规划问题的最优解和最优的目标函数值;3、写出这个(极大化)线性规划问题的对偶问题;4、求出对偶问题的最优解和最优解的目标函数值;5、第(2)个约束右端常数b2=6在什么范围内变化,最优解保持不变。
第一章线性规划1.1将下述线性规划问题化成标准形式1)min z=-3x1+4x2-2x3+5 x4-x2+2x3-x4=-24xst. x1+x2-x3+2 x4 ≤14-2x1+3x2+x3-x4 ≥2x1,x2,x3≥0,x4无约束2)min z =2x1-2x2+3x3+x2+x3=4-xst. -2x1+x2-x3≤6x1≤0 ,x2≥0,x3无约束1.2用图解法求解LP问题,并指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解。
1)min z=2x1+3x24x1+6x2≥6st2x1+2x2≥4x1,x2≥02)max z=3x1+2x22x1+x2≤2st3x1+4x2≥12x1,x2≥03)max z=3x1+5x26x1+10x2≤120st5≤x1≤103≤x2≤84)max z=5x1+6x22x1-x2≥2st-2x1+3x2≤2x1,x2≥01.3找出下述LP问题所有基解,指出哪些是基可行解,并确定最优解(1)min z=5x1-2x2+3x3+2x4x1+2x2+3x3+4x4=7st2x1+2x2+x3 +2x4=3x1,x2,x3,x4≥01.4 分别用图解法与单纯形法求解下列LP 问题,并对照指出最优解所对应的顶点。
1) maxz =10x 1+5x 23x 1+4x 2≤9 st 5x 1+2x 2≤8 x 1,x 2≥02) maxz =2x 1+x 2 3x 1+5x 2≤15 st 6x 1+2x 2≤24 x 1,x 2≥01.5 分别用大M 法与两阶段法求解下列LP 问题。
1) minz =2x 1+3x 2+x 3 x 1+4x 2+2x 3≥8 st 3x 1+2x 2 ≥6 x 1,x 2 ,x 3≥02) max z =4x 1+5x 2+ x 3. 3x 1+2x 2+ x 3≥18 St. 2x 1+ x 2 ≤4x 1+ x 2- x 3=53) maxz = 5x 1+3x 2 +6x 3 x 1+2x 2 -x 3 ≤ 18 st 2x 1+x 2 -3 x 3 ≤ 16 x 1+x 2 -x 3=10 x 1,x 2 ,x 3≥01231231231231234)max 101512539561515.25,,0z x x x x x x x x x st x x x x x x =++++≤⎧⎪-++≤⎪⎨++≥⎪⎪≥⎩1.61.7某班有男生30人,女生20人,周日去植树。
二、填空选择题:(每空格2分,共16分)1、线性规划的解有划的唯一最优解、无穷多最优解、无界解和无可行解四种。
2、在求运费最少的调度划的运划的输问题中,如划的果某划的一非基变量的检验数为4,则说明如果在该空格中增加一个运量运费将增加划的4 。
3、“如果线性规划的原问题存在可行解,则其对划的偶问题一定存在可行解”,这句话对还是划的错?错4、如果某一整数规划:MaxZ=X划的1+X2划的X1+9/1划的2≤1/3X1,X2≥0且均为整数所对应的线性规划(松弛问题)的最优划的解为X1=3/2,X2=10/3,MaxZ=6/29,我们现在划的要对X1进行分枝,划的应该分为X1≤1和X1≥2。
5、在用逆向解法求动态规划时,f k(s k)的含义是:从第k个阶段到第n个阶段的最优解。
6.假设某线性规划的可行解的集合为D,而其所对应的整数规划的可行解集合为B,那么D 和B的关系为 D 包含 B7.已知下表是制订生产计划问题的一张LP最优单纯形表(极大化问题,约束条问:(1)写出B-1=⎪⎪⎪⎭⎫⎝⎛---13/20.3/1312(2)对偶问题的最优解: Y=(5,0,23,0,0)T8. 线性规划问题如果有无穷多最优解,则单纯形计算表的终表中必然有___某一个非基变量的检验数为0______;9. 极大化的线性规划问题为无界解时,则对偶问题_无解_________;10. 若整数规划的松驰问题的最优解不符合整数要求,假设Xi =bi不符合整数要求,INT(bi )是不超过bi的最大整数,则构造两个约束条件:Xi≥INT(bi)+1 和 Xi≤INT(bi),分别将其并入上述松驰问题中,形成两个分支,即两个后继问题。
11. 知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束条问:(1)对偶问题的最优解: Y =(4,0,9,0,0,0)T (2)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛611401102二、计算题(60分)1、已知线性规划(20分)MaxZ=3X 1+4X 2 1+X 2≤5 2X 1+4X 2≤12 3X 1+2X 2≤81,X 2≥02)若C 2从4变成5,最优解是否会发生改变,为什么?3)若b 2的量从12上升到15,最优解是否会发生变化,为什么?4)如果增加一种产品X 6,其P 6=(2,3,1)T ,C 6=4该产品是否应该投产?为什么? 解:1)对偶问题为Minw=5y1+12y2+8y3 y1+2y2+3y 3≥3y1+4y2+2y 3≥4 y1,y2≥02)当C 2从4变成5时, σ4=-9/8 σ5=-1/4由于非基变量的检验数仍然都是小于0的,所以最优解不变。
运筹学习题集(第一章)判断题判断正误,如果错误请更正第1章线性规划1.任何线形规划一定有最优解。
2.若线形规划有最优解,则一定有基本最优解。
3.线形规划可行域无界,则具有无界解。
4.在基本可行解中非基变量一定为0。
5.检验数λj表示非基变量Xj增加一个单位时目标函数值的改变量。
6.minZ=6X1+4X2|X1-2X|︳<=10 是一个线形规划模型X1+X2=100X1>=0,X2>=07.可行解集非空时,则在极点上至少有一点达到最优解.8.任何线形规划都可以化为下列标准型Min Z=∑C j X j∑a ij x j=b1, i=1,2,3……,mX j>=0,j=1,2,3,……,n:b i>=0,i=1,2,3,……m9.基本解对应的基是可行基.10.任何线形规划总可用大M 单纯形法求解.11.任何线形规划总可用两阶段单纯形法求解。
12.若线形规划存在两个不同的最优解,则必有无穷多个最优解。
13.两阶段中第一阶段问题必有最优解。
14.两阶段法中第一阶段问题最优解中基变量全部非人工变量,则原问题有最优解。
15.人工变量一旦出基就不会再进基。
16.普通单纯形法比值规则失效说明问题无界。
17.最小比值规则是保证从一个可行基得到另一个可行基。
18.将检验数表示为λ=C B B-1A-的形式,则求极大值问题时基本可行解是最优解的充要条件为λ》=0。
19.若矩阵B为一可行基,则|B|≠0。
20.当最优解中存在为0的基变量时,则线形规划具有多重最优解。
选择题在下列各题中,从4个备选答案中选出一个或从5个备选答案中选出2~5个正确答案。
第1章线性规划1.线形规划具有无界解是指:A可行解集合无界B有相同的最小比值C存在某个检验数λk>0且a ik<=0(i=1,2,3,……,m) D 最优表中所有非基变量的检验数非0。
2.线形规划具有多重最优解是指:A 目标函数系数与某约束系数对应成比例B最优表中存在非基变量的检验数为0 C 可行解集合无界 D 存在基变量等于03. 使函数Z=-X1+X2-4X3增加的最快的方向是:A (-1,1,-4)B (-1,-1,-4)C (1,1,4)D (1,-1,-4-)4. 当线形规划的可行解集合非空时一定A 包含原点X=(0,0,0……) B 有界C 无界D 是凸集5. 线形规划的退化基本可行解是指 A 基本可行解中存在为0的基变量 B 非基变量为C非基变量的检验数为0 D 最小比值为06. 线形规划无可行解是指 A 进基列系数非正 B 有两个相同的最小比值 C 第一阶段目标函数值大于0 D 用大M 法求解时最优解中含有非0的人工变量 E可行域无界7. 若线性规划存在可行基,则 A 一定有最优解 B 一定有可行解 C 可能无可行解 D 可能具有无界解 E 全部约束是〈=的形式8. 线性规划可行域的顶点是 A 可行解 B 非基本解 C 基本可行解 D 最优解 E 基本解9. minZ=X1-2X2,-X1+2X2〈=5,2X1+X2〈=8,X1,X2〉=0,则 A 有惟一最优解 B 有多重最优解 C 有无界解 D 无可行解 E 存在最优解10.线性规划的约束条件为 X1+X2+X3=32X1+2X2+X4=4X1,X2,X3,X4〉=0 则基本可行解是 A (0,0,4,3)B (0,0,3,4)C (3,4,0,0)D (3,0,0,-2)计算题1.1 对于如下的线性规划问题MinZ= X 1+2X 2s.t. X 1+ X 2≤4-X 1+ X 2≥1X 2≤3X 1, X 2≥0的图解如图所示。
判断题判断正误,如果错误请更正第四章目标规划1.正偏差变量大于等于0,负偏差变量小于等于0。
2.系统约束中最多含有一个正或负的偏差变量。
3.目标约束一定是等式约束。
4.一对正负偏差变量至少一个大于0。
5.一对正负偏差变量至少一个等于0。
6.要求至少到达目标值的目标函数是maxZ=d+。
7.要求不超过目标值的目标函数是minZ=d+。
8.目标规划没有系统约束时,不一定存在满意解。
9.超过目标的差值称为正偏差。
10.未达到目标的差值称为负偏差。
选择题在下列各题中,从4个备选答案中选出一个或从5个备选答案中选出2~5个正确答案。
第四章目标规划1.要求不超过第一目标值,恰好完成第二目标值,目标函数是A minZ=P1d1-+P2(d2-+d2+)B minZ= P1d1++P2(d2-+d2+)C minZ=P1(d1-+d1+)+P2(d2-+d2-)D minZ=P1(d1-+d1+)+ P2d2-2.下列正确的目标规划的目标函数是 A minZ=P1d1-- P2d2- B maxZ= P1d1-+P2d2- CminZ=P1d1--+P2(d2--d2+) D minZ=P1(d1-+d1+)+P2(d2-+d2-) E minZ=P1d1- +P2d2+3.下列线性规划与目标规划之间正确的关系是A线性规划的目标函数由决策变量构成,目标规划的目标函数由偏差变量构成 B 线性规划模型不包含目标约束,目标规划模型不包含系统约束C线性规划求最优解,目标规划求满意解。
D 线性规划模型只有系统约束,目标规划模型可以有系统约束和目标约束 E 线性规划求最大值和最小值,目标规划只求最小值4.目标函数minZ= P1(d1-+d2-)+ P2d3- 的含义是A第一和第二目标恰好达到目标值,第三目标不超过目标值。
B第一、第二和第三目标同时不超过目标值。
C首先第一和第二同时不超过目标值,然后第三目标不超过目标值。
《运筹学》习题集目录第一章线性规划 (1)第二章运输问题 (9)第三章整数规划 (14)第四章目标规划 (20)第五章动态规划 (21)第六章图与网络分析 (24)第七章存储论 (27)第八章对策论 (28)第一章 线性规划1、将下列线性规划问题化为标准型(1) max Z = 3x 1+ 5x 2- 4x 3+ 2x 4⎪⎪⎩⎪⎪⎨⎧≥=+≥+≤++0x , x , x 9 5x -3x -4x x -13 2x -2x 3x -x 18 3x x -6x 2x s.t.421432143214321 (2) min f = 3x1+ x2+ 4x3+ 2x4 ≤ 1⎪⎪⎩⎪⎪⎨⎧≤≥=++≥+≤+0 x 0, x , x15 2x 3x -4x 2x 7- x -2x 2x -3x 51- 2x - x -3x 2x s.t. 4214214321 43213 (3) min F=x1+x2+x3+x4⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥+≥+≥+≥+0x ,x ,x ,x 7x x 8x x 6x x 5x x s.t.432143222141 (4) 3213min x x x F -+=⎪⎪⎩⎪⎪⎨⎧≤≤≥≥0x ,x ,x 4x +5x +x -22x +x -3x +x +x ..32132121321t s 2、求出下列不等式组所定义的多面体的所有基本解和基本可行解(极点):⎪⎩⎪⎨⎧≥≥++≥++0 x ,x ,x 12 4x 3x 2x -6 3x 3x 2x 3213213213、用图解法求解下列线性规划问题⎪⎪⎩⎪⎪⎨⎧≥≤≤≤+=0x ,x 3 x 122x +3x 6 x -2x ..max )1(211212121t s X X Z⎪⎩⎪⎨⎧≥≥≥++-=0 x ,x 155x -3x 56 7x 4x ..3min )2(21212121t s x x Z4、在以下问题中,列出所有的基,指出其中的可行基,基础可行解以及最优解。
第一章线性规划1.1将下述线性规划问题化成标准形式1)min z=-3x1+4x2-2x3+5 x4-x2+2x3-x4=-24xst. x1+x2-x3+2 x4 ≤14-2x1+3x2+x3-x4 ≥2x1,x2,x3≥0,x4无约束2)min z =2x1-2x2+3x3+x2+x3=4-xst. -2x1+x2-x3≤6x1≤0 ,x2≥0,x3无约束1.2用图解法求解LP问题,并指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解。
1)min z=2x1+3x24x1+6x2≥6st2x1+2x2≥4x1,x2≥02)max z=3x1+2x22x1+x2≤2st3x1+4x2≥12x1,x2≥03)max z=3x1+5x26x1+10x2≤120st5≤x1≤103≤x2≤84)max z=5x1+6x22x1-x2≥2st-2x1+3x2≤2x1,x2≥01.3找出下述LP问题所有基解,指出哪些是基可行解,并确定最优解(1)min z=5x1-2x2+3x3+2x4x1+2x2+3x3+4x4=7st2x1+2x2+x3 +2x4=3x1,x2,x3,x4≥01.4 分别用图解法与单纯形法求解下列LP 问题,并对照指出最优解所对应的顶点。
1) maxz =10x 1+5x 23x 1+4x 2≤9 st 5x 1+2x 2≤8 x 1,x 2≥02) maxz =2x 1+x 2 3x 1+5x 2≤15 st 6x 1+2x 2≤24 x 1,x 2≥01.5 分别用大M 法与两阶段法求解下列LP 问题。
1) minz =2x 1+3x 2+x 3 x 1+4x 2+2x 3≥8 st 3x 1+2x 2 ≥6 x 1,x 2 ,x 3≥02) max z =4x 1+5x 2+ x 3. 3x 1+2x 2+ x 3≥18 St. 2x 1+ x 2 ≤4x 1+ x 2- x 3=53) maxz = 5x 1+3x 2 +6x 3 x 1+2x 2 -x 3 ≤ 18 st 2x 1+x 2 -3 x 3 ≤ 16 x 1+x 2 -x 3=10 x 1,x 2 ,x 3≥01231231231231234)max 101512539561515.25,,0z x x x x x x x x x st x x x x x x =++++≤⎧⎪-++≤⎪⎨++≥⎪⎪≥⎩1.61.7某班有男生30人,女生20人,周日去植树。
运筹学期末复习题一、判断题:1、任何线性规划一定有最优解。
()2、若线性规划有最优解,则一定有基本最优解。
()3、线性规划可行域无界,则具有无界解。
()4、基本解对应的基是可行基。
()5、在基本可行解中非基变量一定为零。
()6、变量取0或1的规划是整数规划。
()7、运输问题中应用位势法求得的检验数不唯一。
()8、产地数为3,销地数为4的平衡运输中,变量组{X11,X13,X22,X33,X34}可作为一组基变量。
()9、不平衡运输问题不一定有最优解。
()10、m+n-1个变量构成基变量组的充要条件是它们不包含闭回路。
()11、含有孤立点的变量组不包含有闭回路。
()12、不包含任何闭回路的变量组必有孤立点。
()13、产地个数为m销地个数为n的平衡运输问题的系数距阵为A,则有r(A)≤m+n-1()14、用一个常数k加到运价矩阵C的某列的所有元素上,则最优解不变。
()15、匈牙利法是求解最小值分配问题的一种方法。
()16、连通图G的部分树是取图G的点和G的所有边组成的树。
()17、求最小树可用破圈法。
()18、Dijkstra算法要求边的长度非负。
()19、Floyd算法要求边的长度非负。
()20、在最短路问题中,发点到收点的最短路长是唯一的。
()21、连通图一定有支撑树。
()22、网络计划中的总工期等于各工序时间之和。
()23、网络计划中,总时差为0的工序称为关键工序。
()24、在网络图中,关键路线一定存在。
()25、紧前工序是前道工序。
()26、后续工序是紧后工序。
()27、虚工序是虚设的,不需要时间,费用和资源,并不表示任何关系的工序。
()28、动态规划是求解多阶段决策问题的一种思路,同时是一种算法。
()29、求最短路径的结果是唯一的。
()30、在不确定型决策中,最小机会损失准则比等可能性则保守性更强。
()31、决策树比决策矩阵更适于描述序列决策过程。
()32、在股票市场中,有的股东赚钱,有的股东赔钱,则赚钱的总金额与赔钱的总金额相等,因此称这一现象为零和现象。
运筹学复习题1. 某一求目标函数极大值的线性规划问题,用单纯形法求解时得到某一步的单纯形表如下:当现行解为唯一最优解时有 。
A. ª1≥0 a 5>0 a 3>0B. a 3≥0 a 5=0 a 6=0C. ª2=0 a 5≥0 a 6≥0D. a 1≥0 a 6<0 a 5<0 答案:( )2. 单纯形乘子是指 。
A .1-BC B B.b B C B 1- C.A B C B 1- D.b B C C 1B -- 答案:( )3.在满足下列条件 时,增加资源是有利的。
A .单位资源代价大于资源的影子价格 B .单位资源代价小于资源的影子价格 C .单位资源代价等于资源的影子价格D .单位资源代价不等于资源的影子价格 答案:( )4.线性规划的灵敏度分析应在⎽⎽⎽⎽⎽⎽的基础上,分析系数的变化对最优解产生的影响。
A .初始单纯形表 B. 最优单纯形表 C. 对偶问题初始单纯形表 D. 对偶问题的最优单纯形表 答案:( )5.一个图G 中,奇点的个数为 。
A.偶奇数 B.偶数 C.奇数或偶数 D. 不能确定 答案:( )6.若运输问题已求得最优解,此时所求出的检验数一定是全部 。
A .大于或等于零B .大于零C .小于零D .小于或等于零 答案:( )7. 线性规划一般模型中,自由变量可以用两个非负变量的 代换。
A .和 B .差 C .积 D .商 答案:( )8.目标规划中,对于优先级别,则下列说法正确的是 。
A .P k ×P k+1=0B .P k <<P k+1C .P k >>P k+1D .P k =P k+1 答案:( )9.求解指派问题的匈牙利方法要求系数矩阵中每个元素都是 。
A .非负的B .大于零C .无约束D .非零常数 答案:( )10.若运输网络G 中发点到收点不存在流f 的增广链,则称流f 为G 的 。
A .最小流 B .零流 C .最大流 D .无法确定 答案:( )11.运输问题中,闭合回路的数字格分布在每行每列的个数必定为 。
运筹学习题集1. 线性规划1.1. 案例题题目:一家制造公司生产甲、乙两种产品。
每个产品需要经过两个部门加工再次合并,最后得到最终产品。
已知甲产品在第一个部门加工1个小时,乙产品在第一个部门加工1.5个小时。
合并的时间都是0.5小时。
在每个部门的加工之前都需要准备工作,分别需要0.2小时和0.3小时。
总共有16小时的加工时间,10小时的准备时间。
如果甲产品的利润是每个单位产品1000元,乙产品的利润是每个单位产品1500元,如何制定生产计划以最大化利润?解答:首先,我们可以定义两个变量,x和x,分别表示生产甲和乙产品的数量。
问题可以用以下线性规划模型来描述:最大化x=1000x+1500x约束条件:•$x \\geq 0$•$y \\geq 0$•$1x + 1.5y \\leq 16$•$0.2x + 0.3y \\leq 10$根据以上模型,我们可以使用线性规划求解器来求解最优解。
对于这个问题,最优解为x=6.4,x=5.6,利润最大化为x=21,400元。
1.2. 理论题题目:什么是线性规划?线性规划的应用领域有哪些?解答:线性规划是一种数学优化方法,用于求解满足一定约束条件下的线性目标函数的最优解。
线性规划的目标函数和约束条件都是线性的。
线性规划的应用领域非常广泛,包括但不限于以下几个方面:•生产计划:优化生产计划,最大化产量或利润。
•供应链管理:优化物流和运输成本,最小化供应链成本。
•资源分配:优化资源利用,最大化效益。
•资产配置:优化投资组合,最大化收益或降低风险。
•运输问题:优化货物运输路径和调度,最小化运输成本。
2. 排队论2.1. 案例题题目:一个餐厅有一个服务员负责接待顾客并安排座位。
顾客到达的时间服从指数分布,平均每10分钟有一位顾客到达。
一个顾客在餐厅用餐的时间服从正态分布,平均时间为30分钟,标准差为10分钟。
如果一个顾客到达后没有空位可坐,则该顾客将离开。
请问该餐厅的平均顾客等待时间是多少?解答:根据排队论的基本原理,我们可以使用M/M/1排队模型来解决这个问题。
运筹学习题库一、线性规划1.某工厂生产甲、乙、丙三种产品,单位产品所需工时分别为2、3、1个工时;单位产品所需原材料分别为3、1、5公斤;单位产品利润分别为2元、3元、5元。
工厂每天可利用的工时为12个,可供应的原材料为15公斤。
1)试确定使总利润为最大的日生产计划和最大利润。
2)若由于原材料涨价,使得产品丙的单位利润比原来减少了2元,问原来的最优生产计划变否?若不变,说明为什么;若变,请求出新的最优生产计划和最优利润。
3)在保持现行最优基不变的情况下,若要增加一种资源量,应首先考虑增加哪种资源?为什么?单位资源增量所支付的费用是多少才合算?为什么?2.给出一线性规划问题如下:max z = 3x1 + x2x1 + x2≤4-x1 + x2≤26x1 + 2x2≤18x1,x2≥0试用对偶理论判断该问题是否存在以x1、x2和x3为基变量的最优解?3.用单纯形法求解某个目标函数为max,约束为≤形式,x4、x5为松弛变量的线性规划问题的最终表如下:试用改进单纯形法原理求该问题的数学模型。
4.给出一个线性规划问题如下:max z = x1 +2 x2 +3 x3x1 + 2x2 + 3x3≤84x1+ 5x3≤12x1,x2 ,x3 ≥0已知其对偶问题的最优解为Y* = (1,0 ),试用对偶理论求上述问题的最优解和最优值。
5.试用大M法求下述线性规划问题的最优解和最优值(不能用图解法):max z = 3x 1 – 3 x 2x1 + x2 ≥1 2x 1 + 3x 2 ≤6x 1,x 2 ≥06.已知一线性规划问题如下:max z = 5x 1 + 2 x 2 + 4 x 3 3 x 1 + x 2 + 2 x 3 ≤ 46 x 1 + 3 x 2 + 5 x 3 ≤ 10 x 1,x 2,x 3 ≥ 0试用松紧定理判断X = ( 0,0,2 )T 是否是该问题的最优解,若不是,说明为什么;若是, 请求出相应的目标函数值。
12、已知线性规划123123123max 3421022160,1,2,3jz x x x x x x x x x x j =++⎧++≤⎪++≤⎨⎪≥=⎩ 的最优解为*(6,2,0)T X =,试利用互补松弛定理,求对偶问题的最优解。
解:原问题的对偶问题为:1212121212min 1016232241,0w y y y y y y y y y y =++≥⎧⎪+≥⎪⎨+≥⎪⎪≥⎩將*(6,2,0)T X =代入原问题的约束条件,可得:*1*262*210 02*62*216 0y y ⎧+=⇒≥⎪⎨+=⇒≥⎪⎩ (1) 又由***112***212***1120 230 2240 1x y y x y y x y y ⎧>⇒+=⎪>⇒+=⎨⎪=⇒+≥⎩ (2) 将结论(1)和(2)结合起来,可解得**121y y ==。
13、已知线性规划问题12341341234max 25628..222120, 1,2,3,4jz x x x x x x x s t x x x x x j =+++⎧++≤⎪+++≤⎨⎪≥=⎩ 其对偶问题的最优解为*14y =、*21y =,试用对偶理论求解原问题的最优解。
解:原问题的对偶问题为:12122121212min 81222221..526,0w y y y y y s t y y y y y y =++≥⎧⎪≥⎪⎪+≥⎨⎪+≥⎪⎪≥⎩ 将对偶问题的最优解代入约束条件,可得:*1*2*3*42*42*1 2 02*4 1 041 5 042*1 6 0x x x x ⎧+>⇒=⎪>⇒=⎪⎨+=⇒≥⎪⎪+=⇒≥⎩(1)又由****1134*****212340 280 22212y x x x y x x x x ⎧>⇒++⎪⎨>⇒+++⎪⎩ ==(2) 将结论(1)和(2)结合起来,可得:**34**348212x x x x ⎧+⎪⎨+⎪⎩==,解得 *3*444x x ⎧=⎪⎨=⎪⎩ 即原问题的最优解为*(0,0,4,4)T X =。
数学建模1、某织带厂生产A 、B 两种纱线和C 、D 两种纱带,纱带由专门纱线加工而解:设A 的产量为x 1,B 的产量为x 2,C 的产量为x 3,D 的产量为x 4,则有线性规划模型如下:max f (x )=(168-42)x 1 +(140-28)x 2 +(1050-350)x 3 +(406-140)x 4=126 x 1 +112 x 2 +700 x 3 +266 x 4s.t. ⎪⎩⎪⎨⎧=≥≤+≤+++4,3,2,1 ,012005.02 720041023434321i x x x x x x x i2、靠近某河流有两个化工厂,流经第一化工厂的河流流量为每天500万m 3,在两个工厂之间有一条流量为200万m 3的支流。
两化工厂每天排放某种有害物质的工业污水分别为2万m 3和1.4万m 3。
从第一化工厂排出的工业污水流到第二化工厂以前,有20%可以自然净化。
环保要求河流中工业污水含量不能大于0.2%。
两化工厂处理工业污水的成本分别为1000元/万m 3和800元/万m 3。
现在要问在满足环保要求的条件下,每厂各应处理多少工业污水,使这两个工厂处理工业污水的总费用最小。
列出线性规划模型。
解:设x 1、2标可描述为min z =1000x 1+800x 2 x 1 ≥10.8x 1 + x 2 ≥1.6 x 1 ≤2 x 2≤1.4 x 1、x 2≥03、红旗商场是个中型的百货商场,它对售货人员的需求经过统计分析如表所示。
为了保证售货人员充分休息,售货人员每周工作五天,休息两天,并要求休息的两天是连续的,问应该如何安排售货人员的作息,既满足了工作需要又使配备的售货人员的人数最少?(只建模型,不求解)127星期日开始上班的人数。
min x 1+x 2+x 3+x 4+x 5+x 6+x 7x 3+x 4+x 5+x 6+x 7≥28 x 4+x 5+x 6+x 7+x 1≥15 x 5+x 6+x 7+x 1+x 2≥24 x 6+x 7+x 1+x 2+x 3≥25 x 7+x 1+x 2+x 3+ x 4≥19 x 1+x 2+x 3+x 4+x 5≥31 x 2+x 3+x 4+x 5+x 6≥28x 1、x 2、x 3、x 4、x 5、x 6、x 7≥04、一个登山队员,他需要携带的物品有:食品、氧气、冰镐、绳索、帐篷、照相器材、通信器材等,每种物品的重量及重要性系数见表所示,能携带的i ⎩⎨⎧=i ii x x x 不携带物品携带物品01 (i =1,…,7) 则0-1规划模型为:max z =20x 1+15x 2+16x 3+14x 4+8x 5+14x 6+9x 7 s.t. 5x 1+5x 2+2x 3+5x 4+10x 5+2x 6+3x 7≤25x i =0或1,i =1,0,…,7标准化问题1、将下列线性规划化为标准形式⎪⎪⎩⎪⎪⎨⎧±≤≥≤-+=+--≥-++-=不限321321321321321 ,0 ,019|1210|15736 10 ..235)(min x x x x x x x x x x x x t s x x x x f ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥''''≤+''-'+'+-≤+''+'-'-=''-'+'+≤+''-'+'+-''+-'--=-0,,,,,,191210191210157736 10 ..2'235)](max[654332163321533213321433213321x x x x x x x x x x x x x x x x x x x x x x x x x x t s x x x x x f 2、化下列线性规划为标准形 ma x z =2x 1+2x 2-4x 3 x 1 + 3x 2-3x 3 ≥30 x 1 + 2x 2-4x 3≤80 x 1、x 2≥0,x 3无限制解:按照上述方法处理,得该线性规划问题的标准形为 ma x z =2x 1+2x 2-4x 31+4x 32x 1 + 3x 2-3x 31 + 3x 32-x 4 = 30 x 1 + 2x 2-4x 31 + 4x 32 + x 5 = 80 x 1、x 2,x 31,x 32,x 4,x 5 ≥0图解法1、用图解法求解下面线性规划。
数学建模1、某织带厂生产A 、B 两种纱线和C 、D 两种纱带,纱带由专门纱线加工而解:设A 的产量为x 1,B 的产量为x 2,C 的产量为x 3,D 的产量为x 4,则有线性规划模型如下:max f (x )=(168-42)x 1 +(140-28)x 2 +(1050-350)x 3 +(406-140)x 4=126 x 1 +112 x 2 +700 x 3 +266 x 4s.t. ⎪⎩⎪⎨⎧=≥≤+≤+++4,3,2,1 ,012005.02 720041023434321i x x x x x x x i2、靠近某河流有两个化工厂,流经第一化工厂的河流流量为每天500万m 3,在两个工厂之间有一条流量为200万m 3的支流。
两化工厂每天排放某种有害物质的工业污水分别为2万m 3和1.4万m 3。
从第一化工厂排出的工业污水流到第二化工厂以前,有20%可以自然净化。
环保要求河流中工业污水含量不能大于0.2%。
两化工厂处理工业污水的成本分别为1000元/万m 3和800元/万m 3。
现在要问在满足环保要求的条件下,每厂各应处理多少工业污水,使这两个工厂处理工业污水的总费用最小。
列出线性规划模型。
解:设x 1、2标可描述为min z =1000x 1+800x 2 x 1 ≥1 0.8x 1 + x 2 ≥1.6 x 1 ≤2 x 2≤1.4 x 1、x 2≥03、红旗商场是个中型的百货商场,它对售货人员的需求经过统计分析如表所示。
为了保证售货人员充分休息,售货人员每周工作五天,休息两天,并要求休息的两天是连续的,问应该如何安排售货人员的作息,既满足了工作需127星期日开始上班的人数。
min x 1+x 2+x 3+x 4+x 5+x 6+x 7x 3+x 4+x 5+x 6+x 7≥28 x 4+x 5+x 6+x 7+x 1≥15 x 5+x 6+x 7+x 1+x 2≥24 x 6+x 7+x 1+x 2+x 3≥25 x 7+x 1+x 2+x 3+ x 4≥19 x 1+x 2+x 3+x 4+x 5≥31 x 2+x 3+x 4+x 5+x 6≥28x 1、x 2、x 3、x 4、x 5、x 6、x 7≥04、一个登山队员,他需要携带的物品有:食品、氧气、冰镐、绳索、帐篷、照相器材、通信器材等,每种物品的重量及重要性系数见表所示,能携带的i ⎩⎨⎧=ii i x x x 不携带物品携带物品01 (i =1, (7)则0-1规划模型为:max z =20x 1+15x 2+16x 3+14x 4+8x 5+14x 6+9x 7 s.t. 5x 1+5x 2+2x 3+5x 4+10x 5+2x 6+3x 7≤25x i =0或1,i =1,0,…,7标准化问题1、将下列线性规划化为标准形式⎪⎪⎩⎪⎪⎨⎧±≤≥≤-+=+--≥-++-=不限321321321321321 ,0 ,019|1210|15736 10 ..235)(min x x x x x x x x x x x x t s x x x x f ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥''''≤+''-'+'+-≤+''+'-'-=''-'+'+≤+''-'+'+-''+-'--=-0,,,,,, 191210191210157736 10 ..2'235)](max[654332163321533213321433213321x x x x x x x x x x x x x x x x x x x x x x x x x x t s x x x x x f 2、化下列线性规划为标准形 ma x z =2x 1+2x 2-4x 3 x 1 + 3x 2-3x 3 ≥30 x 1 + 2x 2-4x 3≤80 x 1、x 2≥0,x 3无限制解:按照上述方法处理,得该线性规划问题的标准形为 ma x z =2x 1+2x 2-4x 31+4x 32x 1 + 3x 2-3x 31 + 3x 32-x 4 = 30 x 1 + 2x 2-4x 31 + 4x 32 + x 5 = 80 x 1、x 2,x 31,x 32,x 4,x 5 ≥0图解法1、用图解法求解下面线性规划。
ma x z =2x 1+2x 2 x 1-x 2 ≥ 1 -x 1 + 2x 2≤ 0 x 1、x 2≥ 0解:图1—3中阴影部分就是该问题的可行域,显然该问题的可行域是无界的。
两条虚线为目标函数等值线,它们对应的目标值分别为2和4,可以看出,目标函数等值线向右移动,问题的目标值会增大。
但由于可行域无界,目标函数可以增大到无穷。
称这种情况为无界解或无最优解。
2、用图解法求解下述LP 问题。
121212max 2328416.. 4120,1,2j z x x x x x s t x x j =++≤⎧⎪≤⎪⎨≤⎪⎪≥=⎩解:可知,目标函数在B(4, 2)处取得最大值,故原问题的最优解为*(4,2)TX =,目标函数最大值为*2*43*214z =+=。
3、 用图解法求解以下线性规划问题: (1)max z= x 1 +3x 2s.t. x 1 +x 2 ≤10 -2x 1 +2x 2 ≤12x 1≤ 7x 1, x 2≥0x 210(2,8)6x1 -6 0 7 10最优解为(x1,x2)=(2,8),max z=26(2) min z= x1-3x2s.t. 2x1-x2≤4x1+x2≥3x2≥5x1≤4x1最优解为(x1,x2)=(0,5),min z=-15(3)max z= x1+2x2s.t. x1-x2≤1x1+2x2≤4x1≤3x1, x2≥0x1多个最优解,两个最优极点为(x1,x2)=(2,1),和(x1,x2)=(0,2),max z=5(4)min z= x1+3x2s.t. x1+2x2≥42x1+x2≥4x1, x2≥0x112单纯形法1、用单纯形法求解ma x z=50x1+100x2x1 + x2≤3002x1 + x2≤400x2≤250x1、x2≥0j2、用单纯形法求解ma x z=2x1+x2-x1 + x2≤52x1-5x2≤10x1、x2≥0解:用单纯形表实现如表1—10223、用单纯形法(大M法)求解下列线性规划ma x z=3x1-2x2-x3x1-2x2 + x3≤11-4x1 + x2 + 2x3 ≥3-2x1+ x3= 1x1、x2、x3≥0解:化为标准形式ma x z=3x1-2x2-x3x1-2x2 + x3 + x4= 11-4x1+ x2 +2x3 -x5 = 3-2x1+x3= 1x1、x2、x3、x4、x5≥0在第二、三个约束方程中分别加入人工变量x6、x7,构造如下线性规划问题ma x z=3x1-2x2-x3-M x6-M x7x1-2x2 + x3 + x4= 11-4x1+ x2 +2x3 -x5 + x6= 3-2x1+x3+x7 = 1x1、x2、x3、x4、x5、x6、x7≥0用单纯形进行计算,计算过程见表j4、用单纯形法(大M法)求解下列线性规划ma x z=3x1+2x22x1+ x2 ≤23x1 +4 x2 ≥12x1、x2≥0解:化为标准形式后引入人工变量x5得到ma x z=3x1+2x2-M x52x1+ x2 +x3= 23x1 +4 x2 -x4+x5 =12x1、…、x5≥0用单纯形法计算,过程列于表中。
从表中可以看出,虽然检验数均小于或等于零,但基变量中含有非零的人工变量2、用单纯形法求解下述LP 问题。
121212max 2328416.. 4120,1,2j z x x x x x s t x x j =++≤⎧⎪≤⎪⎨≤⎪⎪≥=⎩解:首先将原问题转化为线性规划的标准型,引入松弛变量x 3, x 4,x 5,可得:121231425max 2328416.. 4120,1,2,,5j z x x x x x x x s t x x x j =+++=⎧⎪+=⎪⎨+=⎪⎪≥=⎩构造单纯形表,计算如下:原问题的最优解为(4,2,0,0,4)X =,目标函数最大值为*2*43*214z =+=。
3、用单纯形法求解下述LP 问题。
12121212max 34240.. 330,0z x x x x s t x x x x =++≤⎧⎪+≤⎨⎪≥⎩ 解:首先将原问题转化为线性规划的标准型,引入松弛变量3x 、4x ,可得:121231241234max z 34240.. 330,,,0x x x x x s t x x x x x x x =+++=⎧⎪++=⎨⎪≥⎩ 构造单纯形表,计算如下:X=,目标函数值为由此可得,最优解为*(18, 4, 0, 0)T*3*184*470z=+=。
4、用单纯形法求解下述LP 问题。
12121212max 2.53515.. 5210,0z x x x x s t x x x x =++≤⎧⎪+≤⎨⎪≥⎩ 解:引入松弛变量3x 、4x ,化为标准形式:121231241234max 2.53515.. 5210,,,0z x x x x x s t x x x x x x x =+++=⎧⎪++=⎨⎪≥⎩由单纯形表,可得两个最优解(2,0,9,0)X =、(2)(20/19,45/19,0,0)T X =,所以两点之间的所有解都是最优解,即最优解集合为:(1)(2)(1)X X αα+-,其中01α≤≤。
5、用单纯形法求解下述线性规划123123123123123max 232883104..48,,0z x x x x x x x x x s t x x x x x x =-+-++≤⎧⎪-+≤⎪⎨--≤⎪⎪≥⎩解:引入松弛变量x 、x 和x ,列单纯形表计算如下:故,原问题的最优解为*3333(1011,27,,267,0,0)T X x x x x =+++,*6z =,其中30x ≥。
7、用单纯形法求解下述LP 问题。
121231241234min z 34240.. 330,,,0x x x x x s t x x x x x x x =--++=⎧⎪++=⎨⎪≥⎩ 解:构造单纯形表计算如下:故,最优解为*(18, 4, 0, 0)T X =,目标函数值为*3*184*470z =--=-。
8、用大M 法求解下述LP 问题123123123123max 2357..2510,,0z x x x x x x s t x x x x x x =+-++=⎧⎪-+≥⎨⎪≥⎩ 解:先将原问题化为标准型,引入松弛变量4x ,得:12312312341234max 2357..2510,,,0z x x x x x x s t x x x x x x x x =+-++=⎧⎪-+-=⎨⎪≥⎩ 再引入人工变量5x 、6x ,得:12356123512346123456max 2357..2510,,,,,0z x x x Mx Mx x x x x s t x x x x x x x x x x x =+---+++=⎧⎪-+-+=⎨⎪≥⎩构造单纯形表计算如下:由此得,原问题的最优解为*454(, , 0)77T X =,目标函数最优值为102/7。