【免费下载】组合数学作业1-8
- 格式:pdf
- 大小:310.80 KB
- 文档页数:16
小学一年级数学形组合练习题一、填空题1. 用数字 1、2、3 填空,使下面的等式成立。
2 + ? = 32. 用数字 4、5、6 填空,使下面的等式成立。
4 + ? = 103. 用数字 7、8、9 填空,使下面的等式成立。
? - 8 = 14. 用数字 1、2、3、4 填空,使下面的等式成立。
2 + ? = 4 - 1二、选择题:选择正确的答案填入括号内。
1. 下面哪个数字是奇数?a) 2 b) 6 c) 9 d) 10 ( )2. 下面哪个图形是正方形?a) △ b) ○ c) □ d) ★ ( )3. 下面哪个组合相等?a) 2 + 2 b) 3 - 1 c) 4 x 1 d) 5 ÷ 3 ( )4. 下面哪个数字是个位数?a) 20 b) 13 c) 45 d) 9 ( )三、判断题:判断下列句子的正误,正确的在括号内打“√”,错误的打“×”。
1. 2 是偶数。
(√ / ×)2. 6 + 3 = 9。
(√ / ×)3. 7 - 4 = 3。
(√ / ×)4. 5 x 2 = 11。
(√ / ×)四、计算题1. 请计算:3 + 4 = ?2. 请计算:8 - 5 = ?3. 请计算:2 x 3 = ?4. 请计算:6 ÷ 2 = ?五、应用题1. 小明有 5 根铅笔,小红有 2 根铅笔,他们一共有几根铅笔?2. 一包糖有 8 块,小亮吃了 3 块,还剩下几块糖?3. 有 4 个小朋友,每人要分 2 个苹果,一共需要几个苹果?4. 小猫每天喝 3 碗奶,一周喝几碗奶?以上是小学一年级数学形组合的练习题,希望能帮助到孩子们巩固所学的知识点。
请学生们认真完成,如果有不懂的地方可以找老师帮助解答。
组合数学练习题及解析组合数学是数学中的一个分支,主要研究离散对象之间的组合关系。
它在计算机科学、统计学、运筹学等领域中具有广泛的应用。
本文将提供一些组合数学的练习题,并附上详细的解析,以帮助读者更好地理解和掌握这一领域的知识。
一、排列组合1. 从10个人中选出3个人组成一个小组,问有多少种不同的选择方式?解析:这是一个从10个元素中选取3个元素的组合问题。
根据组合的公式,可以得到答案为C(10, 3) = 10! / (3! * (10-3)!) = 120种选择方式。
2. 有10个小球,5个红色,5个蓝色,从中选取3个小球组成一个集合,问有多少种不同的集合?解析:这是一个从10个元素中选取3个元素并忽略其顺序的组合问题。
根据组合的公式,可以得到答案为C(10, 3) = 10! / (3! * (10-3)!)= 120种不同的集合。
3. 从字母A、B、C、D、E中任选3个字母组成一个字符串,问有多少种不同的字符串?解析:这是一个从5个元素中选取3个元素并考虑其顺序的排列问题。
根据排列的公式,可以得到答案为P(5, 3) = 5! / (5-3)! = 5*4*3 = 60种不同的字符串。
二、组合数学问题1. 假设有8本不同的书放在一排,问有多少种不同的放置方式?解析:这是一个考虑顺序的排列问题。
根据排列的公式,可以得到答案为P(8, 8) = 8! = 40320种不同的放置方式。
2. 有5个不同的水果,需要选择2个水果放入一个篮子中,问有多少种不同的放置方式?解析:这是一个从5个元素中选取2个元素并考虑其顺序的排列问题。
根据排列的公式,可以得到答案为P(5, 2) = 5! / (5-2)! = 5*4 = 20种不同的放置方式。
3. 一家公司有10个员工,其中3个员工必须参加一个会议,问有多少种不同的选取方式?解析:这是一个从10个元素中选取3个元素的组合问题。
根据组合的公式,可以得到答案为C(10, 3) = 10! / (3! * (10-3)!) = 120种不同的选取方式。
第1章 排列与组合1.1 从{1,2,…,50}中找一双数{a,b},使其满足:()5;() 5.a ab b a b -=-≤[解] (a) 5=-b a将上式分解,得到55a b a b -=+⎧⎨-=-⎩a =b –5,a=1,2,…,45时,b =6,7,…,50。
满足a=b-5的点共50-5=45个点. a = b+5,a=5,6,…,50时,b =0,1,2,…,45。
满足a=b+5的点共45个点. 所以,共计2×45=90个点. (b) 5≤-b a(610)511(454)1651141531+⨯+⨯-=⨯+⨯=个点。
1.2 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列? (b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?[解] (a) 女生在一起当作一个人,先排列,然后将女生重新排列。
(7+1)!×5!=8!×5!=40320×120=4838400(b) 先将男生排列有7!种方案,共有8个空隙,将5个女生插入,故需从8个空中选5个空隙,有58C 种选择。
将女生插入,有5!种方案。
故按乘法原理,有:7!×58C ×5!=33868800(种)方案。
(c) 先从5个女生中选3个女生放入A ,B 之间,有35C 种方案,在让3个女生排列,有3!种排列,将这5个人看作一个人,再与其余7个人一块排列,有(7+1)! = 8!由于A ,B 可交换,如图**A***B** 或 **B***A**故按乘法原理,有:2×35C ×3!×8!=4838400(种)1.3 m 个男生,n 个女生,排成一行,其中m ,n 都是正整数,若(a) 男生不相邻(m ≤n+1); (b) n 个女生形成一个整体; (c) 男生A 和女生B 排在一起; 分别讨论有多少种方案.[解] (a) 先将n 个女生排列,有n!种方法,共有n+1个空隙,选出m 个空隙,共有mn C 1+种方法,再插入男生,有m!种方法,按乘法原理,有:n!×mn C 1+×m!=n!×)!1(!)!1(m n m n -++×m!=)!1()!1(!m n n n -++种方案。
组合数练习题组合数是高中数学中一个重要的概念,它在数学、概率和组合数学等领域中有着广泛的应用。
本文将为大家提供一些组合数的练习题,帮助大家更好地理解和掌握组合数的概念和计算方法。
1. 问题描述:有10个小球,从中选择3个小球,一共有多少种选择方式?解析:根据组合数的定义,选择3个小球的方式可以表示为C(10, 3)。
计算方法如下:C(10, 3) = 10! / (3! * (10-3)!) = 10! / (3! * 7!) = (10 * 9 * 8) / (3 * 2 * 1) = 120因此,选择3个小球的方式共有120种。
2. 问题描述:有7个人排成一排,从中选择3个人,一共有多少种选择方式?解析:同样地,选择3个人的方式可以表示为C(7, 3)。
计算方法如下:C(7, 3) = 7! / (3! * (7-3)!) = 7! / (3! * 4!) = (7 * 6 * 5) / (3 * 2 * 1) = 35因此,选择3个人的方式共有35种。
3. 问题描述:某公司有10名员工,其中2名员工要参加一个会议,请问参加会议的员工可能的选择方式有多少种?解析:选择2名员工参加会议的方式可以表示为C(10, 2)。
计算方法如下:C(10, 2) = 10! / (2! * (10-2)!) = 10! / (2! * 8!) = (10 * 9) / (2 * 1) = 45因此,参加会议的员工选择方式共有45种。
4. 问题描述:从数字1、2、3、4、5中选取3个数字,不放回地选择,请问一共有多少种选择方式?解析:这个问题可以看作是不计顺序地从5个数字中选择3个数字的问题,可以表示为C(5, 3)。
计算方法如下:C(5, 3) = 5! / (3! * (5-3)!) = 5! / (3! * 2!) = (5 * 4) / (2 * 1) = 10因此,从数字1、2、3、4、5中选取3个数字的选择方式共有10种。
高二数学组合练习题1. 已知在一张彩票上,有10个数字,分别是1、2、3、4、5、6、7、8、9、10。
要从中选择3个数字组成一个3位数,求以下情况的个数:a) 三个数字都不相同;b) 三个数字中有两个相同;c) 三个数字中有三个相同。
解答:a) 三个数字都不相同的情况:由于数字不能重复使用,我们需要从10个数字中选择3个不重复的数字。
根据组合的性质,计算不重复的组合数即可。
C(10, 3) = 10! / (3! * (10-3)!) = 120。
b) 三个数字中有两个相同的情况:我们需要从10个数字中选择2个相同的数字和1个不同的数字。
首先选择相同的数字,有C(10, 1)种可能性;然后再选择不同的数字,有C(9, 1)种可能性。
所以总共有C(10, 1) * C(9, 1) = 10 * 9 = 90种情况。
c) 三个数字中有三个相同的情况:由于只有10个数字可以选择,所以只能选择相同的三个数字,即只有一种情况。
a) 120个;b) 90个;c) 1个。
2. 有5个不同的墙壁,需要从8种不同的颜色中选择一种或多种颜色进行涂刷。
求以下情况的个数:a) 可以上涂一种颜色的情况;b) 可以上涂多种颜色的情况。
解答:a) 可以上涂一种颜色的情况:在5个墙壁中,每个墙壁都可以选择一种颜色来涂刷,而每个墙壁有8种颜色可选。
根据乘法原理,可以涂刷一种颜色的情况数为8^5 = 32768个。
b) 可以上涂多种颜色的情况:在5个墙壁中,每个墙壁可以选择一种或多种颜色来涂刷。
对于每个墙壁,有8种颜色可以选择,而每个墙壁又可以选择不涂刷(即不选择任何颜色)。
所以每个墙壁有9种可能性(包括不涂刷的情况)。
根据乘法原理,可以涂刷多种颜色的情况数为9^5 = 59049个。
a) 32768个;b) 59049个。
3. 有8个人,其中3个是A类人,5个是B类人。
他们排队从左到右站成一列。
求以下情况的个数:a) 两个A类人之间没有B类人的情况;b) 所有A类人都排在一起的情况;c) A类人和B类人交替排列的情况。
习题二 2.1证明:(1)假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1]。
(2) 分两种情况继续讨论:假设有1人谁都不认识. (3) 假设至少有两人谁都不认识.2.2 任意整数除以10的余数有10种情况,现在有11个整数,至少两个数余数相同,则差能被10整除。
2.3 坐标为分4种情况,即(偶,偶)、(偶,奇)、(奇,奇)、(奇,偶). 2.6 设5个数为125,,,a a a 且mod3(1,2,5),i i a r i显然2,i r 现将0、1、2看做3个盒子,将125,,r r r 看做5个物体,则有三种情况讨论:(1)若有两个盒子是空的,即只有一个非空。
5个余数是相同的,任选3个。
(2)只有一个是空的,即有两个非空。
5个数分成两个盒子,一定有3个在一个盒子。
(3)三个盒子都不空。
分别从每个盒子中选一个,将它们对应的ai 相加,其和必被3整除。
2.7 解一共有9个连续的三天,它们的总数3*1800,推论: 3*1800/9=600 2.8(2.9) 同书2.10 共50*2=100天,最多99。
2.11将S 划分为{1,3,5},{7,9,11}……,{ 595,597,599}共100组. 2.12设70个数为1270,,;a a a 12704,4,4;a a a12709,9,9.a a a 取值范围209,共210个数。
2.13 清华大学出版社(第3版),问题简化1到16的16个数任意分成3个部分,其中必有一个部分中的一个元素是两个元素之差。
解:反证法:1到16的16个数任意分成3个部分P1,P2,P3无一满足所求,必有一部分至少有 6个元素。
(1) 不妨设6个元素a1<a2<a3<a4<a5<a6,它们组成集合A (属于P1),令A={a1,a2,a3,a4,a5,a6}(根据假设,A 中不存在一个元素是两个元素之差)。
令 b1=a2-a1, b2=a3-a1, b3=a4-a1, b4=a5-a1, b5=a6-a1.则B={b1,b2,b3,b4,b5}, b1,b2,b3,b4,b5都不属于P1,则属于P2或P3。
组合数学练习题第一章排列组合1, 在1到10000之间,有多少个每位上数字全不相同而且由偶数构成的整数?本题分为四种情况:1位整数有4个: 2, 4, 6, 82位整数有4*4种方案, 有16个3位整数有4*4*3种方案, 有48个4位整数有4*4*3*2种方案, 有96个总共有4+16+48+96=164个这样的整数.2, 一教室有两排,每排9个坐位,今有14名学生,问按下列不同的方式入座,各有多少种坐法?(1) 规定某5人总坐在前排,某4人总在后排,但每人具体坐位不指定;(2) 要求前排至少坐5人,后排至少坐4人。
(1)本问中, 第一排和第二排各有5名和4名同学被确定, 那么14名同学中还有5名同学没有固定在哪一排, 所以可以根据这5名同学的不同排列来计算, 分5种情况考虑; 1)从这5名同学中选出4名同学坐在第一排, 这4名和固定的5名同学进行全排列、另外1名同学和第二排固定的4名同学进行全排列,以此类推;2) 从5名同学中选出3名同学坐第一排; 3) 从5名同字中选出2名同学坐第一排; 4) 从5名同学中选出1名同学坐第一排; 5) 最后5名同学全部坐在第二排; 把这5种情况的坐法安排数全部加起来就是结果.C(5,4)*P(9,9)*P(9,5)+C(5,3)*P(9,8)*P(9,6)+C(5,2)*P(9,7)*P(9,7)+C(5,1)*P(9,6)*P(9,8)+P(9,5)*P(9,9)(2)本问中, 第一排和第二排所坐的同学的数量被确定, 分别是5名和4名, 那么要从14名同学中把省下的5名同学选出来, 然后再按照坐在不同排的情况进行计算, 同样分5种情况考虑; 1) 从这5名同学中选出4名同学坐在第一排, 这4名和固定的5名同学进行全排列、另外1名同学和第二排固定的4名同学进行全排列,以此类推;2) 从5名同学中选出3名同学坐第一排; 3) 从5名同字中选出2名同学坐第一排; 4) 从5名同学中选出1名同学坐第一排; 5) 最后5名同学全部坐在第二排; 把这5种情况的坐法安排数全部加起来再乘以从14名同学中任选出5名同学方法的数就是结果.C(14,5)*[P(9,9)*P(9,5)+P(9,8)*P(9,6)+P(9,7)*P(9,7)+P(9,6)*P(9,8)+ P(9,5)*P(9,9)] 3, n对夫妇,要求排成一男女相间的队伍,试问有多少种不同的方案?若围成一圆桌坐下,又有多少种不同的方案?围一圆桌而坐且要求每对夫妇坐在一起,又有多少种方案?(1)本问中, 男女各有n名, 分别进行全排列各有n!种方案, 将他们交叉排列就有(n!)2种方案, 同时男在女前或女在男前又是不同的方案, 所以要乘以2, 所以方案数为--- 2 (n!)2(2)本问较第一问要去掉变为圆周排列后的重复度, 总的人数为2n, 用第一问的方案数除以2n, 所以方案数为--- (n!)2/n(3)本问中, 每对夫妇交换位置坐的方案数为2n, 再把每对夫妇看成单个元素进行圆周全排列, 方案为n!/n, 最后把两种方案数相乘, 所以方案数为--- 2n n!/n4, 有16名选手,其中6名只能打后卫,8名只能打前锋,2名能打前锋或后卫,今欲选出11人组成一支球队,而且需要7人打前锋,4人打后卫,试问有多少种选法?根据2名既能打前锋也能打后卫选手的不同情况来计算方案(1) 方法一, 分成6种情况: 1) 这2名选手全部打前锋; 2) 这2名选手全部打后卫; 3) 从2名选手中选出1名打前锋, 另一名不上场; 4) 从2名选手中选出1名打后卫, 另一名不上场; 5) 2名选手全部上场, 分别打前锋和后卫; 6) 2名选手全部不上场; 把这些方案加起来就是全部选法.C(8,5)*C(6,4)+C(8,7)*C(6,2)+2C(8,6)*C(6,4)+2C(8,7)*C(6,3)+C(8,6)*C(6,3)+C(8,7)*C(6,4) = 2800(2) 方法二, 分成3种情况: 1) 把这2名选手全部加入前锋后选组进行组合; 2) 把这2名选手合部加入后卫后选组进行组合; 但这两种方案中这2名选手全部不上场的方案是重复的, 所以要减掉一个2名选全部不上场的方案数; 3) 上面的方案中也包括了2名选手中只有1名上场的情况, 所以省下只考虑2名选手都上场, 但分别打前锋和后位的方案; 把这些方案加起来就是全部选法.C(6,4)*C(10,7)+C(8,4)*C(8,7) -C(8,7)*C(6,4)+ C(6,3) *C(8,6) = 28005, 从1到10这10个正整数中每次取出一个并登记,然后放回,连续取5次,得到一个由5个数字组成的数列。
1.1 从{}5021,,,⋅⋅⋅中找两个数{}b a ,,使其满足 (1) 5||=-b a ;(2)5||≤-b a解:(1)根据5||=-b a 可得 55-=-=-b a b a 或则有种种4545 共有90种。
(2)根据5||≤-b a 得 )50,,2,1(,55{⋅⋅⋅∈+≤≤-b a b a b则:当5≤b 时,有 1=b , 61≤≤a , 则有 6种 2=b , 71≤≤a , 则有7种 3=b , 81≤≤a , 则有8种 4=b , 91≤≤a , 则有 9种5=b , 101≤≤a , 则有10种当455≤<b 时,有 6=b , 111≤≤a , 则有 11种7=b , 122≤≤a , 则有 11种. . . . . . . . .45=b , 5040≤≤a , 则有11种当5045≤<b 时,有 46=b , 5041≤≤a , 则有 10种 47=b , 5042≤≤a , 则有 9种48=b , 5043≤≤a , 则有 8种49=b , 5044≤≤a , 则有 7种50=b , 5045≤≤a , 则有 6种故:共 种520)678910(21140=+++++⨯1.2 (1)先把女生进行排列,方案为5!,然后把女生看成1个人和7个男生进行排列,总方案数为5!×8!(2)女生不相邻,则先把男生进行排列,方案为7!再把女生插入男生之间的8个空位种的任意5个,总方案数为7!×58P(3)应该是A 女生x 女生y 女生z B,或是B 女生x 女生y 女生z A 的形式,从5个女生中选出3人进行排列,方案为35P ,考虑A,B 可以换位,方案为2×35P ,然后把这个看成一个整体,和剩下的2个女生,5个男生,一共7个人进行排列,总方案数2×35P ×8!1.3 m 个男生,n 个女生,排成一行,其中m,n 都是正整数,若(a )男生不相邻(m ≤n+1); (b )n 个女生形成一个整体; (c )男生A 和女生B 排在一起; 分别讨论有多少种方案。
作业11.设想一个监狱有64个囚室组成,这些囚室排列得象一张8X8的棋盘。
所有相邻的囚室之间都有门相通。
一个被囚在某个角上囚室中的犯人被告知,如果他能够恰好通过每个囚室一次而到达对角位置上的囚室,他就将被释放。
问:该犯人能否得到自由?2.构造一个6阶幻方。
3.证明3阶幻方必然在中心位置有一个5。
试推导:恰好存在8个3阶幻方。
4.各堆大小分别为22,19,14和11的4-堆Nim取子游戏是平衡的还是非平衡的?游戏人I的第一次取子方式是从大小为19的堆中取走6枚硬币,游戏人II的第一次取子方式是什么?5.一局游戏在两个游戏人之间如下交替进行:游戏从一空堆开始。
当轮到一个游戏人时,他可以往该堆中加进1,2,3或4枚硬币。
往堆中加进第100枚硬币的游戏人为得胜者。
确定在这局游戏中是游戏人I还是游戏人II能够确保获胜。
获胜的策略是什么?作业21.证明:有理数m/n展开的十进制小数最终是要循环的。
2.一个学生有37天用来准备考试。
根据过去经验,她知道她需要不超过60小时的学习时间。
她还希望每天至少学习1小时。
证明,无论她如何安排学习时间(假设每天的学习时间都是整数个小时),都存在连续的若干天,在此期间她恰好学习了13个小时。
3.证明,从边长为2的正方形中任选5个点,它们当中存在2个点,这2点的距离至多为根号2。
4.有一个100人的聚会。
每个人都有偶数个(可能是0个)熟人。
证明,在这次聚会上存在3个人有相同个数的熟人。
5.确定一副牌中(52张)下列类型的一手牌(5张)的数目。
(1)full house(3张一样大小的牌及2张相同点数的另外的牌)(2)顺牌(5张点数相连的牌)(3)同花(5张一样花色的牌)(4)同花顺(5张点数相连的同样花色的牌)(5)恰好两个对(6)恰好一个对6.15人围坐一个圆桌。
如果B拒绝挨着A坐,有多少种围坐方式?如果B只拒绝坐在A 的右侧,又有多少种围坐方式?7.给定8个车,其中5个红车,3个蓝车。
组合练习题及答案练习题一:组合的基本运算1. 给定集合A={1, 2, 3, 4},求A的所有子集。
2. 集合B={a, b, c},求B的所有真子集。
3. 若集合C={1, 2, 3},求C的幂集。
4. 集合D={x | x是小于10的正整数},求D的元素个数。
答案一:1. 集合A的子集有:∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}。
2. 集合B的真子集有:∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}。
3. 集合C的幂集为:∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}。
4. 集合D的元素个数为9,因为D={1, 2, 3, 4, 5, 6, 7, 8, 9}。
练习题二:组合的应用问题1. 从5个不同的球中选出3个球,有多少种不同的选法?2. 有6个人参加一个会议,需要选出3个人组成委员会,有多少种不同的组合方式?3. 一个班级有30个学生,需要选出5个学生代表,有多少种不同的组合方式?4. 一个团队有10名成员,需要选出队长和副队长各一名,有多少种不同的选择方式?答案二:1. 从5个不同的球中选出3个球的选法为C(5, 3) = 5! / (3! * (5-3)!) = 10种。
2. 从6个人中选出3个人组成委员会的组合方式为C(6, 3) = 6! / (3! * (6-3)!) = 20种。
3. 从30个学生中选出5个学生代表的组合方式为C(30, 5) = 30! / (5! * (30-5)!)。
4. 从10名成员中选出队长和副队长的组合方式为C(10, 1) * C(9, 1) = 10 * 9 = 90种。