信息论与编码考试试题
- 格式:doc
- 大小:69.50 KB
- 文档页数:3
信息论与编码试题集题目一:1. 请解释以下术语的含义:a) 信源熵b) 信源编码c) 香农定理d) 奈奎斯特准则e) 奇偶校验码2. 在一个二进制对称信道中,如果发送方发送的比特为0,接收方接收到的比特也为0的概率为0.9,发送方发送的比特为1,接收方接收到的比特也为1的概率为0.8。
请计算该信道的信道容量。
题目二:1. 在一个具有4个等概率输出符号的信源中,计算该信源的熵。
2. 一个典型的英文字母出现的概率如下:P(A) = 0.4, P(B) = 0.3, P(C) = 0.2, P(D) = 0.1。
请计算该信源的平均码长以及编码效率。
题目三:1. 请解释Huffman编码的原理及步骤。
2. 使用Huffman编码对以下信源的输出编码:A: 0.3,B: 0.2,C: 0.15,D: 0.1,E: 0.1,F: 0.05,G: 0.05,H: 0.05。
计算编码的平均码长和编码效率。
题目四:1. 请解释线性分组码和卷积码的区别。
2. 针对一个二进制码串11001011,使用以下生成矩阵计算该码串的卷积码:G = [1 1 0 1; 1 0 1 0]。
给出计算过程和最终编码结果。
题目五:1. 请解释码激励方法。
2. 针对一个码激励线性分组码,当收到的码字为101010时,给出该码字的输入和输出码字。
题目六:1. 请解释BCH编码的原理及应用场景。
2. 对一个BCH(n, k)码,当n=15,k=11时,请给出该BCH码的生成矩阵。
题目七:1. 请解释LDPC码以及LDPC码的译码方法。
2. 对于一个n=7,k=4的LDPC码,给出该LDPC码的校验矩阵。
题目八:1. 请比较分组密码与流密码的特点和应用场景。
2. 使用RC4流密码算法对明文"HELLO"进行加密,已知初始密钥为"KEY",给出加密后的密文。
题目九:1. 请解释区块密码与流密码的工作原理和区别。
一、(11’)填空题(1)1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
(2)必然事件的自信息是0 。
(3)离散平稳无记忆信源X的N次扩展信源的熵等于离散信源X的熵的N倍。
(4)对于离散无记忆信源,当信源熵有最大值时,满足条件为__信源符号等概分布_。
(5)若一离散无记忆信源的信源熵H(X)等于,对信源进行等长的无失真二进制编码,则编码长度至少为3 。
(6)对于香农编码、费诺编码和霍夫曼编码,编码方法惟一的是香农编码。
(7)已知某线性分组码的最小汉明距离为3,那么这组码最多能检测出_2_______个码元错误,最多能纠正___1__个码元错误。
(8)设有一离散无记忆平稳信道,其信道容量为C,只要待传送的信息传输率R__小于___C(大于、小于或者等于),则存在一种编码,当输入序列长度n足够大,使译码错误概率任意小。
(9)平均错误概率不仅与信道本身的统计特性有关,还与___译码规则____________和___编码方法___有关二、(9')判断题(1)信息就是一种消息。
(⨯)(2)信息论研究的主要问题是在通信系统设计中如何实现信息传输、存储和处理的有效性和可靠性。
(√)(3)概率大的事件自信息量大。
(⨯)(4)互信息量可正、可负亦可为零。
(√)(5)信源剩余度用来衡量信源的相关性程度,信源剩余度大说明信源符号间的依赖关系较小。
(⨯)(6)对于固定的信源分布,平均互信息量是信道传递概率的下凸函数。
(√)(7) 非奇异码一定是唯一可译码,唯一可译码不一定是非奇异码。
( ⨯ ) (8) 信源变长编码的核心问题是寻找紧致码(或最佳码),霍夫曼编码方法构造的是最佳码。
( √ )(9)信息率失真函数R(D)是关于平均失真度D 的上凸函数. ( ⨯ )三、(5')居住在某地区的女孩中有25%是大学生,在女大学生中有75%是身高1.6米以上的,而女孩中身高1.6米以上的占总数的一半。
1、平均自信息为表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量。
平均互信息表示从Y获得的关于每个X的平均信息量,也表示发X前后Y的平均不确定性减少的量,还表示通信前后整个系统不确定性减少的量。
2、最大离散熵定理为:离散无记忆信源,等概率分布时熵最大。
3、最大熵值为。
4、通信系统模型如下:5、香农公式为为保证足够大的信道容量,可采用(1)用频带换信噪比;(2)用信噪比换频带。
6、只要,当N足够长时,一定存在一种无失真编码。
7、当R<C时,只要码长足够长,一定能找到一种编码方法和译码规则,使译码错误概率无穷小。
8、在认识论层次上研究信息的时候,必须同时考虑到形式、含义和效用三个方面的因素。
9、1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。
按照信息的地位,可以把信息分成客观信息和主观信息。
人们研究信息论的目的是为了高效、可靠、安全地交换和利用各种各样的信息。
信息的可度量性是建立信息论的基础。
统计度量是信息度量最常用的方法。
熵是香农信息论最基本最重要的概念。
事物的不确定度是用时间统计发生概率的对数来描述的。
10、单符号离散信源一般用随机变量描述,而多符号离散信源一般用随机矢量描述。
11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为其发生概率对数的负值。
12、自信息量的单位一般有 比特、奈特和哈特 。
13、必然事件的自信息是 0 。
14、不可能事件的自信息量是 ∞ 。
15、两个相互独立的随机变量的联合自信息量等于 两个自信息量之和 。
16、数据处理定理:当消息经过多级处理后,随着处理器数目的增多,输入消息与输出消息之间的平均互信息量 趋于变小 。
17、离散平稳无记忆信源X 的N 次扩展信源的熵等于离散信源X 的熵的 N 倍 。
18、离散平稳有记忆信源的极限熵,=∞H )/(lim 121-∞→N N N X X X X H 。
精品文档精品文档3、(12分)已知(7,3)分组码的生成矩阵为100111001001111010011G ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(1)、写出所有许用码组,并求出监督矩阵。
(2)、该码的编码效率为多少?(3)、若译码器输入的码组为l010001,请计算其校正子,并指出此接收码组中是否包含错误。
4、(12分)设有信源12345678()0.40.140.10.10.070.060.050.04X a a a a a a a a P X ⎛⎫⎡⎤=⎪⎢⎥⎝⎭⎣⎦(1) 求信源熵)(X H 和信源的冗余度;(2) 完成二进制费诺编码,并计算其平均码长及编码效率。
(3) 完成二进制霍夫曼编码,并计算其平均码长及编码效率。
精品文档5、(12分)信源分布123911()102020xx x X P X ⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦,信道转移概率矩阵511682415124681158246P ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦, 信道输出符号Y = {y 1, y 2, y 3}。
(1) 若信源等概分布,对其按最大后验概率准则译码,并求平均错误概率。
(2) 若信源等概分布,对其按最大似然准则译码,并求平均错误概率。
6、(18分) 已知(7,3)循环码的生成矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100110111011101010001G(1)、试写出该(7,3)循环码的生成多项式g (x )。
(2)、若输入信息码为101,试写出对应的循环码码组。
(3)、若接收到的码组为1010100,试恢复出正确的信息位。
(4)、该码能纠正几位错。
信息论与编码题库(最新整理六套)(⼀)⼀、填空题1. 在⽆失真的信源中,信源输出由 H (X ) 来度量;在有失真的信源中,信源输出由 R (D ) 来度量。
2. 要使通信系统做到传输信息有效、可靠和保密,必须⾸先信源编码,然后_____加密____编码,再______信道_____编码,最后送⼊信道。
3. 带限AWGN 波形信道在平均功率受限条件下信道容量的基本公式,也就是有名的⾹农公式是log(1)C W SNR =+;当归⼀化信道容量C/W 趋近于零时,也即信道完全丧失了通信能⼒,此时E b /N 0为 -1.6 dB ,我们将它称作⾹农限,是⼀切编码⽅式所能达到的理论极限。
4. 保密系统的密钥量越⼩,密钥熵H (K )就越⼩,其密⽂中含有的关于明⽂的信息量I (M ;C )就越⼤。
5. 已知n =7的循环码42()1g x x x x =+++,则信息位长度k 为 3 ,校验多项式h(x)= 31x x ++ 。
6. 设输⼊符号表为X ={0,1},输出符号表为Y ={0,1}。
输⼊信号的概率分布为p =(1/2,1/2),失真函数为d (0,0) = d (1,1) = 0,d (0,1) =2,d (1,0) = 1,则D min = 0 ,R (D min )= 1bit/symbol ,相应的编码器转移概率矩阵[p(y/x )]=1001??;D max = 0.5 ,R (D max )= 0 ,相应的编码器转移概率矩阵[p(y/x )]=1010??。
7. 已知⽤户A 的RSA 公开密钥(e,n )=(3,55),5,11p q ==,则()φn = 40 ,他的秘密密钥(d,n )=(27,55) 。
若⽤户B 向⽤户A 发送m =2的加密消息,则该加密后的消息为 8 。
⼆、判断题1. 可以⽤克劳夫特不等式作为唯⼀可译码存在的判据。
(√ )2. 线性码⼀定包含全零码。
(√ )3. 算术编码是⼀种⽆失真的分组信源编码,其基本思想是将⼀定精度数值作为序列的编码,是以另外⼀种形式实现的最佳统计匹配编码。
一、填空题(30分、每空2分)1、信息论的三大要素是: 、 、 。
2、一个随机事件的不确定度是指: 。
3、某事件发生的概率是0.5,则这个事件的信息量是: 。
4、编码调制的两条基本途径是: 、 。
5、一个全损离散信道的信道容量是: 。
6、已知一个离散信源有8个符号,每个符号出现的概率均一样,则该信源的信源熵是: 。
7、信息表达可通过哪三层实现: 、 、 。
8、(N 、K )线性码的任意一个码字C 与校验矩阵H 的关系是: 。
9、若(7、4)循环码的生成多项式为g(x)=x +x+1,当信息元为(1101)时其码字为: ,信息元为(0110)时其码字为: 。
二、选择题(20分、每空2分)1、 下列几种离散信源最佳编码方法中编码效率最高的是:A 、香农编码B 、哈夫曼编码C 、费诺编码D 、游程编码2、已知信道模型如下,其信道容量是:A 、 4bitB 、2bitC 、0D 、8bit3、下列离散信道,信道容量最大的是:A 、(1)B 、(2)C 、(3)D 、(4)4、某离散信源的概率空间为{0,0,0,0,0,0,1,0},其信源熵是:A 、0B 、1bitC 、log8bitD 、log7bit5、已知线性分组码的生成矩阵G= 1 1 1 0 1 0 ,下列哪个码字是禁用码: 1 1 0 0 0 10 1 1 1 0 1A 、000000B 、011101C 、 010110D 、 1110006、(5、2)系统线性码的生成距阵是G = 1 0 1 1 1 ,如果错误图案E=(01000),0 1 1 0 1伴随式是:A 、101B 、110C 、100D 、0117、(7、3)线性分组码有 个伴随式。
A 、 8B 、4C 、16D 、328、最小距离为3的线性分组码,其检错能力为 ,纠错能力是 。
A 、1B 、2C 、 3D 、49、H=(1/6、1/6、1/6、1/6、1/6、1/6)=A 、6bitB 、log6bitC 、2bitD 、4bit三、设随机变量X 和Y 的联合分布如下所示,随机变量Z=X+Y (模2加)试求:(共10分,每题5分)四、有一个9个符号的信源,概率分别为1/4、 1/4 、1/8 、1/8、1/16、 1/16、 1/16 、1/32 、1/32,用二元符号0、1编出费诺码字和哈夫曼码字,并分别求出各码字的平均码长。
1.按发出符号之间的关系来分,信源可以分为(有记忆信源)和(无记忆信源)2.连续信源的熵是(无穷大),不再具有熵的物理含义。
3.对于有记忆离散序列信源,需引入(条件熵)描述信源发出的符号序列内各个符号之间的统计关联特性3.连续信源X,平均功率被限定为P时,符合(正态)分布才具有最大熵,最大熵是(1/2ln(2 ⅇ 2))。
4.数据处理过程中信息具有(不增性)。
5.信源冗余度产生的原因包括(信源符号之间的相关性)和(信源符号分布的不均匀性)。
6.单符号连续信道的信道容量取决于(信噪比)。
7.香农信息极限的含义是(当带宽不受限制时,传送1bit信息,信噪比最低只需-1.6ch3)。
8.对于无失真信源编码,平均码长越小,说明压缩效率(越高)。
9.对于限失真信源编码,保证D的前提下,尽量减少(R(D))。
10.立即码指的是(接收端收到一个完整的码字后可立即译码)。
11.算术编码是(非)分组码。
12.游程编码是(无)失真信源编码。
13.线性分组码的(校验矩阵)就是该码空间的对偶空间的生成矩阵。
14.若(n,k)线性分组码为MDC码,那么它的最小码距为(n-k+1)。
15.完备码的特点是(围绕2k个码字、汉明矩d=[(d min-1)/2]的球都是不相交的每一个接受吗字都落在这些球中之一,因此接收码离发码的距离至多为t,这时所有重量≤t的差错图案都能用最佳译码器得到纠正,而所有重量≤t+1的差错图案都不能纠正)。
16.卷积码的自由距离决定了其(检错和纠错能力)。
(对)1、信息是指各个事物运动的状态及状态变化的方式。
(对)2、信息就是信息,既不是物质也不是能量。
(错)3、马尔可夫信源是离散无记忆信源。
(错)4、不可约的马尔可夫链一定是遍历的。
(对)5、单符号连续信源的绝对熵为无穷大。
(错)6、序列信源的极限熵是这样定义的:H(X)=H(XL|X1,X2,…,XL-1)。
(对)7、平均互信息量I(X;Y)是接收端所获取的关于发送端信源X的信息量。
信 息 论 与 编 码 考题与标准答案第一题 选择题1.信息是( b )a. 是事物运动状态或存在方式的描述b.是事物运动状态或存在方式的不确定性的描述c.消息、文字、图象d.信号 2.下列表达式哪一个是正确的(e )a. H (X /Y )=H (Y /X )b. )();(0Y H Y X I <≤c.)/()(),(X Y H X H Y X I -=d. )()/(Y H Y X H ≤e. H (XY )=H (X )+H (Y /X )3.离散信源序列长度为L ,其序列熵可以表示为( b )a. )()(1X LH X H =b.c. ∑==Ll lXH X H 1)()(d. )()(X H X H L =4.若代表信源的N 维随机变量的取值被限制在一定的范围之内,则连续信源为( c ),具有最大熵。
a. 指数分布b. 正态分布c. 均匀分布d. 泊松分布 5.对于平均互信息);(Y X I ,下列说法正确的是( b )a. 当)(i x p 一定时,是信道传递概率)(i j x y p 的上凸函数,存在极大值b. 当)(i x p 一定时,是信道传递概率)(i j x y p 的下凸函数,存在极小值c.当)(i j x y p 一定时,是先验概率)(i x p 的上凸函数,存在极小值d.当)(i j x y p 一定时,是先验概率)(i x p 的下凸函数,存在极小值 6.当信道输入呈( c )分布时,强对称离散信道能够传输最大的平均信息量,即达到信道容量 a. 均匀分布 b. 固定分布 c. 等概率分布 d. 正态分布7.当信道为高斯加性连续信道时,可以通过以下哪些方法提高抗干扰性(b d ) a. 减小带宽 b. 增大发射功率 c. 减小发射功率 d.增加带宽第二题 设信源 ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡6.04.0)(21x x X p X 通过一干扰信道,接收符号为Y={y 1,y 2},信道传递矩阵为⎥⎦⎤⎢⎣⎡43416165 求:(1) 信源 X 中事件 x 1 和 x 2 分别含有的自信息量。
信息论与编码学考试试题1. 信息的概念信息:是指各个事物运动的状态及状态变化的方式。
(具有不确定性,任何已经确定的事物都不含有信息)2. 相对熵的概念及计算连续信源可以假设是一个不可数的无限多个幅度值的信源,需要无限多个二进制数来表示,因此它的熵为无穷大。
连续信源的熵具有相对性,有时也叫相对熵。
连续信源熵(相对熵):Hc(X)=x p x P X X )(log )(?∞∞--3. 信源熵的概念及计算信源中各个符号不确定度的数学期望叫做信源熵H(X)=E[I(X)]= )(log )()()(21i i ni i i i x p x p x I x p ∑∑=-= 单位:比特/符号其中:0≤ )p(x i ≤1,当信源中只含一个符号x 时,必定有)p(x i =1.4. 分组码将信源消息分成若干组,即符号序列X i ,X i =(X 1,X 2 (X)l ...X L ),序列中的每个符号取自于符号集A,X l ∈{a 1,a 2,...,a i ,...,a n }.而每个符号序列X i 依照固定的码表映射成一个码字Y i ,这样的码称为分组码,也叫快码。
只有分组码才有对应的码表,而非分组码中不存在。
5. 唯一可译码任意有限长的码元序列,只能被唯一的分割成一个个的码字,便称为唯一可译码。
唯一可译码分为:非即时码和即时码6. 唯一可译码存在的充分必要条件的概念及应用用树的概念可导出唯一可译码存在的充分必要条件,即各码字的长度Ki 应符合克劳夫特不等式:∑=-n K i m1i ≤1 (m 是进制数,n 是信源符号数)7. 疑义度的概念及计算条件熵H(X/Y)可以看做是信道上的干扰和噪声所造成的对信源符号x 的不确定度,故又称为疑义度或损失熵。
H(X/Y)=E[I(x i /y i )]= )/()(j ,i i i ii y x I y x p ∑ =)/(log )(-j,i i i i i y x p y x p ∑ 散布度或噪声熵H(Y/X)=E[I(y i /x i )]= )/y ()(j ,i i i ii x I y x p ∑ =)/y (log )(-j,i i i i i x p y x p ∑8. 恒重码的概念如果码集的所有码字都具有相同的重量,这种码就叫做恒重码9. 平均自信息量的概念及计算平均自信息量是消除信源不确定度时所需要的信息的量度,即收到一个信源符号,全部解除了这个符号的不确定度。
信息论与编码期末考试题信息论与编码期末考试题(一)一、判断题. 1. 当随机变量和相互独立时,条件熵等于信源熵. () 2.由于构成同一空间的基底不是唯一的,所以不同的基底或生成矩阵有可能生成同一码集. () 3.一般情况下,用变长编码得到的平均码长比定长编码大得多. () 4. 只要信息传输率大于信道容量,总存在一种信道编译码,可以以所要求的任意小的误差概率实现可靠的通信.() 5. 各码字的长度符合克拉夫特不等式,是唯一可译码存在的充分和必要条件. () 6. 连续信源和离散信源的熵都具有非负性. () 7.信源的消息通过信道传输后的误差或失真越大,信宿收到消息后对信源存在的不确定性就越小,获得的信息量就越小.8. 汉明码是一种线性分组码. () 9. 率失真函数的最小值是. () 10.必然事件和不可能事件的自信息量都是. ()二、填空题 1、码的检、纠错能力取决于 . 2、信源编码的目的是;信道编码的目的是 . 3、把信息组原封不动地搬到码字前位的码就叫做. 4、香农信息论中的三大极限定理是、、 . 5、设信道的输入与输出随机序列分别为和,则成立的条件.. 6、对于香农-费诺编码、原始香农-费诺编码和哈夫曼编码,编码方法惟一的是 . 7、某二元信源,其失真矩阵,则该信源的= . 三、计算题. 1、某信源发送端有2种符号,;接收端有3种符号,转移概率矩阵为. (1)计算接收端的平均不确定度;(2)计算由于噪声产生的不确定度;(3)计算信道容量以及最佳入口分布. 2、一阶马尔可夫信源的状态转移图如右图所示,信源的符号集为. (1)求信源平稳后的概率分布;(2)求此信源的熵;(3)近似地认为此信源为无记忆时,符号的概率分布为平稳分布.求近似信源的熵并与进行比较. 3、设码符号为,信源空间为试构造一种三元紧致码. 4、设二元线性分组码的生成矩阵为. (1)给出该码的一致校验矩阵,写出所有的陪集首和与之相对应的伴随式;(2)若接收矢量,试计算出其对应的伴随式并按照最小距离译码准则试着对其译码. (二)一、填空题1、信源编码的主要目的是,信道编码的主要目的是。
信息论与编码考试样题一.填空题(每空1分,共20分)1.香农信息论的三个基本概念分别为____________、____________、________ ____。
2.对离散无记忆信源来说,当信源呈____________分布情况下,信源熵取最大值。
3.写出平均互信息的三种表达公式____________、____________、__________ __。
4.若连续信源输出的平均功率和均值被限定,则其输出信号幅度的概率密度函数为____________时,信源具有最大熵值;若连续信源输出非负信号的均值受限,则其输出信号幅度呈____________分布时,信源具有最大熵值。
5.信道容量是为了解决通信的________问题,而信息率失真函数是为了解决通信的________问题。
6.费诺编码比较适合于____________________________________的信源。
7.无记忆编码信道的每一个二元符号输出可以用多个比特表示,理想情况下为实数,此时的无记忆二进制信道又称为____________。
8.差错控制的4种基本方式是:____________、____________、____________、____________。
9.(n,k) 线性码能纠t个错误,并能发现l 个错误(l>t),码的最小距离为:___ _________________________________。
10.循环码码矢的i 次循环移位等效于将码多项式乘____________后再模_____ _______。
二.简答题(每小题5分,共30分)1.分别说明平均符号熵与极限熵的物理含义并写出它们的数学表达式。
2.写出二进制均匀信道的数学表达式,并画出信道容量C与信道转移概率p的曲线图。
3. 简述保真度准则下的信源编码定理及其物理意义。
4.在哈夫曼编码过程中,对缩减信源符号按概率由大到小的顺序重新排列时,应将合并后的新符号排在同概率大小信源符号的前面还是后面?并说明原因。
一、(11’)填空题(1)1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
(2)必然事件的自信息是0 。
(3)离散平稳无记忆信源X的N次扩展信源的熵等于离散信源X的熵的N倍。
(4)对于离散无记忆信源,当信源熵有最大值时,满足条件为__信源符号等概分布_。
(5)若一离散无记忆信源的信源熵H(X)等于2.5,对信源进行等长的无失真二进制编码,则编码长度至少为3 。
(6)对于香农编码、费诺编码和霍夫曼编码,编码方法惟一的是香农编码。
(7)已知某线性分组码的最小汉明距离为3,那么这组码最多能检测出_2_______个码元错误,最多能纠正___1__个码元错误。
(8)设有一离散无记忆平稳信道,其信道容量为C,只要待传送的信息传输率R__小于___C(大于、小于或者等于),则存在一种编码,当输入序列长度n足够大,使译码错误概率任意小。
(9)平均错误概率不仅与信道本身的统计特性有关,还与___译码规则____________和___编码方法___有关二、(9')判断题(1)信息就是一种消息。
(⨯)(2)信息论研究的主要问题是在通信系统设计中如何实现信息传输、存储和处理的有效性和可靠性。
(√)(3)概率大的事件自信息量大。
(⨯)(4)互信息量可正、可负亦可为零。
(√)(5)信源剩余度用来衡量信源的相关性程度,信源剩余度大说明信源符号间的依赖关系较小。
(⨯)(6) 对于固定的信源分布,平均互信息量是信道传递概率的下凸函数。
( √ ) (7) 非奇异码一定是唯一可译码,唯一可译码不一定是非奇异码。
( ⨯ ) (8) 信源变长编码的核心问题是寻找紧致码(或最佳码),霍夫曼编码方法构造的是最佳码。
( √ )(9)信息率失真函数R(D)是关于平均失真度D 的上凸函数. ( ⨯ )三、(5')居住在某地区的女孩中有25%是大学生,在女大学生中有75%是身高1.6米以上的,而女孩中身高1.6米以上的占总数的一半。
信息论与编码考试试卷2012——2013学年 第一学期课程名称:信息论与编码试卷形式:开卷□闭卷□常用对数:2log 3 1.585=一、 选择题(共10分,每小题2分)1、有一离散无记忆信源X ,其概率空间为⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡125.0125.025.05.04321x x x xP X ,则其无记忆二次扩展信源的熵H(X 2)=( )A 、1.75比特/符号;B 、3.5比特/符号;C 、9比特/符号;D 、18比特/符号。
2、信道转移矩阵为112132425363(/)(/)000000(/)(/)000000(/)(/)P y x P y x P y x P y x P y x P y x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,其中(/)j i P y x 两两不相等,则该信道为A 、一一对应的无噪信道B 、具有并归性能的无噪信道C 、对称信道D 、具有扩展性能的无噪信道3、设信道容量为C ,下列说法正确的是:( ) A 、互信息量一定不大于CB 、交互熵一定不小于C C 、有效信息量一定不大于CD 、条件熵一定不大于C4、在串联系统中,有效信息量的值( ) A 、趋于变大 B 、趋于变小 C 、不变 D 、不确定5、若BSC 信道的差错率为P ,则其信道容量为:( ) A 、()H pB 、()12log 1ppp p -⎡⎤-⎢⎥⎢⎥⎣⎦ C 、()1H p -D 、log()P P -二、 填空题(20分,每空2分)1、 (7,4)线性分组码中,接受端收到分组R 的位数为____ ,伴随式S 可能的值有____ 种,差错图案e 的长度为 ,系统生成矩阵G s 为____ 行的矩阵,系统校验矩阵H s 为____ 行的矩阵,G s 和H s 满足的关系式是 。
2、 一张1024×512像素的16位彩色BMP 图像能包含的最大信息量为 。
3、 香农编码中,概率为()i P x 的信源符号x i 对应的码字C i 的长度K i 应满足不等式 。
信息论与编码题集一、选择题1. 下列关于信息量的说法中,正确的是()A. 信息量是对信息不确定性的度量,不确定性越大,信息量越大B. 信息量与事件发生的概率成正比,概率越大,信息量越大C. 信息量的单位是比特,一个二进制符号所含的信息量为1比特D. 信息量只与信息的内容有关,与信息的形式和传递方式无关答案:A解释:信息量是对信息不确定性的度量,不确定性越大,信息量越大,A选项正确;信息量与事件发生的概率成反比,概率越小,信息量越大,B选项错误;信息量的单位是比特,一个二进制符号所含的信息量为1比特,这只是信息量的一种常见表示方式,实际上信息量的单位可以根据具体情况而定,C选项表述不全面;信息量不仅与信息的内容有关,还与信息的形式和传递方式有关,D选项错误。
2. 在信息论中,信息熵是用于描述()A. 信息的不确定性B. 信息的准确性C. 信息的冗余度D. 信息的有效性答案:A解释:信息熵是用于描述信息的不确定性,它表示信息的平均不确定性程度,A选项正确;信息熵与信息的准确性无关,B选项错误;信息熵可以反映信息的冗余度,但它本身并不是用于描述冗余度的,C 选项不准确;信息熵主要用于描述信息的不确定性,而不是有效性,D选项错误。
3. 假设一个随机事件有四种可能的结果,它们发生的概率分别为0.2、0.3、0.4和0.1,那么该事件的信息熵为()A. 1.5比特B. 1.8比特C. 2.0比特D. 2.5比特答案:B解释:信息熵的计算公式为H(X) = Σp(x)log₂p(x),其中p(x)为事件发生的概率。
将概率代入公式计算可得:H(X) = (0.2log₂0.2 + 0.3log₂0.3 + 0.4log₂0.4 + 0.1log₂0.1) ≈ 1.8比特,B选项正确。
4. 对于两个相互独立的随机事件A和B,它们的信息熵分别为H(A)和H(B),那么事件A和B同时发生的信息熵为()A. H(A) + H(B)B. H(A) H(B)C. H(A) × H(B)D. H(A) + H(B) H(A × B)答案:A解释:对于两个相互独立的随机事件A和B,它们同时发生的信息熵等于它们各自信息熵的和,即H(A, B) = H(A) + H(B),A选项正确。
1.按发出符号之间的关系来分,信源可以分为(有记忆信源)和(无记忆信源)2.连续信源的熵是(无穷大),不再具有熵的物理含义。
3.对于有记忆离散序列信源,需引入(条件熵)描述信源发出的符号序列内各个符号之间的统计关联特性3.连续信源X,平均功率被限定为P时,符合(正态)分布才具有最大熵,最大熵是(1/2ln (2πⅇσ2))。
4.数据处理过程中信息具有(不增性)。
5.信源冗余度产生的原因包括(信源符号之间的相关性)和(信源符号分布的不均匀性)。
6.单符号连续信道的信道容量取决于(信噪比)。
7.香农信息极限的含义是(当带宽不受限制时,传送1bit信息,信噪比最低只需-1.6ch3)。
8.对于无失真信源编码,平均码长越小,说明压缩效率(越高)。
9.对于限失真信源编码,保证D的前提下,尽量减少(R(D))。
10.立即码指的是(接收端收到一个完整的码字后可立即译码)。
11.算术编码是(非)分组码。
12.游程编码是(无)失真信源编码。
13.线性分组码的(校验矩阵)就是该码空间的对偶空间的生成矩阵。
14.若(n,k)线性分组码为MDC码,那么它的最小码距为(n-k+1)。
15.完备码的特点是(围绕2k个码字、汉明矩d=[(d min-1)/2]的球都是不相交的每一个接受吗字都落在这些球中之一,因此接收码离发码的距离至多为t,这时所有重量≤t的差错图案都能用最佳译码器得到纠正,而所有重量≤t+1的差错图案都不能纠正)。
16.卷积码的自由距离决定了其(检错和纠错能力)。
(对)1、信息是指各个事物运动的状态及状态变化的方式。
(对)2、信息就是信息,既不是物质也不是能量。
(错)3、马尔可夫信源是离散无记忆信源。
(错)4、不可约的马尔可夫链一定是遍历的。
(对)5、单符号连续信源的绝对熵为无穷大。
(错)6、序列信源的极限熵是这样定义的:H(X)=H(XL|X1,X2,…,XL-1)。
(对)7、平均互信息量I(X;Y)是接收端所获取的关于发送端信源X的信息量。
信息论与编码考试试题一、选择题(每题 5 分,共 30 分)1、以下关于信息熵的说法,错误的是()A 信息熵是对信息不确定性的度量B 信息熵越大,信息量越大C 信息熵只与信源的概率分布有关D 信息熵的值可以为负数2、设信源符号集为{A, B, C, D},对应的概率分别为 1/2, 1/4, 1/8, 1/8,则该信源的熵为()A 175 比特/符号B 15 比特/符号C 125 比特/符号D 2 比特/符号3、无失真信源编码的平均码长()信源熵。
A 小于B 大于C 等于D 以上都有可能4、在哈夫曼编码中,出现概率越大的符号,编码长度()A 越长B 越短C 不确定D 与概率无关5、以下哪种编码是唯一可译码()A 00, 01, 10, 11B 0, 10, 11C 0, 00, 1D 0, 01, 106、对于一个离散无记忆信道,其信道容量与()有关。
A 输入概率分布B 输出概率分布C 转移概率矩阵D 以上都是二、填空题(每题 5 分,共 30 分)1、信息论的奠基人是__________。
2、若信源的概率分布为 P(X) ={02, 03, 01, 04},则信源的熵为__________比特/符号。
3、香农第一定理指出,对于离散无记忆平稳信源,当信源熵小于信道容量时,可以通过编码实现__________传输。
4、已知某二元对称信道的错误概率为 01,则其信道容量为__________比特/符号。
5、一个码组为{000, 111, 010, 101},其最小码距为__________。
6、线性分组码的监督矩阵与生成矩阵之间满足__________关系。
三、简答题(每题 10 分,共 20 分)1、简述信息熵的物理意义,并举例说明。
信息熵是用来度量信息不确定性的一个重要概念。
它反映了信源输出符号的平均不确定性。
物理意义在于,熵越大,说明信源的不确定性越大,需要更多的信息来消除这种不确定性。
例如,抛硬币的结果只有正反两面,其概率各为 05。
3、(12分)已知(7,3)分组码的生成矩阵为
100111001001111010011G ⎡⎤
⎢⎥=⎢⎥
⎢⎥⎣⎦
(1)、写出所有许用码组,并求出监督矩阵。
(2)、该码的编码效率为多少?
(3)、若译码器输入的码组为l010001,请计算其校正子,并指出此接收码组中是否包含错误。
4、(12分)设有信源12
345678()0.40.140.10.10.070.060.050.04X a a a a a a a a P X ⎛⎫⎡⎤=
⎪⎢⎥⎝⎭⎣⎦
(1) 求信源熵)(X H 和信源的冗余度;
(2) 完成二进制费诺编码,并计算其平均码长及编码效率。
(3) 完成二进制霍夫曼编码,并计算其平均码长及编码效率。
5、(12分)信源分布1
23911()10
2020x
x x X P X ⎡⎤
⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦
⎣⎦
,信道转移概率矩阵51
1682415124681158
24
6P ⎡⎤
⎢⎥⎢⎥⎢
⎥
=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦
, 信道输出符号Y = {y 1, y 2, y 3}。
(1) 若信源等概分布,对其按最大后验概率准则译码,并求平均错误概
率。
(2) 若信源等概分布,对其按最大似然准则译码,并求平均错误概率。
6、(18分) 已知(7,3)循环码的生成矩阵为
⎥⎥
⎥⎦⎤
⎢⎢⎢⎣⎡=100110111011101010001G
(1)、试写出该(7,3)循环码的生成多项式g (x )。
(2)、若输入信息码为101,试写出对应的循环码码组。
(3)、若接收到的码组为1010100,试恢复出正确的信息位。
(4)、该码能纠正几位错。