1.1.1柱_锥_台_球的结构特征(2)
- 格式:ppt
- 大小:1.43 MB
- 文档页数:12
第一章:空间几何体1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。
教师对学生的活动及时给予评价。
2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。
根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。
在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。
概括出棱柱的概念。
4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
1.1.1柱、锥、台、球的结构特征(1)1.1.1柱、锥、台、球的结构特征(2)1.2.2空间几何体的三视图(1)1.2.2空间几何体的三视图(2)1.2.3空间几何体的直观图1.3.1柱体、锥体、台体的表面积与体积(二)1.3.1柱体、锥体、台体的表面积与体积(一)1.3.2球的体积和表面积2.1.1平面2.1.2空间中直线与直线之间的位置关系2.1.3-2.1.4空间中直线与平面、平面与平面之间的位置关系2.2.1、2.2.2直线与平面平行、平面与平面平行的判定2.2.2平面与平面平行的判定2.2.3直线与平面平行的性质2.2.4平面与平面平行的性质2.3.1直线与平面垂直的判定(1)2.3.1直线与平面垂直的判定(2)2.3.2平面与平面垂直的判定(1)2.3.2平面与平面垂直的判定(2)2.3.3-2.3.4直线与平面、平面与平面垂直的性质3.1、3.2习题课3.1.1直线的倾斜角与斜率3.1.2两条直线平行与垂直的判定3.2.1直线的点斜式方程3.2.2直线的两点式方程3.2.3直线的一般式方程3.3.1两条直线的交点坐标3.3.2两点间的距离3.3.3点到直线的距离、3.3.4两条平行直线间的距离4.1.1圆的标准方程4.1.2圆的一般方程4.2.1直线与圆的位置关系4.2.2圆与圆的位置关系4.2.3直线与圆的方程的应用(1)4.2.3直线与圆的方程的应用(2)第2章复习(1)第2章复习(2)第2章复习(3)第2章复习(4)第2章复习(5)第3章小结立体几何复习习题习题讲评。
1.1.1棱柱、棱锥、棱台的结构特征类型一棱柱、棱锥、棱台的结构特征例1(1)下列命题中正确的是________.(填序号)①有两个面平行,其余各面都是四边形的几何体叫棱柱;②棱柱的一对互相平行的平面均可看作底面;③三棱锥的任何一个面都可看作底面;④棱台各侧棱的延长线交于一点.(2)关于如图所示几何体的正确说法的序号为________.①这是一个六面体.②这是一个四棱台.③这是一个四棱柱.④此几何体可由三棱柱截去一个三棱柱得到.⑤此几何体可由四棱柱截去一个三棱柱得到.跟踪训练1 (1)棱台不具备的特点是( )A.两底面相似B.侧面都是梯形C.侧棱都相等 D.侧棱延长后都交于一点(2)给出下列几个命题,其中错误的命题是( )A.棱柱的侧面都是平行四边形B.棱锥的侧面为三角形,且所有侧面都有一个公共顶点C.多面体至少有四个面D.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台类型二简单几何体的判定例2如图所示,长方体ABCD-A1B1C1D1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCFE把这个长方体分成两部分后,各部分形成的几何体还是棱柱吗?如果是,是几棱柱?如果不是,说明理由.跟踪训练2 如图所示的几何体中,所有棱长都相等,分析此几何体有几个面、几个顶点、几条棱?【巩固提升】一、选择题1.下面的几何体中是棱柱的有( )A.3个B.4个 C.5个 D.6个2.下列关于棱锥、棱台的说法,其中不正确的是( )A.棱台的侧面一定不会是平行四边形B.棱锥的侧面只能是三角形C.由四个面围成的封闭图形只能是三棱锥D.棱锥被平面截成的两部分不可能都是棱锥3.下列实物不能近似看成多面体的是( )A.钻石 B.粉笔盒 C.篮球 D.金字塔4.下列三种叙述,正确的有( )①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.A.0个 B.1个 C.2个 D.3个5.一个棱锥的各棱长都相等,那么这个棱锥一定不是( )A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥二、填空题6.四棱柱有________条侧棱,________个顶点.7.下列几个命题:①棱柱的底面一定是平行四边形;②棱锥的底面一定是三角形;③棱柱被平面分成的两部分可以都是棱柱.其中正确的是________.(填序号)8.下列说法正确的有________.①棱锥的侧面为三角形,且所有侧面都有一个公共点;②棱台的侧面有的是平行四边形,有的是梯形;③棱台的侧棱所在直线均相交于同一点;④多面体至少有四个面.三、解答题9.根据下列关于空间几何体的描述,说出几何体的名称:(1)由6个平行四边形围成的几何体;(2)由7个面围成的几何体,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形;(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余3个面都是梯形,并且这些梯形的腰延长后能相交于一点.10.如图所示是一个三棱台ABC-A′B′C′,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.11.纸质的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开,外面朝上展平得到如图所示的平面图形,则标“△”的面的方位是( )A.南 B.北 C.西 D.下12.侧棱垂直于底面的棱柱叫做直棱柱.侧棱不垂直于底面的棱柱叫作斜棱柱.底面是正多边形的直棱柱叫作正棱柱.底面是平行四边形的四棱柱叫作平行六面体.侧棱与底面垂直的平行六面体叫作直平行六面体.底面是矩形的直平行六面体叫作长方体.棱长都相等的长方体叫作正方体.请根据上述定义,回答下面的问题(填“一定”、“不一定”“一定不”):(1)直四棱柱________是长方体;(2)正四棱柱________是正方体.13.画一个三棱台,再把它分成:(1)一个三棱柱和另一个多面体;(2)三个三棱锥,并用字母表示.14.如图所示,长方体的长、宽、高分别为5 cm,4 cm,3 cm.一只蚂蚁从A点到C1点沿着表面爬行的最短路程是多少?1.1.1 棱柱、棱锥、棱台的结构特征答案类型一棱柱、棱锥、棱台的结构特征例1【答案】(1)③④(2)①③④⑤跟踪训练1 答案:(1)C (2)D类型二简单几何体的判定例 2 【解析】(1)该长方体是棱柱,并且是四棱柱,因为以长方体相对的两个面作底面都是四边形,其余各面都是矩形,当然是平行四边形,并且四条侧棱互相平行.(2)截面BCFE上方部分是棱柱,且是三棱柱BEB1-CFC1,其中△BEB1和△CFC1是底面.截面BCFE下方部分也是棱柱,且是四棱柱ABEA1-DCFD1,其中四边形ABEA1和DCFD1是底面.跟踪训练2 解析:这个几何体有8个面,都是全等的正三角形;有6个顶点;有12条棱.[巩固提升]1.解析:棱柱有三个特征:(1)有两个面相互平行;(2)其余各面是四边形;(3)侧棱相互平行.本题所给几何体中⑥⑦不符合棱柱的三个特征,而①②③④⑤符合,故选C.答案:C2.选项A正确,棱台的侧面一定是梯形,而不是平行四边形;选项B正确,由棱锥的定义知棱锥的侧面只能是三角形;选项C正确,由四个面围成的封闭图形只能是三棱锥;选项D错误,如图所示四棱锥被平面截成的两部分都是棱锥.答案:D3.解析:钻石、粉笔盒、金字塔的表面都可以近似看成平面多边形,所以它们都能近似看成多面体.篮球的表面不是平面多边形,故不能近似看成多面体.答案:C4.解析:本题考查棱台的结构特征,①中的平面不一定平行于底面,故①错;②③可用如图的反例检验,故②③不正确.故选A.答案:A5.解析:由题意可知,每个侧面均为等边三角形,每个侧面的顶角均为60°,如果是六棱锥,因为6×60°=360°,所以顶点会在底面上,因此不是六棱锥.答案:D6.解析:四棱柱有4条侧棱,8个顶点(可以结合正方体观察求得).答案:4 87.解析:①棱柱的底面可以为任意多边形.②棱锥的底面可以为四边形、五边形等.答案:③8.解析:棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故①对.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故②错,③对.④显然正确.因而正确的有①③④.答案:①③④9.解析:(1)这是一个上、下底面是平行四边形,4个侧面也是平行四边形的四棱柱.(2)这是一个六棱锥.(3)这是一个三棱台.10.解析:过A′,B,C三点作一个平面,再过A′,B,C′作一个平面,就把三棱台ABC -A′B′C′分成三部分,形成的三个三棱锥分别是A′-ABC,B-A′B′C′,A′-BCC′.(答案不唯一)11.解析:将所给图形还原为正方体,并将已知面“上”、“东”分别指向上面、东面,则标记“△”的为北面.答案:B12.解析:根据上述定义知:长方体一定是直四棱柱,但是直四棱柱不一定是长方体;正方体一定是正四棱柱,但是正四棱柱不一定是正方体.答案:(1)不一定(2)不一定13.解析:画三棱台一定要利用三棱锥.(1)如图①所示,三棱柱是棱柱A′B′C′-AB″C″,另一个多面体是B′C′BCC″B″.(2)如图②所示,三个三棱锥分别是A′-ABC,B′-A′BC,C′-A′B′C.14.解析:依题意,长方体ABCD-A1B1C1D1的表面可有如图所示的三种展开图.展开后,A,C1两点间的距离分别为:3+42+52=74 (cm),5+32+42=4 5 (cm),5+42+32=310 (cm),三者比较得74 cm为蚂蚁从A点沿表面爬行到C1点的最短路程.。
1、1、1 柱、锥、台、球的结构特征一、【学习目标】1、掌握柱、锥、台、球的结构特征;2、学会观察、分析图形,提高空间想象能力和几何直观能力.二、【自学内容和要求及自学过程】阅读教材第2—3页内容,然后回答问题(多面体、旋转体)在我们周围存在着各种各样的物体,它们都占据着空间的一部分.如果我们只考虑这些物体的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.本节我们主要从结构特征方面认识几种最基本的空间几何体.<1>观察上面的图片,请你说一说哪些图形是多面体?说出它的定义、图形特征、相关概念(面、棱、顶点);<2>观察上面的图形,请你说一说上面哪些图形是旋转体?说出它的定义、图形特征、相关概念(轴).结论:<1> 是多面体;多面体定义:由若干个围成的几何体叫做多面体;图形特征简单的说是有棱角;相关概念:面:围成多面体的各个叫做多面体的面.棱:相邻两个面的叫做多面体的棱.顶点:棱与棱的叫做多面体的顶点.<2> 是旋转体;旋转体定义:我们把由一个平面图形绕它所在平面内的旋转所形成的几何体叫做旋转体;图形特征:简单的说是棱角被磨圆;相关概念:轴:形成旋转体所围绕的 .1、阅读教材第3—4页棱柱的有关内容,然后回答问题(棱柱)<3>请你说一说上面哪些图形是棱柱?请你给出棱柱定义、及相关概念(底面、侧面、侧棱、顶点)、名称、记法.结论:<3> 为棱柱;棱柱的定义:一般地,有两个面,其余各面都是,并且每相邻两个四边形的公共边都,由这些面所围成的叫做棱柱;底面:棱柱中,两个的面叫做底面,简称底.侧面:其余各面叫做棱柱的侧面.侧棱:相邻侧面的叫做棱柱的侧棱.顶点:侧面与底面的叫做棱柱的顶点.名称:底面是三角形、四边形、五边形......的棱柱分别叫做、、五棱柱......记法:我们用表示底面个顶点的字母表示棱柱,如下图六棱柱可以表示为: .2、阅读教材第4页棱锥的结构特征的内容,然后回答问题(棱锥)<4>请你说一说上面哪些图形是棱锥?请你给出棱锥定义、及相关概念(底面、侧面、侧棱、顶点)、名称、记法.结论:<4>1 是棱锥;棱锥的定义:有一个面是,其余各面都是有一个的,由这些面所围成的叫做棱锥;相关概念:底面:这个多边形叫做棱锥的底面或底;侧面:有的各个面叫做棱锥的侧面;相邻侧面的叫做棱锥的侧棱;各侧面的叫做棱锥的顶点.名称:底面是三角形、四边形、五边形......的棱锥分别叫做三棱锥、、 ......,其中三棱锥又叫做四面体.记法:如下图四面体记作 .3、阅读教材第3页有关棱台结构特征的内容,回答问题(棱台)<4>请你说一说上面哪些图形是棱台?请你给出棱台定义、及相关概念(底面、侧面、侧棱、顶点)、名称、记法.结论:<4> 是棱台;棱台的定义:用一个平行于棱锥底面的平面去截棱锥,之间的部分叫做棱台.底面:的底面和叫做棱台的下底面和上底面;侧面:其他各面叫做棱台的侧面;侧棱:相邻侧面的叫做棱台的侧棱;顶点:的公共顶点叫做棱台的顶点.名称:由三棱锥、四棱锥、五棱锥......截得的棱台分别叫做、四棱台、……记法:我们可以参照棱柱的记法如下图四棱台表示为棱台 .4、阅读教材第5页圆柱的结构特征,回答问题(圆柱)<5>请你说一说上面哪些图形是圆柱?请你给出圆柱定义、及相关概念(轴、底面、侧面、母线)、名称、记法.结论:<5> 是圆柱;圆柱的定义:以矩形的一边所在的直线为轴,其余三边旋转形成的面所围成的体叫做圆柱;相关概念:轴:叫做圆柱的轴;的边旋转而成的圆面叫做圆柱的底面;侧面:于轴的边旋转而成的曲面叫做圆柱的侧面;母线:无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的 .名称记法:圆柱用表示它的轴的字母表示,如下图可记作:5、阅读教材第5页圆锥的结构特征,回答问题(圆锥)<6>请你说一说上面哪些图形是圆锥?请你给出圆锥定义、及相关概念(轴、底面、侧面、母线)、名称、记法.结论:<6> 是圆锥;圆锥的定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成旋转体叫做圆锥.相关概念:轴:叫做圆锥的轴;底面:的边所形成的圆面叫做底面;侧面:直角三角形的旋转而成的曲面叫做侧面;母线:无论旋转到什么位置,的边叫做圆锥的母线.名称记法:圆锥用它的轴的字母表示,如下图圆锥可以记作: .6、阅读教材第5页圆台的结构特征,回答问题(圆台)<7>请你说一说上面哪些图形是圆台?请你给出圆台定义、及相关概念(轴、底面、侧面、母线).结论:<7> 是圆台;圆台的定义:用于圆锥底面的平面去截圆锥,之间的部分叫做圆台.(以直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆台.)相关概念:底面:旋转轴的边旋转而成的圆面称为圆台的底面;侧面:不垂直于旋转轴的边旋转而成的叫做圆台的侧面;母线:无论转到什么位置,叫做圆台侧面的母线.7、阅读教材第6页球的结构特征,然后回答问题<8>请你说一说上面哪些图形是球?请你给出球定义、及相关概念(球心、球半径、直径)、记法.结论:<8> 叫做球.定义:以半圆的直径所在的直线为旋转轴,将半圆旋转一周所形成的曲面称为球面,球面所围成的旋转体称为球体,简称球;球心:称为球心;球半径:称为球的半径;球直径:称为球的直径.表示:用表示球心的字母表示.记法:如下图记作: .归纳:圆柱和棱柱称为柱体;棱台和圆台称为台体;棱锥和圆锥称为椎体.三、【练习与巩固】根据今天所学习的内容,完成下列练习练习一:教材第8页习题1.1A组第1题<1>、<2>、第2题;练习二:观察四个几何体,其中判断正确的是()A.①是棱台B.②是圆台C.③是棱锥D.④不是棱柱思考:长方体AC1的长、宽、高分别为3、2、1,从A到C1沿长方体的表面的最短距离为四、【作业】请同学们完成素能测试和世纪金榜的相关题目.。
第一章、空间几何体1.1空间几何体的结构1.1.1柱、锥、台、球的结构特征(一)课本知识:1.空间几何体(1)空间几何体的定义空间中的物体都占据着空间的一局部,假设只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.类别多面体旋转体定义由假设干个围成的几何体由一个平面图形绕它所在平面内的一条旋转所形成的.图形相关概念面:围成多面体的各个.棱:相邻两个面的.顶点:的公共点.轴:形成旋转体所绕的 .2.多面体多面体定义图形及表示相关概念棱柱有两个面互相,其余各面都是,并且每相邻两个四边形的公共边都互相,由这些面所围成的多面体叫做棱柱.如图可记作:棱柱底面(底):两个互相平行的面.侧面:.侧棱:相邻侧面的.顶点:侧面与底面的.棱锥有一个面是,其余各面都是有一个公共顶点的,由这些面所围成的多面体叫做棱锥如图可记作:棱锥底面(底):面.侧面:有公共顶点的各个.侧棱:相邻侧面的.顶点:各侧面的.棱台用一个的平面去截棱锥,底面与截面之间的局部叫做棱台.如图可记作:棱台上底面:原棱锥的.下底面:原棱锥的.侧面:其余各面.侧棱:相邻侧面的公共边.顶点:侧面与上(下)底面的公共顶点.知识梳理:要点一棱柱、棱锥、棱台的概念1.棱柱的结构特征侧棱都相等,侧面都是平行四边形,两个底面相互平行;2.棱锥的结构特征有一个面是多边形,其余各面是有一个公共顶点的三角形;3.棱台的结构特征上下底面相互平行,各侧棱的延长线交于同一点.典型例题1、有以下说法:①有两个面平行,其余各面都是平行四边形所围成的几何体一定是棱柱;②各个面都是三角形的几何体是三棱锥;③用一个平行于棱锥底面的平面去截棱锥,得到的几何体叫做棱台;④棱柱的各相邻侧面的公共边互相平行.以上说法中,正确说法的序号是________(写出所有正确说法的序号).反应训练1、有以下说法:①一个棱锥至少有四个面;②如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等;③五棱锥只有五条棱;④用与底面平行的平面去截三棱锥,得到的截面三角形和底面三角形相似.以上说法中,正确说法的序号是________(写出所有正确说法的序号).典型例题2、长方体ABCD-A′B′C′D′,当用平面BCFE把这个长方体分成两局部后,各局部形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.反应训练2、以下说法:①有两个面互相平行,其余的面都是平行四边形的几何体的侧棱一定不相交于一点,故一定不是棱台;②两个互相平行的面是平行四边形,其余各面是四边形的几何体不一定是棱台;③两个互相平行的面是正方形,其余各面是四边形的几何体一定是棱台.其中正确的个数为( ) A.3 B.2 C.1 D.0 要点三多面体的外表展开图1.绘制多面体的外表展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型,在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其外表展开图.2.假设是给出多面体的外表展开图,来判断是由哪一个多面体展开的,那么可把上述过程逆推.典型例题3、请画出以下图所示的几何体的外表展开图.反应训练3、根据右图所给的几何体的外表展开图,画出立体图形1.1.1柱、锥、台、球的结构特征(二)1.1.2简单组合体的结构特征课本知识:1.旋转体旋转体结构特征图形表示圆柱以矩形的一边所在直线为旋转轴,其余三边旋转形成的所围成的旋转体叫做圆柱.旋转轴叫做圆柱的轴;于轴的边旋转而成的圆面叫做圆柱的底面;于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,于轴的边都叫做圆柱侧面的母线我们用表示圆柱轴的字母表示圆柱,左图可表示为圆锥以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的所围成的旋转体叫做圆锥我们用表示圆锥轴的字母表示圆锥,左图可表示为圆台用平行于的平面去截圆锥,底面与截面之间的局部叫做圆台我们用表示圆台轴的字母表示圆台,左图可表示为球以半圆的直径所在直线为旋转轴,旋转一周所形成的旋转体叫做球体,简称球.半圆的圆心叫做球的,半圆的半径叫做球的半径,半圆的直径叫做球的直径球常用球心字母进行表示,左图可表示为(1)定义:由组合而成的几何体叫做简单组合体.(2)简单组合体的两种根本形式:由简单几何体而成;由简单几何体一局部而成.特别提醒:圆是一条封闭的曲线,圆面是一个圆围成的圆内平面.球是几何体,球面是指半圆沿直径旋转形成的曲面,球是旋转体.知识梳理:要点一、旋转体的结构特征圆柱、圆锥、圆台、球从生成过程来看,它们分别是由矩形、直角三角形、直角梯形、半圆绕着某一条直线旋转而成的几何体,因此它们统称为旋转体.但应注意的是:所谓旋转体就是一个平面图形绕着这个平面图形所在的平面内一条直线旋转一周所得到的几何体,因此它还含有除圆柱、圆锥、圆台、球之外的几何体.典型例题1、以下说法:①在圆柱的上、下两底面的圆周上各取一点,那么这两点的连线是圆柱的母线;②圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下两底面的圆周上各取一点,那么这两点的连线是圆台的母线;④圆柱的任意两条母线相互平行.其中正确的选项是( )A.①②B.②③C.①③D.②④反应训练1、以下说法中正确的选项是( )A.圆台是直角梯形绕其一边旋转而成的B.圆锥是直角三角形绕其一边旋转而成的C.圆柱不是旋转体D.圆台可以看作是平行于底面的平面截一个圆锥而得到的要点二圆柱、圆锥、圆台的侧面展开图把柱、锥、台体沿一条侧棱或母线展开成平面图,这样便把空间问题转化成了平面问题,对解决简单空间几何体的面积问题或侧面上(球除外)两点间的距离问题,是很有效的方法.典型例题2、如图,底面半径为1,高为2的圆柱,在A点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?反应训练2、假设本例中蚂蚁围绕圆柱转两圈,如下图,那么它爬行的最短距离是多少?要点三简单组合体的结构特征判断实物图是由哪些简单几何体所组成的图形问题,首先要熟练掌握简单几何体的结构特征,其次要善于将复杂的组合体“分割〞成几个简单的几何体.简单组合体有以下三种形式:1.多面体与多面体的组合体:即由两个或两个以上的多面体组合而成的几何体.2.多面体与旋转体的组合体:即由一个多面体与一个旋转体组合而成的几何体.3.旋转体与旋转体的组合体:即由两个或两个以上的旋转体组合而成的几何体.典型例题3、请描述如下图的组合体的结构特征.反应训练3、说出以下几何体的结构特征.一、选择题1.以下说法中正确的选项是( )A .棱柱中两个互相平行的平面一定是棱柱的底面B .棱柱的面中,至少有两个面互相平行C .棱柱中一条侧棱的长叫棱柱的高D .棱柱的侧面是平行四边形,但它的底面一定不是平行四边形2.如图,D ,E ,F 分别是等边△ABC 各边的中点,把该图按虚线折起,可以得到一个( )A .棱柱 B .棱锥 C .棱台 D .旋转体3.以下三个说法,其中正确的选项是( )①用一个平面去截棱锥,棱锥底面和截面之间的局部是棱台; ②两个底面平行且相似,其余各面都是梯形的多面体是棱台; ③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台. A .0个 B .1个 C .2个 D .3个4.在长方体ABCD -A 1B 1C 1D 1中,AB =3,AD =2,CC 1=1,一条绳子从点A 沿外表拉到点C 1,那么绳子的最短的长是( )A .3 2 B .2 5 C.26 D .65.如图,以下几何体中,________是棱柱,________是棱锥,________是棱台.6.在正方体上任意选择4个顶点,它们可能是如下各种几何图形的4个顶点,这些几何体是________(写出所有正确结论的序号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.7.在如下图的三棱柱ABC -A 1B 1C 1中,请连接三条线,把它分成三局部,使每一局部都是一个三棱锥.8.如下图,在正三棱柱ABC -A 1B 1C 1中,AB =2,AA 1=2,由顶点B 沿棱柱侧面(经过棱AA 1)到达顶点C 1,与AA 1的交点记为M .求:(1)三棱柱侧面展开图的对角线长;(2)从B 经M 到C 1的最短路线长及此时A 1MAM的值.1.以下说法正确的选项是( )A.圆锥的母线长等于底面圆直径B.圆柱的母线与轴垂直C.圆台的母线与轴平行D.球的直径必过球心2.底面半径为2且底面水平放置的圆锥被过高的中点且平行于底面的平面所截,那么截得的截面圆的面积为( )A.πB.2π C.3πD.4π3.以下说法正确的有( )①球的半径是球面上任意一点与球心的连线段②球的直径是球面上任意两点间的连线段③用一个平面截一个球,得到的是一个圆④不过球心的截面截得的圆的半径小于球半径A.①② B.①④ C.①②④D.③④4.如下图的几何体,关于其结构特征,以下说法不正确的选项是( )A.该几何体是由两个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余均为三角形5.给出以下说法:(1)直角三角形绕一边旋转得到的旋转体是圆锥(2)夹在圆柱的两个平行截面间的几何体还是一个旋转体(3)圆锥截去一个小圆锥后剩余局部是圆台(4)通过圆台侧面上一点,有无数条母线其中正确的说法是________(写出所有正确说法的序号).6.把一个圆锥截成圆台,圆台的上下底面半径之比是14,母线长为10,那么圆锥的母线长是________.7.如图(1)所示,正三棱柱的底面边长是4cm、过BC的一个平面交侧棱AA′于D,假设AD的长为2cm,求截面△BCD的面积.图(1) 图(2)8.从一个底面半径和高都是R的圆柱中,挖去一个以圆柱上底面为底,下底面中心为顶点的圆锥,得到如以下图所示的几何体.如果用一个与圆柱下底面距离等于l并且平行于底面的平面去截它,求所得截面的面积.。
人教高一数学教学设计之《1.1.1柱、锥、台、球的结构特征》一. 教材分析《1.1.1柱、锥、台、球的结构特征》是高一数学第一章《立体几何》的第一节内容。
本节主要介绍了柱、锥、台、球四种几何体的结构特征,是学生学习立体几何的基础。
通过本节的学习,学生需要掌握四种几何体的定义、性质和相互之间的关系,为后续的计算和证明打下基础。
二. 学情分析学生在初中阶段已经接触过柱、锥、台、球四种几何体,对它们有一定的了解。
但是,对于几何体的结构特征,学生可能还没有深入的理解。
因此,在教学过程中,需要引导学生从直观到抽象,从具体到一般,逐步理解几何体的结构特征。
三. 教学目标1.了解柱、锥、台、球四种几何体的结构特征。
2.能够识别和描述四种几何体的结构特征。
3.理解四种几何体之间的相互关系。
四. 教学重难点1.教学重点:柱、锥、台、球四种几何体的结构特征。
2.教学难点:理解和描述几何体的结构特征,以及几何体之间的相互关系。
五. 教学方法1.采用直观教学法,通过模型、图片等直观教具,帮助学生建立几何体的空间形象。
2.采用启发式教学法,引导学生从具体实例中发现和总结几何体的结构特征。
3.采用对比教学法,引导学生区分四种几何体的结构特征,并理解它们之间的相互关系。
六. 教学准备1.准备柱、锥、台、球四种几何体的模型或图片。
2.准备黑板、粉笔。
3.准备PPT或投影片,用于展示和讲解。
七. 教学过程1.导入(5分钟)通过展示柱、锥、台、球四种几何体的模型或图片,引导学生观察和描述它们的特点。
让学生感受到几何体的结构特征,激发学生的学习兴趣。
2.呈现(10分钟)利用PPT或投影片,呈现柱、锥、台、球四种几何体的结构特征。
引导学生从直观到抽象,从具体到一般,逐步理解几何体的结构特征。
3.操练(10分钟)让学生分组讨论,每组选择一种几何体,总结和描述其结构特征。
然后,各组向全班汇报,互相交流和讨论。
通过这种方式,巩固学生对几何体结构特征的理解。