第八章 并行口扩展技术
- 格式:ppt
- 大小:645.50 KB
- 文档页数:54
第八章并行接口与应用8-1并行接口的基本概念接口是连接单片机与外设的通道,其功能和作用在第五章已经介绍。
并行接口(简称并行口)在同一时刻,以字节或字为单位,与I/O设备进行数据交换。
为了保证数据正确传送,并行口应具有锁存功能,隔离功能和联络功能。
因此,并行口中包括输入缓冲寄存器、输出缓冲寄存器、控制寄存器和状态寄存器。
输入/输出缓冲寄存器实现数据的输入和输出;状态寄存器提供外设的各种状态,供单片机查询;控制寄存器接收单片机对接口的控制命令。
单片机有四个并行I/O口,能实现简单的数据I/O操作,但其功能毕竟有限。
因为在单片机的口电路中,只有数据锁存和缓冲功能,而没有状态寄存器和控制寄存器,因此难以满足复杂的I/O 的操作要求。
除此之外,还有数量上的原因。
单片机虽然号称四个8位双向I/O口,但实际应用中,特别是系统需要扩展外部程序存储器和数据存储器时,这些口往往不能全部用于I/O的目的,其中大部分被用来构造系统总线使用(P0分时为低八位地址总线和数据总线、P2为高八位地址总线、P3为第二功能的控制线则更为重要),真正能使用的只有P1口。
鉴于单片机的I/O资源有限,所以实际上不得不使用扩展的办法。
由于单片机的外部RAM和I/O接口是统一编址的,用户可把外部RAM (数据存储器)单元的一部分作为扩展I/O接口的地址空间,每一个接口相当于一个数据存储器存贮单元,CPU可象访问外部数据存储器那样访问外接口,进行I/O 操作。
8-2可编程并行接口芯片8255A一、8255A的内部结构及引脚8255A是Intel公司8088/8086微机外围接口芯片,由于51系列单片机与其总线结构相同,因此可以直接通用。
与其类似的有Motorola公司的MC6820,Zilog公司的Z80-PIO芯片等等。
8255A的最大特点在于其工作方式的确定和改变是用程序编程以软件的方法实现,因而称之为可编程接口芯片。
它的结构与引脚如图:(一)内部结构8255A内部有A口、B口和C口3个8位的数据口;A组和B组两组控制电路;数据总线缓冲器和读/写控制逻辑电路三大部分组成。
单片机并行口扩展和存储器扩展
单片机并行口扩展和存储器扩展
1、单片机并行口扩展,扩展I/O口采用和数据存储器相同的寻址方式。
其方法有三种:
1)总线扩展,通过锁存器对P0口扩展,这一扩展方法只分时占用P0口,而不会影响P0口与其他扩展电路的连接作用。
2)串口扩展,通过串口的工作方式完成I/O口的扩展,多通过移位寄存器164/165实现,缺点明显,占用了串口,采用移位方式,速度较慢。
3)通过片内I/O口扩展,也就是不通过P0口而通过其他片内I/O口扩展,例如8255等。
2、单片机存储器扩展,包括程序存储器的扩展和数据存储器的扩展。
由于单片机中的程序存储器和数据存储器严格分开了,因此程序存储器扩展的操作时序有所不同,可分为执行MOVX命令和不执行两种,而数据存储器的扩展相对较为简单,扩展方法也很多。
此处不再赘述。
扩展阅读:51单片机模拟串口的三种方法。
单片机系统基本并行扩展技术一、并行扩展的概念与意义并行扩展是指在单片机系统中,通过增加外部的硬件设备,如存储器、输入输出接口等,来扩展单片机的功能和资源。
这样可以使单片机系统能够处理更多的数据、实现更复杂的控制逻辑,并与更多的外部设备进行交互。
例如,在一些数据采集和处理系统中,单片机内部的存储器可能无法存储大量的采集数据,此时就需要通过并行扩展外部存储器来解决这一问题。
又如,在需要控制多个外部设备的系统中,单片机本身的输入输出端口可能不够用,通过并行扩展输入输出接口可以实现对更多设备的有效控制。
二、常见的并行扩展技术1、存储器扩展存储器扩展是单片机系统并行扩展中最常见的一种。
常见的存储器包括随机存取存储器(RAM)和只读存储器(ROM)。
(1)RAM 扩展RAM 用于存储程序运行时产生的临时数据。
扩展 RAM 时,需要考虑存储器的容量、速度和接口类型等因素。
常见的 RAM 扩展芯片有静态 RAM(SRAM)和动态 RAM(DRAM)。
(2)ROM 扩展ROM 用于存储程序和固定的数据。
常见的 ROM 扩展芯片有可编程只读存储器(PROM)、可擦除可编程只读存储器(EPROM)和电可擦除可编程只读存储器(EEPROM)等。
2、输入输出接口扩展当单片机本身的输入输出端口不能满足系统需求时,可以通过并行扩展输入输出接口来增加可用的端口数量。
常见的输入输出接口扩展芯片有 8255 并行接口芯片、8155 多功能接口芯片等。
3、并行通信接口扩展在需要与其他设备进行高速数据通信的情况下,可以扩展并行通信接口,如并行打印机接口、并行 A/D 和 D/A 转换接口等。
三、并行扩展的硬件连接在进行并行扩展时,硬件连接是至关重要的。
需要正确连接单片机与扩展芯片的地址线、数据线、控制线等。
地址线用于选择扩展芯片的存储单元或端口地址,数据线用于传输数据,控制线用于控制扩展芯片的读写操作等。
以存储器扩展为例,通常需要使用地址锁存器来锁存地址信号,以确保地址的稳定。
并行IO接口的扩展实验报告一、实验目的1、了解并行IO接口的扩展方法2、掌握可编程接口芯片8255A的工作原理、编程方式和使用方法二、实验条件1、DOS操作系统平台2、8255A接口芯片三、实验原理1、并行IO口的扩展方法:(1)通过通用的IO扩展芯片实现(2)通过TTL、CMOS 锁存器、缓冲器芯片实现。
如74LS377、74LS273、74LS244、74LS245 等。
(3)通过串行通信口扩展并行I/O 口。
2、8255A 扩展I/O 端口:(1)8255A 具有三种基本工作方式,即方式0、方式1、方式2。
各端口的工作方式及输入输出方向都由方式控制字设定(通过写入控制寄存器)。
8255A 的控制字有方式控制字和C 口置位/复位控制字两种。
3、8255A 的工作方式:(1)方式0 是一种基本I/O 方式。
在这种工作方式下,三个端口都可由程序设定为输入或输出,这种方式不使用联络信号,其基本功能为:a. 两个8 位端口(A、B) 和两个4 位端口(C)。
b. 任一个端口可以作为输入或输出。
c. 输出锁存,输入不锁存。
d. 在方式0 时,各端口都可以作为数据端口,CPU 用简单的输入或输出指令来进行读或写。
(2)方式1 是一种选通I/O 方式。
在这种方式下,端口A 和B 可作为数据端口,但C 口的某口的其它位仍可工作于方式0。
方式1 的基本功能为:a. 用作一个或两个选通端口。
b. 每个选通端口包含有:8 位数据瑞口,3 条控制线,提供中断逻辑。
c. 任一端口可输入或输出。
d. 若只有一个端口工作于方式1,余下的13 位可以工作于方式0。
e. 若两个端口工作于方式1,C 口余下2 位可以工作于方式0。
(3)方式2 是一种双向I/O 方式,只有端口 A 具有这种工作方式,其基本功能为:a. 一个8 位双向数据端口(A)和一个5 位控制端口(C)。
b. 输入和输出锁存。
c. 5 位控制端口用作端口A 的状态和控制信息。
一、概述随着科技的不断发展,各种智能设备的应用日益广泛,而这些设备往往需要通过接口与其他设备进行通信和数据传输。
在这种情况下,并口扩展技术和串口扩展技术成为了不可或缺的重要部分。
本文将从技术原理、应用场景、发展趋势等方面深入探讨这两种技术,旨在为读者提供全面深入的了解。
二、并口扩展技术1. 技术原理并口扩展技术是指通过并行接口来扩展设备的连接数量和功能。
它采用并行传输的方式,可以同时传输多个比特的数据,具有传输速度快的特点。
通常使用并口接口来连接打印机、扫描仪、摄像头等外部设备,实现数据传输和设备控制等功能。
2. 应用场景并口扩展技术在计算机、工业自动化、通信设备等领域有着广泛的应用。
工业控制系统常常需要连接多个传感器和执行器,通过并口扩展技术可以实现对这些设备的同时监控和控制。
在传统打印机和扫描仪等外设仍然使用并口接口的情况下,也需要并口扩展技术来连接更多的设备。
3. 发展趋势随着数字信号处理技术的不断成熟和发展,数字接口的应用逐渐增多,而并口接口由于其传输速度慢、线缆多等缺点逐渐被淘汰,因此并口扩展技术的应用范围将逐渐减小。
但在特定领域仍然会有一定的市场需求,尤其是一些老旧设备的维护和更新中仍然需要使用并口扩展技术。
三、串口扩展技术1. 技术原理串口扩展技术是指通过串行接口进行数据传输和设备连接的技术。
串口传输是逐位传输的方式,具有传输距离远、线缆简单等优点,通常使用在远距离通信和对传输速度要求不高的场景中。
2. 应用场景串口扩展技术在工业自动化、通信设备、安防监控等领域有着广泛的应用。
在工业控制系统中,需要对分布在不同位置的设备进行数据采集和控制,通过串口扩展技术可以实现长距离的数据传输和设备连接。
在安防监控系统中,摄像头、门禁等设备通常需要与中心监控系统进行数据交换,串口扩展技术可以满足这些设备的通信需求。
3. 发展趋势随着通信技术的不断进步,以太网、无线通信等技术在数据传输和设备连接方面的优势逐渐显现,串口扩展技术在某种程度上受到了一定的冲击。
第8章思考与练习题解析【8—1】简述单片机系统扩展的基本原则和实现方法。
【答】系统扩展是单片机应用系统硬件设计中最常遇到的问题。
系统扩展是指单片机内部各功能部件不能满足应用系统要求时,在片外连接相应的外围芯片以满足应用系统要求。
80C5 1系列单片机有很强的外部扩展能力,外围扩展电路芯片大多是一些常规芯片,扩展电路及扩展方法较为典型、规范。
用户很容易通过标准扩展电路来构成较大规模的应用系统。
对于单片机系统扩展的基本方法有并行扩展法和串行扩展法两种。
并行扩展法是指利用单片机的三组总线(地址总线AB、数据总线DB和控制总线CB)进行的系统扩展;串行扩展法是指利用SPI三线总线和12C双线总线的串行系统扩展。
1.外部并行扩展单片机是通过芯片的引脚进行系统扩展的。
为了满足系统扩展要求,80C51系列单片机芯片引脚可以构成图8-1所示的三总线结构,即地址总线AB、数据总线DB和控制总线CB。
单片机所有的外部芯片都通过这三组总线进行扩展。
2.外部串行扩展80C51.系列单片机的串行扩展包括:SPI(Serial Peripheral Interface)三线总线和12C双总线两种。
在单片机内部不具有串行总线时,可利用单片机的两根或三根I/O引脚甩软件来虚拟串行总线的功能。
12C总线系统示意图如图8—2所示。
【8—2】如何构造80C51单片机并行扩展的系统总线?【答】80C51并行扩展的系统总线有三组。
①地址总线(A0~A15):由P0口提供低8位地址A0~A7,P0 口输出的低8位地址A0~A7必须用锁存器锁存,锁存器的锁存控制信号为单片机引脚ALE输出的控制信号。
由P2口提供高8位地址A8~A1 5。
②数据总线(DO~D7):由P0 口提供,其宽度为8位,数据总线要连到多个外围芯片上,而在同一时间里只能够有一个是有效的数据传送通道。
哪个芯片的数据通道有效则由地址线控制各个芯片的片选线来选择。
③控制总线(CB):包括片外系统扩展用控制线和片外信号对单片机的控制线。