率 掷一颗均匀的骰子,它的每一种结果出现的可能性 都是 . 1 6
初
步
古典概型
1、古典概型
概 我们会发现,以上三个试验有两个共同特征:
率 (1)有限性:在随机试验中,其可能出现的结果有有 限个,即只有有限个不同的基本事件;
初 (2)等可能性:每个基本事件发生的机会是均等的。
我们称这样的随机试验为古典概型。
概 都是奇数的概率。 解:试验的样本空间是
率 Ω={(12) , (13), (14) ,(15) ,(23), (24), (25), (34) ,(35) ,(45)} ∴n=10
用A来表示“两数都是奇数”这一事件,
初
则 A={(13),(15),(3,5)}
∴m=3
步
∴P(A)=
3 10
练习巩固
步 5、基本事件ω 样本空间的元素(随机试验每一个可能出现的结果)
考察下列现象,判断那些是随机现象,如果 是随机试验,则写出试验的样本空间
1、抛一铁块,下落。
概 2、在摄氏20度,水结冰。
3、掷一颗均匀的骰子,其中可能出现的点数为
率 1, 2, 3,4,5,6. 4、连续掷两枚硬币,两枚硬币可能出现的正反面的
例4 从0,1,2,3,4,5,6这七个数中, 任取4个组成四位数,求:
• (1)这个四位数是偶数的概率;
• (2)这个四位数能被5整除的概率.
例 4 一口袋装有 6 只球,其中 4 只白球、2 只 红球。从袋中取球两次,每次随机的取一只。考 虑两种取球方式: • 放回抽样 第一次取一只球,观察其颜色后放 回袋中, 搅匀后再取一球。 • 不放回抽样 第一次取一球不放回袋中,第二 次从剩余的球 中再取一球。 分别就上面两种方式求: