高压电动机的轴电压是怎样产生的
- 格式:doc
- 大小:21.50 KB
- 文档页数:1
发电机轴电压产生的原因、危害及处理措施随着电源建设的迅猛发展,单机容量的逐渐增大,轴电压成为大型发电机采用静止自并励磁系统后的一个严重问题。
研究轴电压、轴电流有着很重要的意义。
轴电压的波形具有复杂的谐波脉冲分量,对油膜绝缘特别有害当轴电压未超过油膜的破坏值时,轴电流非常小。
若轴电压超过轴承油层击穿电压,则在轴承上形成很大的轴电流,即所谓电火花加工电流,将烧蚀轴承部件,造成很大危害。
磁路不对称、单极效应、电容电流、静电效应、静态励磁系统、外壳、轴等的永久性磁化均有可能引起轴电压。
【文献2】轴电压是指在电机运行时,电机两轴承端或电机转轴与轴承间所产生的电压。
在正常情况下,轴电压较低时,燃气发电机转轴与轴承间存在的润滑油膜能起到较好的绝缘作用。
但是,如果由于某些原因使得轴电压升高到一定数值时,就会击穿油膜放电,构成轴电流产生的回路。
轴电流不但会破坏油膜的稳定性,使润滑冷却的油质逐渐劣化,同时,由于轴电流从轴承和转轴的金属接触点通过,金属接触点很小,电流密度很大,在瞬间会产生高温,使轴承局部烧熔。
被烧熔的轴承合金在碾压力的作用下飞溅,将在轴承内表面烧出小凹坑。
最终,轴承会因机械磨损加速而破损,严重时会烧坏轴瓦,造成事故被迫停机。
【文献12】发电机轴电压一直是存在的,但一般不高,通常不超过几V~十几V,但当绝缘垫因油污、损坏或老化等原因失去作用时,则轴电压足以击穿轴与轴承间的油膜而发生放电,久而久之,就会使润滑和冷却的油质逐渐劣化,严重者会使转轴和轴瓦烧坏,造成停机事故。
1、发电机轴电压产生的原因(1)、磁不对称引起的轴电压它是存在于汽轮发电机轴两端的交流型电压。
由于定子铁芯采用扇形冲压片、转子偏心率、扇形片的导磁率不同,以及冷却和夹紧用的轴向导槽等发电机制造和运行原因引起的磁不对称,结果产生包括轴、轴承和基础台板在内的交变磁链回路。
由此在发电机大轴两端产生电压差。
每一种磁不对称都会引起相应幅值和频率的轴电压分量,各个轴电压分量叠加在一起,使这种轴电压的频率成分很复杂,其中基波分量的幅值最大,3次和5次谐波幅值稍小,更高次谐波分量幅值很小。
文件编号:GD/FS-3926A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing.编辑:_________________单位:_________________日期:_________________(解决方案范本系列)发电机轴电压产生的原因、危害及消除措施详细版发电机轴电压产生的原因、危害及消除措施详细版提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。
,文档所展示内容即为所得,可在下载完成后直接进行编辑。
(1)轴电压产生的原因①磁通不对称。
造成磁通不对称的原因,可能是由于定子铁芯局部磁阻较大、定子与转子气隙不均匀、分数槽电机(多为水轮发电机)电枢反应不均匀等所引起。
②电机大轴被磁化。
③高速蒸汽产生静电。
由于与发电机同轴相连的汽轮机的轴封不好,沿轴的高速蒸汽泄漏或蒸汽在汽缸内高速喷射等原因使轴带电荷,这种性质的轴电压有时很高,当人触及时感到麻手。
(2)危害及消除措施高速蒸汽产生的静电荷,不易传导到励磁机侧,在汽轮机侧也有可能破坏油膜和轴瓦,通常在汽轮机轴上装设接地炭刷来消除。
对于其他原因所产生的轴电压,如果在安装时和运行中不采取有效的措施,当轴电压足以击穿轴与轴承间的油膜时,将产生一个由发电机大轴、轴颈、轴瓦、轴承支架及机组底座为回路的轴电流,虽然轴电压不高,通常在1V以下,个别机组为2—3V,但由于回路的电阻非常小,因此产生的轴电流可能很大,有时可达数百安培,轴电流会使轴承油的油质劣化,严重时会将轴瓦烧坏,被迫停机造成事故。
发电机轴电压产生的原因?
由于发电机铁心造成的磁路不对称在发电机大轴上产生感应电压,还有就是汽轮机蒸汽造成的静电形成的轴电压,为了防止轴电压对轴承和埋在机内的仪表等元件的损坏,一般采用接地炭刷直
接接点.
发电机在转动过程中,只要有不平衡的磁通交链在转轴上,那么在发电机的转轴的两端就会产生感应电势。
这个感应电势就称为轴电压。
当轴电压达到一定值时,通过轴承及其底座等形成闭合回路产生电流,这个电流称为轴电流。
为了消除轴电压经过轴承、机座与基础等处形成的电流回路,防止轴电流烧坏瓦面,所以要将轴承座对地绝缘。
为防止转轴形成悬浮电位,同时转轴还要通过
电刷接地.
励磁炭刷和大轴接地炭刷的作用是什么?
励磁碳刷是给发电机转子加电压,从而使转子产生磁场,磁场切割定子线圈,
发电机才能发电.
大轴接地炭刷:有两种,一种一般汽轮发电机组都有的是防止轴电压击穿轴承油膜而设的,另一种若转子绕组绝缘监测采用外加低频电流的,那就如楼上所
述。
1。
高压电动机轴电压的产生及其对策摘要大容量电动机重新组装时易出现装配质量问题,例如轴电压对电动机会产生损坏。
本文就高压电动机轴电压的产生及故障现象进行了分析,并提出了应对措施。
关键词轴电流;轴电压;电腐蚀容量超过100kw的大、中型电动机和采用变频器供电的电动机,其特殊点在于转子需要定期抽出,进行保养,再组装起来继续使用。
然而,有时会因此而发生装配质量问题,例如发生气隙不均匀等问题,使电动机运行时,在转子轴向产生数伏的电动势。
在轴电动势的作用下,两侧轴承和大地等形成电流回路,这就是所谓轴电流。
轴电流将对轴承造成损伤,从最初出现异常噪声和震动,直至发展到完全损坏。
有的电动机在制造时就设置了轴电流防止装置,设置时,应对轴电压进行测量,有利于设备的保全。
1 状况有两台电动机相对安装,并带动负载机械做功,运行2年来一切正常,按规定,将转子1年两次抽出,进行保养后再组装起来继续运行。
该三相感应电动机额定电压3.3kw、额定功率600kw、额定频率60Hz、级数6,开启型、自空冷式,使用滑动轴承,轴承的润滑油用油泵来循环。
保养后2个多月,感到其中一台电动机的声音有异常,测定其噪声达90方。
对现场的调查情况如下。
1)混杂在电动机旋转声音中,还能听到一种很尖厉的异常噪声。
再一次测量噪声时,在距离电动机1m处,噪声值增加到95方。
2)在这种状态下,电动机的温度、负载电流、轴承温度等均未发现异常。
电动机就这样又继续运行了1个月,在此期间只是感觉到电动机本体开始发出的异常振动,仍未发现其他问题。
3)为了调查电动机产生噪声和振动的原因,人为地提高负载和降低负载,但电动机的异常声音没有变化。
为此,让这台异常的电动机在空载的情况下单独运行。
可以确认,电动机非负载侧的轴承是异常噪声的发生源。
无论是电动机空载运行还是负载运行,这种异常噪声基本上没有变化。
电动机在上述状态下又继续运行了6个月后,在例行的定期保养时,将轴承拆下检查发现,非负载侧推力轴承的滚子全部出现茶褐色的不规则筋道,用手触摸可以明显感觉到这些筋道。
变频电机轴电压与轴电流产生机理及其抑制变频电机轴电压与轴电流产生机理及其抑制1 引言当电动机在正弦波电源驱动下运行时,通过电机轴的交变磁链产生轴电压。
这些磁链是由转子和定子槽、分离铁心片之间的连接部分、磁性材料的定向属性和供电电源不平衡等因素引起磁通不平衡而产生的[1]。
到90年代,以IGBT为功率器件的PWM逆变器作为电机驱动电源时,电机轴电流问题更加严重,且其产生机理与正弦波电源驱动时完全不同。
文献[1]指出,具有高载波频率(例如10kHz以上)的IGBT逆变器导致电动机的轴承比低载波频率的逆变器驱动时损坏更快。
Busse较为详细地分析了轴承电流的产生及轴承电流密度与轴承损坏之间的关系[2],并建立了PWM驱动下的轴承电流电路模型,但该模型未能体现出轴承电流与逆变器开关频率之间的关系。
为讨论高频PWM脉冲电压驱动时电机轴电压与轴电流的产生机理,本文在建立轴电压与轴电流电路模型的基础上,分析轴电流产生的条件及形式,并针对逆变器输出电压的特性变化以及电机端有无过电压等情况,通过仿真分析得到不同情况下的轴电压与轴承电流波形。
在抑制轴承电流方面,文献[1]给出的办法用正弦波滤波器将PWM电压转换成正弦波电压,使电机工作在正弦波供电状态下,但该方法所串电感大,系统动态响应慢,同时电感上的压降和功耗增大。
本文在逆变器输出端串小电感并辅以RC吸收网络,可有效抑制PWM逆变器驱动下出现的轴电流。
2 共模电压与轴电压一般认为,磁路不均衡、单极效应和电容电流是电机中产生轴电压的主要原因[3]。
在电网供电的普通电机中,人们一般比较重视磁路不平衡的影响。
但在逆变器供电的电机中轴电压主要由电压不平衡,即电源电压的零序分量产生。
由于电路、元器件、连接和回路阻抗的不平衡,电源电压将不可避免地产生零点漂移,该电压将在系统中产生零序电流,轴承则是电机零序回路的一部分。
正弦波电源驱动时,通过计算可知 =0。
在PWM逆变器驱动下,的值取决于逆变器开关状态,且变化周期与逆变器载波频率一致。
轴电流的产生原因及消除措施轴电流是变频电机、大型电机、高压电机和发电机的一大质量杀手,对于电机轴承系统的伤害极大。
由于轴电流防范措施不到位发生的轴承系统故障案例比比皆是。
轴电流的特点是低电压大电流,对轴承系统的伤害可以说是防不胜防。
轴电流的产生缘于轴电压和闭合回路,磁路不平衡、逆变供电、静电感应、静电荷及外界的电源干扰都有可能产生轴电压,逆变供电为何会产生轴电压。
电动机采用逆变供电运行时,供电电压含有高次谐波分量,使定子绕组线圈端部、接线部分、转轴之间产生电磁感应,从而产生轴电压。
异步电动机的定子绕组是嵌人定子铁芯槽内的,定子绕组的匝间以及定子绕组和电动机机座之间均存在分布电容,当通用变频器在高载频下运行时,逆变器的共模电压产生急剧变化,会通过电动机绕组的分的分布电容由电动机的外壳到接地端之间形成漏电流。
该漏电流有可能形成放射性和传导性两类电磁干扰。
而由于电动机磁路的不平衡,静电感应和共模电压都是产生轴电压和轴电流的起因。
轴电压的幅值一般较小,但是达到一定值后就会击穿轴承润滑油膜,通过轴承形面一个闭合回路,较大的轴电流会导致轴承在很短时间内因发热烧蚀。
因轴电流烧毁的轴承会在轴承内圈外表面上留下类似搓板状的痕迹。
要解决轴电流问题可以从消除轴电压或切断回路两个途径进行解决。
1、在电机的设计环节、制造过程都采取必要的措施比如在端盖、轴承套上增加必要的绝缘措施,对于小规格产品可以采用绝缘轴承,也可以在使用环节增加泄流碳刷。
从使用的角度分析,在零部件上采取断路措施是一劳永逸的措施,而采用导流的方式就可能存在碳刷装置的更换问题,至少在电机的维护保养周期内碳刷系统不要发生问题。
2、采用绝缘轴承绝缘轴承与普通缘轴承的尺寸、承载能力都是一样的,区别是绝缘轴承能够非常好地阻止电流的通过,绝缘轴承可避免电腐蚀所造成的损害,因此比普通轴承应用在电机中可保障运行更可靠,绝缘轴承可避免感应电流对轴承的电蚀作用,防止电流对润滑脂和滚动体、滚道造成损坏。
轴电压产生的原因
轴电压产生的原因有以下几点:
1. 磁路不平衡:电动机在制造过程中,由于扇形冲片、硅钢片叠装以及铁芯槽、通风孔等因素,会导致磁路中存在不平衡的磁阻。
当转轴周围有交变磁通切割转轴时,会在轴的两端感应出轴电压。
2. 变频器供电:当电动机采用变频器供电时,变频器中的电力电子元件(如晶闸管)在整流和逆变过程中可能会引入新的轴电压源。
这是因为静态励磁系统将交流电压通过静态晶闸管整流输出脉动型直流电压供给发电机励磁绕组,这种直流电压的脉动性质可能会产生轴电压。
3. 静电效应:发电机运行时,其磁场不对称可能导致发电机大轴被磁化,从而在发电机轴上感应出电压。
此外,静电充电等现象也可能导致轴电压的产生。
综上所述,轴电压的产生可能由磁路不平衡、变频器供电、静电效应等原因造成。
轴电压的存在可能会对电动机的正常运行造成影响,因此需要采取相应的措施来监测和控制轴电压,以保护电动机的安全运行。
电动机轴电流产生原因、危害及消除方法摘要:高压电机在运行中会产生轴电流,造成电机轴承表面电腐蚀严重,内圆形成“搓板效应”,引起过热现象。
如发现不及时就会造成轴承烧毁事故,严重影响设备的安全运行。
通过此办法可以有效地解决和避免轴承烧毁事故。
关键词:轴电流、轴电压、搓板效应、旋转磁通一、产生轴电流的原因:1、造成产生轴电流的原因之一是制造厂在制造电机时,由于定子、转子沿铁芯圆周方向的磁阻不均,产生与转轴交链的磁通,从而感应出电动势。
由于轴电流或轴电压不易测出,当发生滚动轴承烧损事故时,一时找不到原因。
但当用带有绝缘圈的特制轴承套更换原轴承套后,便会测出轴电压,才能发觉到电机有轴电流产生。
2、磁不平衡产生轴电压。
交流异步电动机在正弦交变的电压下运行时,其转子处在正弦交变的磁场中。
由于电动机定转子扇形冲片、硅钢片等叠装因素,再加上铁芯槽、通风孔等的存在,在磁路中造成不平衡的磁阻。
当电动机的定子铁芯圆周方向上的磁阻发生不平衡时,便产生与轴向交链的交变磁通,从而产生交变电势。
当电动机转动即磁极旋转,通过各磁极的磁通发生了变化,在轴的两端感应出轴电压,产生了与轴相交链的磁通。
随着磁极的旋转,与轴相交链的磁通交替变化,这种电压是延轴向而产生的,如果与轴两侧的轴承形成闭合回路,就产生了轴电流。
一般情况下这种轴电压大约为1-2V。
电动机由于扇形冲片、硅钢片等叠装因素,再加上铁心槽、通风孔等的存在,造成在磁路中通切割转轴,在轴的两端感应出轴电压。
3、变频电源供电产生轴电压。
电动机采用变频电源供电时,电源三相输出电压的矢量和不为零,产生零序电压分量(共模电压)。
当电机在正常运行过程中,电机轴承内部形成油膜,在电机轴伸端和非轴伸端形成轴承电容C b ,C nb , 加之电机系统内部耦合电容分压影响(电机内部定子绕组到机壳之间存在耦合电容C wf , 定子绕组到转子之间存在耦合电容 C wr , 转子到机壳之间存在耦合电容C rf ),整个电气拖动系统产生轴承电压,由于定子绕组和电机机壳之间存在很大的耦合电容,在高频的du/dt下,经定子绕组到机壳之间的耦合电容,产生电机绕组对地的漏电流,这些电流的频率由100 kHz变化到几MHz。
轴电压、轴电流的产生在电动机运行过程中,如果在电机两轴承端或转轴与轴承间存在轴电流时,将会大大缩短电机轴承的使用寿命严重时只能运行几小时。
1.磁不平衡产生轴电压交流异步电动机在正弦交变的电压下运行时,其转子处在正弦交变的磁场中。
由于电动机定转子扇形冲片、硅钢片等叠装因素,再加上铁芯槽、通风孔等的存在,在磁路中造成不平衡的磁阻。
当电动机的定子铁芯圆周方向上的磁阻发生不平衡时,使产生与轴相交链的交变磁通,从而产生交变电势。
当电动机转动即磁极旋转,通过各磁极的磁通发生了变化,在轴的两端感应出轴电压,产生了与轴相交链的磁通。
随着磁极的旋转,与轴两侧的轴承形成闭合回路,就产生了轴电流。
一般情况下这种轴电压大约为1~2V。
2.逆变供电产生轴电压电动机采用逆变供电运行时,供电电压含有高次谐波分量,使定子绕组线圈端部、接线部分、转轴之间产生电磁感应从而产生轴电压。
异步电动机的定子绕组是嵌入定子铁芯槽内的,定子绕组的匝间以及定子绕组和电动机机座之间均存在分布电容,当通用变频器在高载频下运行时,逆变器的共模电压产生急剧变化,会通过电动机绕组的分布电容由电动机的外壳到接地端之间形成漏电流。
该漏电流有可能形成放射性和传导性两类电磁干扰。
而由于电动机磁路的不平衡,静电感应和共模电压产生又是产生轴电压和轴电流的起因。
当定子绕组输入端突加陡峭变化的电压时,由于分布电容的影响,绕组各点电压分布不均,使输入端绕组接近端口部分电压高度集中而引起绝缘破坏或老化。
这种现象一般破坏的部分是定子绕组,电压常集中于侵入的端点部位。
此外,由于绕组的电抗较大,输入电压的高频分量将集中于输入端点附近的分布电容上,通过配电线、绕组、机壳间的分布电容到接地线流通电流,形成一个LC串联谐振电路,当其中产生高频谐振电流时,就会产生各式各样的故障。
一般通用变频器驱动容量较小的异步电动机时,轴电压的问题可以不考虑,但使用超过200kW的电动机时,特别是已有的风机、压缩机等进行变频器调速改造的场合,最好事先确认轴电压的大小,以便及早采取预防措施。
大型发电机轴电压产生原因及测量注意事项一、发电机轴电压测量目的:发电机组由于某些原因引起发电机组轴上产生了电压,如果在安装或运行中,没有采取足够的措施,当轴电压足以击穿轴与轴承间的油膜时,便发生放电,会使润滑冷却的油质逐渐劣化,严重者会使轴瓦烧坏,被迫停机造成事故。
所以在安装和运行中,测量检查发电机组的轴及轴承间的电压是十分必要的。
二、产生轴电压的原因1.由于发电机的定子磁场不平衡,在发电机的转轴上产生了感应电势。
磁场不平衡的原因一般是因为定子铁芯的局部磁阻较大(例如定子铁芯锈蚀),以及定、转子之间的气隙不均匀所致。
2.高速蒸汽产生的静电由于汽轮发电机的轴封不好,沿轴有高速蒸汽泄漏或蒸气缸内的高速喷射等原因而使转轴本身带静电荷。
这种轴电压有时很高,可以使人感到麻手,但它不易传导至励磁机侧,在汽机侧也有可能破坏油膜和轴瓦,通常在汽机轴上接引接地碳刷来消除。
轴电压一般不高,根据实践经验,600MW发电机轴电压通常不超过10伏,我厂4台1000MW发电机轴电压在15V左右,相对600MW发电机较高。
为了消除轴电压经过轴承、机座与基础等处形成的电流回路,可以在励磁机侧轴承座下加垫绝缘板。
使电路断开,但当绝缘垫因油污、损坏或老化等原因失去作用时,则轴电压足以击穿轴与轴承间的油膜而发生放电,久而久之,就会使润滑和冷却的油质逐渐劣化,严重者会使转轴和轴瓦烧坏,造成停机事故。
三、发电机结构特点我厂1000MW发电机由上海发电机厂生产,西门子技术。
发电机冷却方式为水氢氢。
为了防止轴电压,在励磁端的轴承环和用来阻止氢泄漏的油密封装臵处,利用聚脂玻璃叠片做成绝缘板,绝缘板有绝缘电阻测量引线引出机外,为日后测量绝缘板好坏提供了方便,这是该机组的一大特点。
在发电机励端轴瓦解体检修后装复时,要进行轴瓦座绝缘测量,绝缘值要求最小不得低于0.5MΩ,否则要对轴瓦进行干燥处理,规范轴瓦安装工艺,直至轴瓦对地绝缘合格。
四、轴电压的测量根据发电机结构,可以很方便地画出轴承绝缘示意图:图中:U1:汽端轴对地电压U2:大轴电压U3:励端轴对地电压U4:轴承绝缘板对大轴电压U5:轴承绝缘板对机座电压U6:油密封装臵绝缘板对大轴电压U7:油密封装臵绝缘板对机座电压轴电压测量,用电压表交流电压档,使用轴电压测量碳刷,注意测量回路是否接触良好。
发电机由于定子铁芯的局部磁阻大或定,转子间气隙不均匀等都会引起定子磁场不平衡,这种磁通的不对称会在发电机转子轴上感应出电动势,在转子轴两端产生电压,这就是轴电压。
轴电压由轴颈,油膜,轴承,基座及基础底层构成通路,当油膜被破坏时,就在回路内产生很大的电流,即为轴电流。
这部分轴电流会使润滑冷却的油质逐渐劣化,严重的会使转子轴和轴瓦烧坏,损坏汽轮机及油泵的传动涡轮和蜗杆,还会使汽轮机的有关部件,发电机外壳,轴承和其他与转轴相连接的零件发生磁化现象。
所以,在实际运行中,励磁侧以后的所有轴承,基座都与地绝缘,在轴承座,基座下垫绝缘板,轴承座的固定螺丝用绝缘管,在螺母下垫绝缘圈,连接到轴承座的油管也要与轴承绝缘,这样轴电流就形不成回路。
严格的讲,只有上诉电压才是轴电压,但在机组运行中,由于汽轮机最后几级的蒸汽湿度比较大,含有一些水滴,这些水滴以告诉打在叶片上时,会使带负电的颗粒逸出,汽轮机轴上就带有正电荷,由于轴上的正电荷被轴瓦油膜所隔,不能泄入地中,就使大轴产生对地的静电电压,这一般也叫轴电压。
这个电压有时很高,可达几百伏,其值随蒸汽量大小而变化,当运行人员触及与轴相连的部件时,可能产生麻电现象,不过由于其能量很小,所以没有什么危险,但是在这种电荷的长期作用下,有时会损伤汽轮机的蜗母轮。
为了将这些电荷泄入大地,消除静电电压,所以一般发电机都装有接地碳刷。
高压电机的运行原理
高压电机的运行原理主要包括两个方面:电磁感应和电力转换。
1. 电磁感应:高压电机中有一个定子和一个转子。
当定子通电时,形成磁场。
磁场会对转子中导体产生磁力,使转子开始转动。
转子上的导体经过齿轮机构或其他装置转动后,输出机械功。
2. 电力转换:高压电机通过将电能转化为机械能进行工作。
当定子通电时,电流经过定子绕组,产生磁场,并通过电枢线圈产生旋转磁场。
由于电枢线圈被配置在转子上,因此旋转磁场将转子带动旋转。
转子上的导体在磁场中感受到电磁力,电流开始在导体中流动,进而产生机械功。
同时,高压电机中还有一些辅助部件,如整流器和调速装置。
整流器用于将交流电源转换为直流电源提供给电机,调速装置则用于控制电机的转速和扭矩。
总的来说,高压电机通过电磁感应和电力转换的过程将电能转化为机械能,并且通过辅助装置进行电流的控制和调节,实现高压电机的正常运行。
什么是发电机的轴电压及轴电流(1)在汽轮发电机中,由于定子磁场的不平衡或大轴本身带磁,转子在高速旋转时将会出现交变的磁通。
交变磁场在大轴上感应出的电压称为发电机的轴电压;(2)轴电压由轴颈、油膜、轴承、机座及基础低层构成通路,当油膜破坏时,就在此回路中产生一个很大的电流,这个电流就称为轴电流。
发电机在转动过程中,只要有不平衡的磁通交链在转轴上,那么在发电机的转轴的两端就会产生感应电势.这个感应电势就称为轴电压.当轴电压达到一定值时,通过轴承及其底座等形成闭合回路产生电流,这个电流称为轴电流.为了消除轴电压经过轴承,机座与基础等处形成的电流回路,防止轴电流烧坏瓦面,所以要将轴承座对地绝缘.为防止转轴形成悬浮电位,同时转轴还要通过电刷接地.此电刷接地可与转子一点接地保护要求的"接地"共用为一个.防止轴电压的重点在于防止轴电流的形成,轴承间只要不形成轴电流回路,则不需对所有的轴承绝缘. 电磁轴电压主要可分为两部分,一是轴在旋转时切割不平衡磁通而在转轴两端产生的轴电压,二是由于存在轴向漏磁通而在转轴两端产生的轴电压.造成发电机磁场不平衡的原因主要有:①定,转子之间的气隙不均匀.②磁路不平衡.如定子分瓣铁芯,定子铁芯线槽引起的磁通变化,极对数和定子铁芯扇形片接缝数目的关系等.③制造,安装造成的磁路不均衡.此外分数槽绕组的电枢反应也会在转轴上产生轴电压. 当轴承底座绝缘垫因油污,损坏或老化等原因失去绝缘性能时,则轴电压足以击穿轴与轴承间的油膜而发生放电.放电会使润滑油的油质逐渐劣化,放电的电弧会使转轴颈和轴瓦烧出麻点,严重者会造成事故.发电机轴电压的测量1、产生轴电压的原因 1.发电机磁通的不对称2.高速蒸汽产生的静电由于在发电机同轴的汽轮机轴封不好,沿轴的高速蒸汽泄漏或蒸汽在汽缸内高速喷射等原因使轴带电荷。
这种性质的轴电压有时很高,当人触及时感到麻手,但它不易传导至励磁机侧,在汽机侧也有可能破坏油膜和轴瓦,通常在汽机轴上接引接地炭刷来消除。
( 安全技术 )单位:_________________________姓名:_________________________日期:_________________________精品文档 / Word文档 / 文字可改发电机轴电压产生的原因、危害及消除措施(新编版)Technical safety means that the pursuit of technology should also include ensuring that peoplemake mistakes发电机轴电压产生的原因、危害及消除措施(新编版)(1)轴电压产生的原因①磁通不对称。
造成磁通不对称的原因,可能是由于定子铁芯局部磁阻较大、定子与转子气隙不均匀、分数槽电机(多为水轮发电机)电枢反应不均匀等所引起。
②电机大轴被磁化。
③高速蒸汽产生静电。
由于与发电机同轴相连的汽轮机的轴封不好,沿轴的高速蒸汽泄漏或蒸汽在汽缸内高速喷射等原因使轴带电荷,这种性质的轴电压有时很高,当人触及时感到麻手。
(2)危害及消除措施高速蒸汽产生的静电荷,不易传导到励磁机侧,在汽轮机侧也有可能破坏油膜和轴瓦,通常在汽轮机轴上装设接地炭刷来消除。
对于其他原因所产生的轴电压,如果在安装时和运行中不采取有效的措施,当轴电压足以击穿轴与轴承间的油膜时,将产生一个由发电机大轴、轴颈、轴瓦、轴承支架及机组底座为回路的轴电流,虽然轴电压不高,通常在1V以下,个别机组为2—3V,但由于回路的电阻非常小,因此产生的轴电流可能很大,有时可达数百安培,轴电流会使轴承油的油质劣化,严重时会将轴瓦烧坏,被迫停机造成事故。
为了防止轴电流的产生,设计安装时,在位于发电机励磁机侧的轴承支架与底座之间己加装绝缘垫,同时将所有螺杆、螺钉(控制销)及油管等均已采取绝缘措施。
(3)测量轴电压的意义由以上分析可知,发电机一侧的轴承支架与底座之间的绝缘垫是否保持良好的绝缘性能,对于防止发电机的轴和轴瓦的损坏以及轴承油质的劣化,保证机组的安全运行起着重要作用。
编订:__________________单位:__________________时间:__________________发电机轴电压产生的原因、危害及消除措施(正式)Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level.Word格式 / 完整 / 可编辑文件编号:KG-AO-8271-28 发电机轴电压产生的原因、危害及消除措施(正式)使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。
下载后就可自由编辑。
(1)轴电压产生的原因①磁通不对称。
造成磁通不对称的原因,可能是由于定子铁芯局部磁阻较大、定子与转子气隙不均匀、分数槽电机(多为水轮发电机)电枢反应不均匀等所引起。
②电机大轴被磁化。
③高速蒸汽产生静电。
由于与发电机同轴相连的汽轮机的轴封不好,沿轴的高速蒸汽泄漏或蒸汽在汽缸内高速喷射等原因使轴带电荷,这种性质的轴电压有时很高,当人触及时感到麻手。
(2)危害及消除措施高速蒸汽产生的静电荷,不易传导到励磁机侧,在汽轮机侧也有可能破坏油膜和轴瓦,通常在汽轮机轴上装设接地炭刷来消除。
对于其他原因所产生的轴电压,如果在安装时和运行中不采取有效的措施,当轴电压足以击穿轴与轴承间的油膜时,将产生一个由发电机大轴、轴颈、轴瓦、轴承支架及机组底座为回路的轴电流,虽然轴电压不高,通常在1V以下,个别机组为2—3V,但由于回路的电阻非常小,因此产生的轴电流可能很大,有时可达数百安培,轴电流会使轴承油的油质劣化,严重时会将轴瓦烧坏,被迫停机造成事故。
高压发电机的工作原理高压发电机是一种用来产生高电压的设备,其工作原理基于电磁感应和电场作用。
下面将详细介绍高压发电机的工作原理。
1. 电磁感应原理:- 根据法拉第电磁感应定律,当磁通量发生变化时,会在导体中产生感应电动势。
- 高压发电机通过旋转导体和磁场之间的相对运动来改变磁通量,从而产生感应电动势。
2. 磁场激励:- 高压发电机通常使用永磁体或电磁线圈来创建一个稳定的磁场。
- 永磁体可以生成恒定磁场,电磁线圈则经过电流激励后产生磁场。
- 磁场的强度和形状会影响高压发电机的输出特性。
3. 旋转导体:- 高压发电机中,一个或多个导体被连接到旋转部件上,如转子或电机。
- 当导体与磁场相对运动时,导体中的自由电子受到磁场的力,导致电荷分离。
- 这导致导体两端产生电压差,即感应电动势。
4. 高压绕组和输出:- 高压发电机通常包含一个或多个绕组电路,可以将感应电动势转换为高电压。
- 绕组电路是由导线绕制而成,导线的材料以及绕制方式都会影响输出电压的特性。
- 通过适当选择和设计绕组,高压发电机可以实现所需的电压输出。
5. 直流和交流发电机:- 高压发电机可以是直流或交流类型。
- 直流发电机通过用刷子和集电环连接到绕组上的导线来收集电荷,输出直流电压。
- 交流发电机使用交流电源和旋转磁场来产生交流电压。
- 交流发电机可以是单相或三相的,三相交流发电机在工业领域中应用广泛。
6. 电场作用:- 当高压发电机输出高电压时,电场效应也起到重要作用。
- 高电压可以创建强电场,可以用来驱动电子或离子在空气中移动。
- 在某些高压应用中,电场用于产生电晕放电或等离子体。
7. 系统控制和安全:- 高压发电机通常需要一套系统控制和保护机制,以确保安全运行。
- 过载保护、过电压保护和短路保护等措施是必不可少的。
- 合理的系统控制可以提高高压发电机的效率和稳定性。
总结:高压发电机的工作原理基于电磁感应和电场作用。
通过旋转导体和磁场相对运动来改变磁通量,从而产生感应电动势。
高压电动机的轴电压是怎样产生的?
电动机的轴电压、轴电流是由于环绕电动机轴的磁路不对称、转子运转不同心、感生脉动磁通等原因所产生的,它会使轴—轴承—机座的回路有轴电流流通,在电动机转子轴两端、轴与轴承之间、轴与轴承对地形成称为轴电压。
高压电动机轴电流产生的原因?
原因:由于定子铁芯组合缝、定子硅钢片接缝,定子与转子空气间隙不均匀,轴中心与磁场中心不一致等,机组的主轴不可避免地要在一个不完全对称的磁场中旋转。
这样,在轴两端就会产生一个交流电压。
正常情况下要求机组转动部分对地绝缘电阻大于一定阻值(比如:0.5MΩ),如果在大轴两端同时接地就可能产生轴电流。
预防:通过更换受油器油管连接处的绝缘垫,以保证大轴不发生两点接地,进而避免轴电流的产生。
另外,在平时检修和巡检时,注意监督电机运行状况。
电机产生轴电压的原因是什么?防止电机产生轴电流应采取什么措施?
产生轴电压的原因如下:
3p W ]!F0C-s y u ①、由于发电机的定子磁场不平衡,在发电机的转轴上产生了感应电势。
磁场不平衡的原因一般是因为定子铁芯的局部磁组较大(例如定子铁芯锈蚀),以及定、转子之间的气隙不均匀所致。
②、由于汽轮发电机的轴封不好,沿轴有高速蒸汽泄漏或蒸气缸内的高速喷射等原因而使转轴本身带静电荷。
这种轴电压有时很高,可以使人感到麻电。
但在运行时已通过炭刷接地,所以实际上已被消除。
轴电压一般不高,通常不超过2~3 伏,为了消除轴电压经过轴承、机座与基础等处形成的电流回路,可以在励磁机侧轴承座下加垫绝缘板。
使电路断开,但当绝缘垫因油污、损坏或老化等原因失去作用时,则轴电压足以击穿轴与轴承间的油膜而发生放电,久而久之,就会使润滑和冷却的油质逐渐劣化,严重者会使转轴和轴瓦烧坏,造成停机事故。
发电机磁场非常强大,发电机的主轴穿过磁场中心,可是一旦有微小偏差,在发电机轴两端就有感应电压,如果发电机轴两端经轴承和机座成为闭合环路,就会产生巨大的短路电流,为了切断这个环路,发电机轴承的一端必须加绝缘垫片的。