初一数学认识立体图形
- 格式:ppt
- 大小:5.89 MB
- 文档页数:73
七年级上册立体图形知识点立体图形,是指具有高度、宽度和长度三个方向的图形,它们是空间中的实体物体。
在初中数学的学习中,学生需要学习一些基本的立体图形知识,本文将带大家对七年级上册立体图形的知识点进行梳理与总结。
一、三棱柱1. 什么是三棱柱三棱柱是一种侧面为三角形,两个平面为平行四边形的立体图形。
它有三个顶点、三条棱和三个侧面。
2. 三棱柱的表面积和体积(1)三棱柱的表面积公式为:S = 底面积 + 侧面积,其中底面积可以直接用底边长a和高h计算出来,即:底面积 = 1/2 × a × h;侧面积则通过三角形面积公式计算,即侧面积 = 3 × (1/2 ×底边长a ×高h)。
(2)三棱柱的体积公式为:V = 底面积 ×高h。
二、三棱锥1. 什么是三棱锥三棱锥是以一个三角形为底面,其余三个侧面都在一个顶点上的立体图形。
它有四个顶点、四条棱和四个侧面。
2. 三棱锥的表面积和体积(1)三棱锥的表面积公式为:S = 底面积 + 侧面积,其中底面积可以直接用底边长a和高h计算出来,即:底面积 = 1/2 × a × h;侧面积则通过三角形面积公式计算,即侧面积 = 3 × (1/2 ×底边长a ×斜高l)。
(2)三棱锥的体积公式为:V = 1/3 ×底面积 ×高h。
三、三棱台1. 什么是三棱台三棱台是一种底面为三角形,顶面与底面平行且相等的立体图形。
它有五个顶点、八条棱和五个侧面。
2. 三棱台的表面积和体积(1)三棱台的表面积公式为:S = 上底面积 + 下底面积 + 侧面积,其中上底面积和下底面积可以直接用底边长a、上底边长b和高h计算出来,即上底面积 = 1/2 × b × h,下底面积 = 1/2 × a × h;侧面积则通过直角三角形面积公式计算,即侧面积 = 1/2 ×侧棱长×高l。
4。
1 生活中的立体图形1.常见的立体图形(1)柱体①棱柱:有两个面互相平行,其余各面都是四边形,并且每两个相邻的四边形的公共边互相平行,由这些面围成的几何体叫棱柱.如三棱柱、四棱柱、五棱柱等;②圆柱:以矩形的一边所在的直线为旋转轴,其余各边围绕它旋转形成的几何体叫做圆柱.(2)锥体①棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面围成的几何体叫棱锥.如三棱锥、四棱锥、五棱锥等;②圆锥:以直角三角形一边所在的直线为旋转轴,其余各边围绕它旋转形成的几何体叫做圆锥.(3)球体:半圆以它的直径为旋转轴,旋转而成的几何体叫做球体.【例1】判断下列说法是否正确:(1)柱体的上、下两个面不一样大().(2)圆柱、圆锥的底面都是圆().(3)棱柱的底面不一定是四边形().(4)圆柱的侧面是平面().(5)棱锥的侧面不一定是三角形().解析:柱体的上、下底面是平行且相等的(形状相同、大小相等),所以(1)错误;圆柱的上、下两个底面都是圆,圆锥的底面是圆,所以(2)正确;棱柱可以是三棱柱、四棱柱、五棱柱等,即棱柱的底面不一定是四边形,所以(3)正确;圆柱的侧面是曲面不是平面,所以(4)错误;棱锥的侧面一定是三角形,所以(5)错误.答案:(1)×(2)√(3)√(4)×(5)×2.立体图形的分类立体图形错误!为便于理解与识记,形象地总结立体图形的分类如下:【例2】下列图形中柱体的个数为().A.1 B.2 C.3 D.4解析:柱体的特点是它们的上、下底面是平行且相等的(形状相同、大小相等),由此判断①和②是柱体.答案:B3.多面体(1)多面体的概念:围成棱柱和棱锥的面是平的面,像这样的立体图形叫做多面体.如图,下列图形分别为:棱柱(长方体)、棱锥(三棱锥),它们均为多面体.(2)正四面体:由四个完全一样的正三角形围成的空间图形称为正四面体,这些三角形的顶点、边分别称为正四面体的顶点、棱(相邻的三角形的公共边只算一条棱).(3)正六面体:类似的,组成正方体的每个正方形的顶点、边分别称为正六面体的顶点、棱(相邻的正方形的公共边只算一条棱).此外,还有正八面体、正十二面体和正二十面体,如图.谈重点常见的多面体棱柱和棱锥都是多面体,圆柱、圆锥和球不是多面体.【例3】一个棱柱的底面是五边形,它有几条侧棱,几个顶点?共有几个面?分析:由已知易知该立体图形是五棱柱,结合图形回答问题即可.解:它有5条侧棱,10个顶点,共有7个面.析规律棱柱棱数、顶点数和面数的确定底面为n边形的棱柱有n条侧棱,2n个顶点,(n+2)个面.。
认识立体几何图形
考点名称:认识立体几何图形
立体几何图形:
从实物中抽象出来的各种图形,统称为几何图形,几何图形是数学研究的主要对象之一。
有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各个部分不都在同一平面内,它们是立体图形。
由一个或多个面围成的可以存在于现实生活中的三维图形。
点动成线,线动成面,面动成体。
即由面围成体,看一个体最多看到立体图形实物三个面。
常见立体几何图形及性质:
①正方体:
有8个顶点,6个面。
每个面面积相等(或每个面都有正方形组成)。
有12条棱,每条棱长的长度都相等。
(正方体是特殊的长方体)
②长方体:
有8个顶点,6个面。
每个面都由长方形或相对的一组正方形组成。
有12条棱,相对的4条棱的棱长相等。
③圆柱:
上下两个面为大小相同的圆形。
有一个曲面叫侧面。
展开后
为长方形或正方形或平行四边形。
有无数条高,这些高的长度都相等。
④圆锥:
有1个顶点,1个曲面,一个底面。
展开后为扇形。
只有1条高。
四面体有1个顶点,四面六条棱高。
⑤直三棱柱:
三条侧棱切平行,上表面和下表面是平行且全等的三角形。
⑥球:
球是生活中最常见的图形之一,例如篮球、足球都是球,球是由一个面所围成的几何体。
常见的立体几何图形视图:
几何图形图形
长方体
正方体
圆锥圆柱圆锥球。
第四章 几何图形初步立体图形与平面图形 分都在同一个平面内,它们是平面图形。
3.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.正方体的展开图:11种4.立体图形的三视图:①主视图:从正面看;②左视图:从左面看;③俯视图:从上面看。
(会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型) 1.长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也.. 定一条直线. 2.相交、交点:当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。
如图:O 点为直线AD 和直线CB 的交点,也是直线AD 和直线CB 的公共点。
3.直线、射线、线段的表示方法(1) 直线:用一个小写字母表示,如:直线l ,或用两个大些字母(直线上的)表示,如直线AB (A 、B 两点是直线上的点).(2) 射线:直线的一部分,用一个小写字母表示,如:射线l ,或用两个大些字母表示,如:射线OA (O 、A 两点是射线上的点,用两个字母表示时,端点的字母放在前边).(3) 线段:直线的一部分,用一个小写字母表示,如线段a ;用两个表示端点的字母表示,如:线段AB (或线段BA ).5.中点:点M 把线段AB 分成相等的两条线段AM 和MB ,点M 叫做线段AB 的中点。
三等分点、四等分点……6.关于线段的基本事实:两点之间的所有连线中,线段最短.简单说成:两点之间,线段最短。
如图:A 、B 两点之间的五条连线中,第三条连线(线段)最短。
7.比较两条线段长短的方法有两种:度量比较法、重合比较法.8.距离:连接两点间的线段的长度,叫做这两点间的距离。
(平面上任意两点间的距离指的是连接这两点的线段的长度,强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形。
线段的长度才是两点的距离)。
如图:A 、B 两点之间的距离就是线段AB 的长度。
七年级立体图形知识点立体图形是数学中的一个重要概念,经常在我们日常生活和工作中得以应用。
对于七年级的学生来说,掌握立体图形的相关知识点是非常重要的。
在本文中,我们将详细介绍七年级立体图形的相关知识点。
一、立体图形的定义和分类立体图形是三维图形的总称,它是由三个互相垂直的面围成的空间图形。
常见的立体图形有球体、立方体、长方体、棱柱、棱锥、圆柱、圆锥等。
其中,球体是一种完全由曲面包围的立体图形,是半径相等的所有点到球心的距离相等的点的集合;立方体和长方体都是由六个矩形面围成的,不同之处在于它们的底面和顶面是否相等;棱柱和棱锥都是由底面和侧面围成的,不同之处在于前者侧面是矩形,后者则是三角形;圆柱和圆锥都是由底面和侧面围成的,前者侧面是矩形,后者则是圆形。
二、立体图形的表面积和体积立体图形的表面积是指这个立体图形所有表面的面积之和。
计算立体图形的表面积时,需要根据不同的图形,分别求出各自的表面积再相加。
立体图形的体积是指这个立体图形所占的空间大小。
计算立体图形的体积时,需要根据不同的图形,采用不同的公式进行计算。
比如,立方体的体积 = 底面积 ×高;长方体的体积 = 底面积 ×高;球体的体积= 4/3 π × 半径³。
其他各种立体图形的体积公式可以参考相关资料。
三、立体图形的相似与全等相似立体图形是指两个立体图形除大小不同外,其他各项都完全相同。
如果两个立体图形的形状完全相同,大小也完全相同,那么它们就是全等的。
确定两个立体图形是否相似或全等,需要注意它们的形状和大小,即需要比较它们的各个面的大小和相对位置是否一致。
四、立体图形的画法绘制立体图形是学习立体图形的重要环节之一。
在画法方面,最常用的方法是利用纸片来绘制出一个未拼装的立体图形模型,然后将纸片按照一定的方式拼合起来,形成一个完整的立体图形。
此外,还可以利用计算机绘图软件来绘制立体图形,这种方法简单方便,且可以通过旋转、缩放等操作改变图形的样式和角度,有利于更好地理解立体图形的各项特征。
初一数学立体图形教案教案标题:初一数学立体图形教案教案目标:1. 理解立体图形的定义和特征。
2. 能够识别并命名常见的立体图形。
3. 掌握计算立体图形的表面积和体积的方法。
4. 能够应用所学知识解决与立体图形相关的问题。
教学重点:1. 立体图形的定义和特征。
2. 常见立体图形的命名和特点。
3. 表面积和体积的计算方法。
教学难点:1. 立体图形表面积和体积的计算方法的理解和应用。
2. 解决与立体图形相关的问题的能力。
教学准备:1. 教师准备:投影仪、计算器、立体图形模型、教具(如面积和体积计算卡片)。
2. 学生准备:课本、笔记本、铅笔、直尺、计算器。
教学过程:一、导入(5分钟)1. 引入立体图形的概念,让学生回顾平面图形的特点和命名。
2. 提问:立体图形与平面图形有何不同?请举例说明。
二、知识讲解(15分钟)1. 通过投影仪或板书,介绍常见的立体图形,如立方体、长方体、圆柱体、圆锥体和球体,并讲解它们的特点和命名方法。
2. 讲解表面积和体积的概念,并介绍计算方法。
三、示范与实践(20分钟)1. 教师示范计算一个立体图形的表面积和体积的步骤,解释每个步骤的含义。
2. 学生跟随教师的示范,计算另一个立体图形的表面积和体积。
3. 学生在小组内互相交流并解决一些练习题,巩固所学知识。
四、拓展与应用(15分钟)1. 提供一些拓展题目,让学生运用所学知识解决与立体图形相关的问题。
2. 学生进行小组讨论,并展示他们的解决方法和答案。
五、总结与评价(5分钟)1. 让学生总结本节课所学的内容,并与他们之前的知识进行对比。
2. 老师对学生的表现进行评价,并解答他们可能存在的疑问。
六、作业布置(5分钟)1. 布置一些练习题作为课后作业,巩固所学知识。
2. 鼓励学生主动探索和发现立体图形的应用场景,并写下自己的思考和发现。
教学延伸:1. 引导学生观察生活中的立体图形,了解其实际应用。
2. 鼓励学生使用计算机软件或在线资源进行立体图形的模拟和计算实践。
初中数学立体图形知识点归纳立体图形是初中数学中的一个重要内容,它涉及到空间几何的知识点,对于学生来说是一项相对较难的内容。
在初中数学中,我们需要掌握立体图形的种类、性质以及相关计算方法。
下面将对初中数学中的立体图形知识点进行归纳总结。
首先,我们来了解一下立体图形的概念。
立体图形是指具有三个维度的图形,常见的立体图形包括圆柱、圆锥、棱柱、棱锥、球体等。
它们都有自己独特的性质和特点。
1. 圆柱:圆柱是由一个矩形和两个平行相等的圆组成的。
圆柱的侧面是一个矩形,顶面和底面是两个平行相等的圆。
圆柱的体积公式为V=πr²h,其中r为底面圆的半径,h为棱柱的高。
2. 圆锥:圆锥是由一个扇形和一个顶点组成的。
圆锥的侧面是一个扇形,底面是一个圆。
圆锥的体积公式为V=1/3πr²h,其中r为底面圆的半径,h为圆锥的高。
3. 棱柱:棱柱是底面和顶面相等并且平行的多边形所围成的几何体。
棱柱的侧面是一条条平行的线段,底面和顶面是两个相同的多边形。
棱柱的体积公式为V=面积×高,其中面积为底面的面积,高为棱柱的高。
4. 棱锥:棱锥是底面为多边形,顶面为一个顶点的几何体。
棱锥的侧面是一条条从底面到顶点的线段,底面是一个多边形。
棱锥的体积公式为V=1/3×底面的面积×高,其中底面的面积为底面所围成的多边形的面积,高为棱锥的高。
5. 球体:球体是由无数个与同一点距离相等的点所围成的几何体。
球体的体积公式为V=4/3πr³,其中r为球体的半径。
此外,还有一些与立体图形有关的重要概念和性质需要掌握。
1. 图形的可视角:指我们能够在特定位置观察到的一个图形的全部或部分。
可视角是指从观察点所能看到的角度的大小。
在计算图形的体积和表面积时,通常需要确定观察者的位置。
2. 图形的投影:当一个立体图形在投影面上的影子称为图形的投影。
投影可以分为平行投影和中心投影两种。
平行投影是指从平行于某一方向的线上观察立体图形得到的投影,而中心投影是指从立体图形的中心垂直向下观察得到的投影。
七年级立体图形知识点总结立体图形是初中数学中的重要内容,其知识点涵盖了定义、特征、性质、计算及应用等方面。
下面对七年级立体图形的主要知识点进行总结。
一、立体图形的定义立体图形是三维几何图形,具有长度、宽度和高度三个方向的尺寸,并且占有一定的体积。
常见的立体图形有正方体、长方体、棱锥、棱台、圆柱和圆锥等。
二、立体图形的特征与性质1.正方体正方体的六个面都是正方形,每个顶点有三个面相邻。
正方体的特点是长宽高相等,并且对称性好。
2.长方体长方体的六个面都是矩形,每个顶点有三个面相邻。
长方体的特点是长宽高不相等,但相邻面互相垂直。
3.棱锥棱锥的底面是任意多边形,顶点到底面所在平面的距离叫做棱锥的高。
棱锥的特点是只有一个顶点,其余面都是三角形。
4.棱台棱台的底面和顶面都是任意多边形,且底面的每一边都与顶面的对应边在同一平面上。
棱台的特点是有两个底面,两个底面之间沿着高线平移得到的截面为平行四边形。
5.圆柱圆柱的底面是圆形,且底面中心点到柱轴线的距离称为圆柱的半径,底面与顶面之间的距离称为圆柱的高。
圆柱的特点是侧面为矩形,两底面平行且大小相等。
6.圆锥圆锥的底面为圆形,底面圆心到锥顶的距离为圆锥的高,底面半径为圆锥的半径。
圆锥的特点是侧面为三角形,其中锥顶角为锥的顶角。
三、立体图形的计算对于立体图形的计算,主要涉及到它们的面积和体积。
1.正方体正方体的面积等于6倍它的一个面的面积,体积等于边长的立方。
2.长方体长方体的面积等于2个底面积之和再加上4个侧面积,其中侧面积为长*高或宽*高,体积等于长*宽*高。
3.棱锥棱锥的侧面积等于底面积乘以棱锥的斜高,斜高可以用勾股定理求得,棱锥的体积等于1/3乘以底面积乘以棱锥的高。
4.棱台棱台的侧面积等于上底的周长与下底的周长之和乘以棱台的高的一半,棱台的体积等于1/3乘以棱台的高乘以上底面积加下底面积加上底面积与下底面积的平方根乘以1/2。
5.圆柱圆柱的侧面积等于圆周长乘以高,底面积等于圆面积,圆柱的体积等于底面积乘以高。