九年级数学上册第三章圆的基本性质教材分析教案
- 格式:docx
- 大小:16.83 KB
- 文档页数:5
人教版九年级上册《圆的有关性质》教案
《人教版九年级上册《圆的有关性质》教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!
课题:圆的有关性质
教材:人教版九年义务教育初三几何
教学目的:理解圆的定义,掌握点与圆的位置关系,培养学生用数形结合思想方法分析解决问题的能力
教学重点、难点:圆的定义的理解
教学关键:理解两点:①在圆上的点,都满足到定点(圆心)的距离等于定长(半径);
②满足到定点(圆心)的距离等于定长(半径)的点,在以定点为圆心,定长为半径的圆上。
教学过程:
一、复习旧知:
1、角平分线及中垂线的定义(用集合的观点解释)
2、在一张透明纸上画半径分别1,3.5cm的圆,同桌的两个同学将所画的圆的大小分别进行比较(分别对应重合)。
并回答:这些圆为什么能够分别重合?并体会圆是怎样形成的?
二、讲授新课:
1、让学生拿出准备好的木条照课本演示圆的形成,用圆规再次演示圆的形成。
分析归纳圆定义:
在一个平面内,线段绕它固定的一个端点旋转一周,另一个端点随之旋转所形成的图形叫做圆,其中固定的端点叫做圆心,线段叫做半径。
注意:“在平面内”不能忽略,以点O为圆心的圆,记作:“⊙O”,读作:圆O
2、进一步观察,体会圆的形成,结合园的定义,分析得出:
①圆上各点到定点(圆心)的距离等于定长(半径)
②到定点的距离等于定长的点都在以定点为圆心,
定长为半径的圆上。
由此得出圆的定义:
圆是到定点的距离等于定长的点的集合。
例如,到平面上一点O距离为1.5cm的点的集合是以O为圆心,半径为1.5cm的一个圆。
人教版九年级上册《圆的有关性质》教案这篇文章共1810字。
解:因为圆周上的各点到圆心的距离都相等,车子行驶起来比较平稳.定点、定长学生在了解的基础上观察下图,引入点和圆的位置关系:请学生口答,然A A 1O 与2O 的半径分别是1O 与2O 是等圆,则O 的半径AB 是弦,C 是AB 上一OC ⊥OA ,。
求(1)A ∠的度数;()的长。
(四种以上方法)见作业本3.1圆(2)教学目标①学生经历不在同一直线上的三点确定一个圆的探索过程②了解不在同一直线上的三点确定一个圆,以及过不在同一直线上的三点作圆的方法,了解并辨认三角形的外接圆、三角形的外心等概念 ③会画过不在同一条直线上的三点作圆教学重点、工具③尺规教学难点教学过程车床工人告诉了我们什么?问题:车间工人能将一个如图所示的破损的圆盘复原,你知道用什么办法吗?(根据学生的预习情况进行衔接教学) ——指出标题——指出讨论1:“三个点的位置在什么地 方?”讨论2:“三个点为什么会不在同 一直线上?”讨论3:“画一个圆需要知道什么”探索:为什么一定要三个点?1:经过一个已知点A 能作多少个圆?结论:经过一个已知点A 能作无数个圆!2:经过两个已知点A,B 能作多少个圆?结论:经过两个已知点A,B 能作无数个圆!讨论1:把这些圆的圆心用光滑线连接是什么图形?讨论2:这条直线的位置能确定吗?怎样画这条直线? 3:经过三个已知点A 、B 、C 能作多少个圆? 讨论1:怎样找到这个圆的圆心? 讨论2:这个圆的圆心到点A 、B 、C 的距离相等吗? 为什么?即OA=OB=OC结论:不在同一直线上的三个点确定一个圆初步应用:1:现在你知道了怎样要将一个如图所示的破损的圆盘 复原了吗?方法:找圆弧所在圆的圆心连线段的垂直平分线,其 交点即为圆心。
2:已知△ABC,概念教学,外内接三角形.举例、1:⊙O 是△角形,点O 2:三角形的外心是△ABC 三条边的垂直平分线的交点.试一试1:画出过以下三角形的顶点的圆,并比较圆心的位置?2:练一练a :下列命题不正确的是 ( ) A.过一点有无数个圆. B.过两点有无数个圆.C.弦是圆的一部分.D.过同一直线上三点不能画圆. b :三角形的外心具有的性质是 ( ) A.到三边的距离相等. B.到三个顶点的距离相等. C.外心在三角形的外. D.外心在三角形内.知识小结1:不在同一直线上的三点确定一个圆。
九上数学《圆的概念(教案)》一、教学目标:知识与技能:1. 理解圆的定义,掌握圆的基本性质;2. 学会使用圆规和量角器画圆;3. 了解圆与直线、圆与圆的位置关系。
过程与方法:1. 通过观察、操作、探究等活动,培养学生的动手能力和观察能力;2. 利用几何画板或实物模型,引导学生直观地理解圆的概念和性质;3. 学会用圆的方程表示圆,并运用圆的性质解决实际问题。
情感态度价值观:1. 激发学生对数学的兴趣和好奇心,培养学生的审美情感;2. 培养学生合作交流、归纳总结的能力;3. 渗透转化思想,培养学生的逻辑思维能力。
二、教学重点与难点:重点:1. 圆的定义及其基本性质;2. 圆的方程及其应用。
难点:1. 圆的位置关系的理解;2. 圆的方程的求解。
三、教学方法:情境教学法、问题驱动法、合作学习法、直观演示法。
四、教学准备:教师准备:教材、PPT、圆规、量角器、几何画板、实物模型等。
学生准备:笔记本、尺子、圆规、量角器等。
五、教学过程:1. 导入新课:利用生活中的实例,如车轮、地球等,引导学生思考圆的特征,引发对圆的兴趣。
2. 自主学习:让学生自学教材,了解圆的定义和基本性质,归纳圆的特征。
3. 课堂讲解:讲解圆的定义、圆心和半径的概念,引导学生掌握圆的基本性质;通过PPT或板书,展示圆的性质示意图,帮助学生直观理解。
4. 动手实践:让学生使用圆规和量角器画圆,观察和总结画圆的方法和技巧。
5. 合作交流:分组讨论圆与直线、圆与圆的位置关系,引导学生用圆的性质解释实际问题。
6. 课堂小结:总结本节课所学内容,强调圆的定义、性质和位置关系的重要性。
7. 课后作业:布置有关圆的练习题,巩固所学知识,提高运用能力。
六、教学反思:课后,教师应认真反思本节课的教学效果,从学生的掌握情况、课堂互动、教学方法等方面进行总结,发现问题并及时调整教学策略,以提高教学质量。
七、课堂评价:1. 学生课堂表现评价:观察学生在课堂上的参与程度、提问回答、合作交流等情况,评价学生的学习态度和效果。
圆【知识框架】【基础知识】1、 圆:在平面内到定点的距离等于定长的点的集合。
思考下列问题“画圆需要几个条件,如何画圆”(圆心和半径;圆心确定圆的位置,半径确定圆的大小) 2、 过不在同一直线上的三点确定一个圆。
思考问题“如何画这个圆”;(作两条边的中垂线,以两条中垂线的交点为圆心,交点到顶点的距离为半径画圆) 3、 圆的有关概念:弧、弦、弦心距、圆心角、圆周角、直径等 4、 圆的基本性质:(1)圆既是轴对称图形,又是中心对称图形;经过圆心的直线都是它的对称轴;(2)垂径定理:①垂直于弦的直径平分弦,并且平分这条弦所对的弧;②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧; ③弦的中垂线经过圆心,并且平分弦所对的弧;④平分弦所对的弧的直径垂直于弦,并且平分弦所对的另一条弧;5、 基本图形:∠A+∠C=180;∠B+∠ADC=180,AB ∥CD∠1=∠B 弧AC=弧BD【计算相关】1. 直角三角形外接圆半径直角三角形外接圆圆心在直角三角形斜边的中点上,直角三角形外接圆半径是直角三角形斜边的一半 r=2a2. 等边三角形外接圆半径半径r ,等边三角形边长的一半2a,弦心距d 构成一个有30°角 的Rt △ r 2=d 2+(2a )2r ,d ,2a三者中,知道其中一或两个量,可求出其余的量,即d :2a:r=1:3:23. 正方形外接圆半径两半径,正方形的一边构成一个等腰直角三角形 r=22a 即r :r :a=1:1:2 4. 垂径定理半径r ,弦心距d ,半弦2a构成一个直角三角形 r 2=d 2+(2a )2 r ,d ,2a 三者中,知道其中两个量,可求出第三个量或列方程(垂径定理在圆中求线段长度是应用最多的一个定理) 5. 弧长与扇形面积l=180R n π S=3602R n π S=21lR l ,n ,R ,S 四者知二,可求其余 6. 圆锥侧面积与全面积圆锥侧S=πrl 圆锥全面积S=πrl+πr 2圆锥中高线h ,底面半径r ,母线l 三者构成一直角三角形,所以h 2+r 2=l 2圆锥当中的等量关系:圆锥侧面积S=圆锥展开后扇形S圆锥底面周长C=圆锥展开后扇形弧长l圆锥母线l=圆锥展开后扇形半径R∵圆锥底面周长C=圆锥展开后扇形弧长l ∴C=2πr=l=180ln π ∴n=360⨯lr圆锥的侧面展开图是扇形,该扇形的圆心角n= 360⨯lr7. 圆心角,圆周角,弧度的计算 圆心角m 弧度=2圆周角圆心角,圆周角,弧度三者中知其一,可得其余的量(用到的定理有圆心角定理,圆周角定理,垂径定理)8. 点与圆的位置关系 9. 点在弧上 【作图】10. 三角形外接圆的画法:三角形外接圆圆心是三角形三边中垂线的交点。
浙教版九年级数学上册第三章圆的基本性质教材分析教案“第章圆的基本性质”教材分析圆属于空间与图形这部分内容,在前面学生已经学习了直线形图形的有关的性质,会借助于变换、坐标、证明等手段去认识图形的性质,并在小学的基础上,学生已经积累了大量有关圆的经验,本章是在此基础上,对圆的概念及其有关的性质进行系统的梳理,从圆的概念形成,圆本身的性质,圆中的量之间的关系以及圆中有关量的计算等方3.13.23.33.43.5弧长及扇形的面积课时3.6圆锥的侧面积和全面积课时复习、评估课时,机动使用课时,合计课时一、教科书内容和课程教学目标⑴本章知识结构框图如下:“垂经定理”;借助于圆的旋转不变性去探索圆中弧、弦、弦心距、圆心角之间的关系.而且由对称性可以尝试用其他的方法来验证有关的结论.在探索圆周角和圆心角之间的关系时,主要是归结为同弧上圆周角与圆心角的关系(即圆周角定理),让学生形成分类讨论的思想.弧长、扇形的面积、圆锥的侧面积和全面积的计算公式不是直接给出的,而是让学生去进行探索、类比、归纳.弧长的公式是类比圆的周长公式而归纳得出,扇形的面积公式是类比圆的面积公式而得;圆锥的侧面积是通过其侧面展开图是一个扇形,而由扇形的计算公式而得出的.因此,“弧长及扇形的面积、圆锥的侧面积和全面积”这两节不仅仅要求学生会计算,而且应该使他们理解公式的意义,理解算法的意义.二、本章编写特点⑴体现数学来源于生活,展示丰富多彩的几何世界人们生活在三维空间中,丰富多彩的图形世界给“空间与图形”的学习提供了大量现实有趣的素材.其中包含了大量与圆有关的现实物体、现实问题等内容,反映数学在建筑、机械、艺术等方面的广泛应用,体现数学丰富的文化价值的内容,既可以很好地⑵的条件,它不仅仅是一个画圆的问题,而是使学生体会到在画圆中所体现的归纳的思想.②通过折纸,让学生探索圆的对称性,并在此基础上,让学生再通过折纸探索出圆的有关性质(垂径定理)等有关内容.③利用圆的旋转不变性探索圆中弧、弦、圆心角之间的关系.而在探索圆周角和圆心角之间的关系时,主要是归结为同弧上圆周角与圆心角的关系.④利用“合作学习”“做一做”等让学生自己探索有关的结论,比如通过学生自己合作,把圆锥沿母线剪开、铺平,并探索出圆锥侧面积和全面积的计算公式等等.整个设计意图,不仅在于引导学生观察和自觉分析生活现实和数学现实中的圆的现象,自觉总结圆的有关性质并自觉地应用到现实之中,逐步形成正确的数学观,并通过圆进一步丰富学生的数学活动经验和体验,在学习中有意识地培养学生积极的情感、态度,认识数学丰富的人文价值,促进观察、分析、归纳、概括等一般能力和审美意识的发展.从而进一步培养学生探究习惯、把握和研究“空间与图形”的水平.⑶转换学习方式,强调学生的动手操作和主动参与学习方式的转变是课程改革的一个重要目标,与其他数学内容相比,“空间与图方式”衔接前两个学段,就要深入了解前面两个学段数学中“空间与图形”的内容、要求,了解它们与这一部分内容的联系与区别.⑵在教学中要注意如下几点:①要使学生从事观察、测量、折叠、平移、旋转、推理等活动,帮助他们有意识地积累活动经验,获得成功的体验.教学中,应鼓励学生动手、动口、动脑,并进行同伴之间的合作交流.②充分利用现实生活和数学中的素材,使学生探索与圆有关的概念和性质.尽可能地设计具有挑战性的情景,激发学生求知、探索的欲望.③本章的一个特点是由圆的旋转不变性、轴对称性导出圆的有关性质(如圆心角定理、垂径定理等),体现了利用运动观点来研究图形的思想和方法.也让学生通过本章的学习,体验用运动观点来研究图形的思想和方法.因此,在圆的对称性、圆周角与圆心角的关系等内容中,要有意识地满足学生多样化的学习要求.④在观察、探究和推理活动中,使学生有意识地归纳数学思想方法,发展学生的有条理地思考,并能清晰地表达自己的发现.教学中,教师一方面应充分运用好课本已提⑤⑥⑦)。
数学是一门非常重要的学科,在我们日常生活中处处可见它的身影,我们需要通过不断学习来不断提高自己的数学技能。
在九年级数学上册中,圆的基本性质和应用是一项非常重要的学科内容。
本文将为大家详细介绍深入浅出的新人教版九年级数学上册教案:圆的基本性质和应用。
一、教学目标1. 熟练掌握圆的定义和性质,能够认识圆的元素和如何确定圆;2. 掌握与圆有关的基本术语,例如圆心、半径等,并能够用这些术语来描述圆。
3. 能够运用圆的性质,解决各种实际问题二、教学内容1. 圆的基本定义和性质(1)定义:圆是由平面上所有与定点距离相等的点组成的图形,定点叫做圆心,定长叫做半径。
(2)性质:① 圆上任意两点之间的距离等于它们到圆心的距离。
② 直径是圆上的最长线段,过圆心,并把圆分成相等的两部分。
③ 角度方向的度量:弧度制。
一周的弧度数是2π弧度。
2. 圆的基本术语(1)圆心:圆的中心点。
(2)半径:定点到圆上任意点的距离。
(3)直径:圆上任意两点的距离。
(4)弧长:弧上的线段的长度。
(5)圆周角:圆心所在的角。
(6)切线:在圆点上的与圆相切的直线。
三、教学方法教授圆的相关知识时,可以使用多种教学方法来帮助学生更好地掌握所学内容。
以下是一些值得推荐的教学方法:1. 讲解课件:讲解课件可以让学生更好地了解圆的相关知识,并通过图片、图表等形式来加强学生的理解和记忆。
2. 案例教学:可以使用实际问题或练习题,让学生运用所学知识解决问题或练习题。
3. 组合教学:组合教学可以让学生通过合作学习,互相解决难点,在彼此的帮助中共同学习,共同进步。
四、教学重点和难点本章教学重点为:1. 熟练掌握圆的定义和性质。
2. 掌握与圆相关的基本术语。
3. 能够运用圆的性质,解决各种实际问题。
本章教学难点为:1. 对于圆的定义和性质需要适当的理解和记忆,切不可混淆。
2. 掌握与圆相关的基本术语。
3. 能够灵活运用圆的相关知识解决实际问题。
五、教学设计在教学过程中,我们可以通过以下教学设计来提高学生的学习效率:1. 利用多媒体和图形素材,生动形象地显示出圆的定义、性质以及相关术语的内涵。
浙教版数学九年级上册3.1《圆》教案2一. 教材分析《圆》是浙教版数学九年级上册3.1节的内容,本节课主要让学生掌握圆的定义、圆心和半径的概念,以及圆的性质。
通过学习,学生能够理解圆的基本特征,并能运用圆的性质解决实际问题。
二. 学情分析九年级的学生已经具备了一定的几何知识,对图形的认识有一定的基础。
但是,对于圆这一概念,学生可能在生活中有所接触,但对其严谨的数学定义和性质可能还不够清晰。
因此,在教学过程中,需要注重引导学生从实际生活中抽象出圆的数学定义,并通过实例让学生感受圆的性质。
三. 教学目标1.知识与技能:理解圆的定义,掌握圆心和半径的概念,了解圆的性质,并能运用圆的性质解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的抽象思维能力和解决实际问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学与生活的紧密联系。
四. 教学重难点1.圆的定义及其性质2.圆心和半径的概念3.运用圆的性质解决实际问题五. 教学方法1.情境教学法:通过生活实例引入圆的概念,让学生感受圆的存在。
2.启发式教学法:引导学生观察、思考、交流,发现圆的性质。
3.实践操作法:让学生动手操作,加深对圆的理解。
六. 教学准备1.教学课件:制作课件,展示圆的图片、实例和动画。
2.教学素材:准备一些圆形的物品,如硬币、圆桌等。
3.教学工具:准备黑板、粉笔、直尺、圆规等。
七. 教学过程导入(5分钟)1.展示一些圆形的物品,如硬币、圆桌等,让学生观察并说出它们的共同特点。
2.引导学生思考:如何用数学语言来定义圆?呈现(10分钟)1.介绍圆的定义:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆。
2.讲解圆心和半径的概念:圆心是圆的中心点,半径是圆心到圆上任意一点的距离。
3.展示圆的性质:圆是对称图形,直径所在的直线是圆的对称轴;圆周率π表示圆的周长与直径的比值。
人教版数学九年级上册24.1《圆(3)》教学设计一. 教材分析人教版数学九年级上册第24.1节《圆(3)》主要内容包括:圆的周长和圆的面积的计算。
这部分内容是中学数学中的重要知识,对于学生理解数学的几何图形,以及培养学生解决实际问题的能力具有重要意义。
教材通过引入圆的周长和面积的计算公式,使学生能够更好地理解圆的性质,为后续学习圆的其他性质和应用打下基础。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和公理体系有一定的了解。
但是,对于圆的周长和面积的计算,部分学生可能还存在着理解和应用上的困难。
因此,在教学过程中,需要针对学生的实际情况,进行有针对性的讲解和辅导,帮助学生克服学习中的困难。
三. 教学目标1.让学生掌握圆的周长和面积的计算公式。
2.培养学生运用圆的性质解决实际问题的能力。
3.提高学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.圆的周长和面积的计算公式的推导。
2.圆的周长和面积公式的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过探索和思考,得出圆的周长和面积的计算公式。
2.运用多媒体教学,直观展示圆的性质和计算过程,帮助学生更好地理解和掌握知识。
3.采用分组合作的学习方式,让学生在讨论和交流中,提高解决问题的能力。
六. 教学准备1.多媒体教学设备。
2.圆的相关教具。
3.练习题。
七. 教学过程1.导入(5分钟)通过复习平面几何的基本知识,如点、线、面的性质,引出圆的周长和面积的计算。
2.呈现(10分钟)利用多媒体展示圆的周长和面积的计算过程,引导学生思考如何推导出这两个公式。
3.操练(15分钟)学生分组讨论,每组尝试推导出圆的周长和面积的计算公式。
教师在旁边辅导,解答学生的疑问。
4.巩固(5分钟)学生独立完成教材上的相关练习题,教师及时批改,指出错误并讲解。
5.拓展(5分钟)利用圆的周长和面积公式,解决实际问题,如计算自行车轮胎的周长和面积,估算圆桌的面积等。
《圆的性质》教案一、教学目标1.知识与技能:掌握圆的基本性质,包括圆心角、弧、弦之间的关系,垂径定理及其推论,圆周角定理及其推论等。
2.过程与方法:通过观察、猜想、验证、推理等活动,培养学生的探究能力和逻辑思维能力。
3.情感态度与价值观:让学生感受数学的美,体验数学的价值,培养学生的合作精神和创新意识。
二、教学重难点1.教学重点:掌握圆的基本性质及其应用。
2.教学难点:垂径定理及其推论,圆周角定理及其推论的理解和应用。
三、教学方法采用启发式教学法、讨论式教学法和探究式教学法相结合的教学方法。
通过实例、问题、图片等直观材料,引导学生观察、猜想、验证、推理,从而得出结论。
同时,注重学生的参与和合作,让学生在讨论和探究中互相学习、互相帮助。
四、教具准备多媒体课件、圆规、直尺等。
五、教学过程(一)导入新课通过回顾圆的概念和性质,引出本节课的主题——圆的性质。
同时,展示一些与圆有关的图片或动画,激发学生的学习兴趣和探究欲望。
(二)学习新课1.圆心角、弧、弦之间的关系(1)通过观察、猜想、验证等活动,让学生自主探究圆心角、弧、弦之间的关系。
(2)通过实例进行讲解,让学生更好地理解圆心角、弧、弦之间的关系。
(3)通过练习进行巩固和提高。
2.垂径定理及其推论(1)通过观察、猜想、验证等活动,让学生自主探究垂径定理及其推论。
(2)通过实例进行讲解,让学生更好地理解垂径定理及其推论。
(3)通过练习进行巩固和提高。
3.圆周角定理及其推论(1)通过观察、猜想、验证等活动,让学生自主探究圆周角定理及其推论。
(2)通过实例进行讲解,让学生更好地理解圆周角定理及其推论。
(3)通过练习进行巩固和提高。
同时,强调圆周角定理的应用价值,例如在解决实际问题中的应用。
(三)巩固练习通过设计一些具有代表性的练习题,让学生进一步巩固和提高对圆的性质的理解和应用能力。
同时,注重学生的参与和合作,让学生在讨论和探究中互相学习、互相帮助。
(四)课堂小结通过回顾本节课所学内容,总结圆的性质及其应用,强调重点和难点。
人教版九年级上册《圆的有关性质》教案一、教学目标1.理解圆的相关术语,如圆心、半径、直径等;2.掌握圆的基本性质,如圆心角、半径垂直弦等;3.能够应用圆的相关性质解决问题;4.培养学生分析、解决问题的能力。
二、教学内容1.圆的定义和相关术语;2.圆心角、圆弧、弦和它们的关系;3.弧长、扇形的性质;4.正多边形内接于圆的性质。
三、教学重点1.圆的定义和相关术语;2.圆心角、圆弧、弦和它们的关系。
四、教学难点1.弧长、扇形的性质;2.正多边形内接于圆的性质。
五、教学方法1.演示法;2.实验法;3.课堂讨论法;4.问题解决法。
六、教学步骤1.引入(5分钟):通过介绍子午线和赤道的关系,向学生引出圆的定义。
同时,引导学生认识圆的相关术语,如圆心、半径、直径等。
2.示例(10分钟):通过投影仪展示一张圆的图片,向学生展示圆的形状及其相关量的表示方法。
引导学生找出其中的圆心、半径、直径等术语,并解释其中的数学意义。
3.理论(20分钟):讲解圆心角、圆弧、弦等概念及它们的关系。
通过具体示例演示如何求弦长、弧长、扇形的面积等。
4.实验(15分钟):让学生分成小组,在纸上绘制不同大小的圆,并探究圆的半径、直径、弦、圆心角、圆弧长度等相互关系。
通过实验,加深对圆的相关概念的认识。
5.讨论(15分钟):让学生就正多边形内接于圆的性质进行小组讨论。
教师引导学生思考为什么正三角形、正四边形等正多边形的顶点能够在一个圆上,如何求出正多边形的内角和,以及内接于圆的正多边形面积与圆周长的关系等问题。
6.总结(5分钟):小结本节课的知识点和要点。
引导学生再次回顾圆的定义和相关术语,圆心角、圆弧、弦等概念及它们的关系,并表扬本课表现优异的同学。
七、教学评估1.小组实验:学生用纸笔绘制圆,并找出其中的圆心、半径、直径、弦、圆心角、圆弧长度等,进行实验记录和探究。
2.课堂讨论:学生在小组内进行讨论,分享正多边形内接于圆的性质的理解和应用。
浙教版数学九年级上册3.1《圆》教学设计3一. 教材分析浙教版数学九年级上册3.1《圆》是本册教材中的重要内容,主要让学生掌握圆的定义、圆的性质、圆的方程等基本知识。
本节课的内容是在学生已经学习了平面几何的基础上进行学习的,对于学生来说,具有一定的挑战性。
教材通过实例引入圆的概念,引导学生探究圆的性质,并通过实际问题解决让学生感受圆的应用价值。
二. 学情分析九年级的学生已经具备了一定的几何知识,对于平面几何中的线段、角度等概念有一定的了解。
但是,对于圆的概念和性质,大部分学生可能是初次接触,需要通过实例和探究活动来理解和掌握。
另外,学生可能对于圆的方程感到陌生,需要通过具体的例子和操作来理解。
三. 教学目标1.理解圆的定义和性质,能够运用圆的知识解决实际问题。
2.掌握圆的方程,能够运用圆的方程解决几何问题。
3.培养学生的观察能力、操作能力和解决问题的能力。
四. 教学重难点1.圆的定义和性质的理解。
2.圆的方程的掌握和运用。
五. 教学方法1.实例引入:通过具体的实例引入圆的概念,让学生感受圆的存在和应用。
2.探究活动:学生进行小组探究,让学生通过自主学习、合作交流来理解和掌握圆的性质。
3.讲解示范:教师通过讲解和示范,让学生掌握圆的方程的推导和运用。
4.练习巩固:通过布置相关的练习题,让学生巩固所学知识,并及时给予反馈和指导。
六. 教学准备1.教学课件:制作相关的教学课件,展示圆的性质和方程的推导过程。
2.练习题:准备相关的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过具体的实例,如车轮、地球等,引入圆的概念,引导学生思考圆的特点和应用。
2.呈现(10分钟)展示圆的性质,如圆的直径、半径、圆心等,并通过实物或图片进行说明。
引导学生观察和理解圆的性质。
3.操练(15分钟)学生进行小组探究,让学生通过自主学习、合作交流来理解和掌握圆的性质。
可以给出一些实际问题,让学生运用圆的性质来解决。
九年级数学第三章《圆》的教材分析一、教学内容1.本单元数学的主要内容.(1)圆有关的概念:垂直于弦的直径,弧、弦、圆心角、圆周角.(2)与圆有关的位置关系:点和圆的位置关系,直线与圆的位置关系,•圆和圆的位置关系.(3)正多边形和圆.(4)弧长和扇形面积:弧长和扇形面积,圆锥的侧面积和全面积.2.本单元在教材中的地位与作用.学生在学习本章之前,已通过折叠、对称、平移旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验.本章是在学习了这些直线型图形的有关性质的基础上,进一步来探索一种特殊的曲线──圆的有关性质.通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、归纳的数学思想起着良好的铺垫作用.本章的学习是高中的数学学习,尤其是圆锥曲线的学习的基础性工程.二、教学目标1.知识与技能(1)了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、•弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理.(2)探索并理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念,•探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线.(3)进一步认识和理解正多边形和圆的关系和正多边的有关计算.(4)熟练掌握弧长和扇形面积公式及其它们的应用;•理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算.2.过程与方法(1)积极引导学生从事观察、测量、平移、旋转、推理证明等活动.•了解概念,理解等量关系,掌握定理及公式.(2)在教学过程中,鼓励学生动手、动口、动脑,并进行同伴之间的交流.(3)在探索圆周角和圆心角之间的关系的过程中,•让学生形成分类讨论的数学思想和归纳的数学思想.(4)通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,•使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力.(5)探索弧长、扇形的面积、•圆锥的侧面积和全面积的计算公式并理解公式的意义、理解算法的意义.3.情感、态度与价值观经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望.三、教学重点1.平分弦(不是直径)的直径垂直于弦,•并且平分弦所对的两条弧及其运用.2.在同圆或等圆中,相等的圆心角所对的弧相等,•所对的弦也相等及其运用.3.在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半及其运用.4.半圆(或直径)所对的圆周角是直角,90•°的圆周角所对的弦是直径及其运用.5.不在同一直线上的三个点确定一个圆.6.直线L 和⊙O 相交⇔d<r ;直线L 和圆相切⇔d=r ;直线L 和⊙O 相离⇔d>r 及其运用.7.圆的切线垂直于过切点的半径及其运用.8.•经过半径的外端并且垂直于这条半径的直线是圆的切线并利用它解决一些具体问题.9.从圆外一点可以引圆的两条切线,它们的切线长相等,•这一点和圆心的连线平分两条切线的夹角及其运用.10.两圆的位置关系:d 与r 1和r 2之间的关系:外离⇔d>r 1+r 2;外切⇔d=r 1+r 2;相交⇔│r 2-r 1│<d<r 1+r 2;内切⇔d=│r 1-r 2│;内含⇔d<│r 2-r 1│.11.正多边形和圆中的半径R 、边心距r 、中心角θ之间的等量关系并应用这个等量关系解决具体题目.12.n °的圆心角所对的弧长为L=180n R π,n °的圆心角的扇形面积是S 扇形=2360n R π及其运用这两个公式进行计算. 13.圆锥的侧面积和全面积的计算.四、教学难点1.垂径定理的探索与推导及利用它解决一些实际问题.2.弧、弦、圆心有的之间互推的有关定理的探索与推导,•并运用它解决一些实际问题.3.有关圆周角的定理的探索及推导及其它的运用.4.点与圆的位置关系的应用.5.三点确定一个圆的探索及应用.6.直线和圆的位置关系的判定及其应用.7.切线的判定定理与性质定理的运用.8.切线长定理的探索与运用.9.圆和圆的位置关系的判定及其运用.10.正多边形和圆中的半径R 、边心距r 、中心角θ的关系的应用.11.n 的圆心角所对的弧长L=180n R π及S 扇形=2360n R π的公式的应用. 12.圆锥侧面展开图的理解。
“第3章圆的基本性质”教材分析
圆属于空间与图形这部分内容,在前面学生已经学习了直线形图形的有关的性质,会借助于变换、坐标、证明等手段去认识图形的性质,并在小学的基础上,学生已经积累了大量有关圆的经验,本章是在此基础上,对圆的概念及其有关的性质进行系统的梳理,从圆的概念形成,圆本身的性质,圆中的量之间的关系以及圆中有关量的计算等方面,加强对圆的认识.
圆是一种特殊的图形,它对于培养学生的数学能力,形成数学的思想方法具有重要的价值.由于圆既是中心对称图形又是轴对称图形,学生可以通过多种方式来认识它,这样有助于培养学生的数学能力.同时,圆的有关性质的探索是通过多种方法进行的,这样有助于学生形成基本的数学思想和方法.这些基本的数学思想方法有:
⑴对称思想:圆的轴对称性、中心对称性.
⑵推理思想:由对称性及其他方法来验证圆的有关结论.
⑶分类归纳思想:将圆周角和圆心角之间的关系归结为同弧上圆周角与圆心角的关系,让学生形成分类讨论的思想.
⑷算法思想:弧长、扇形的面积、圆锥的侧面积和全面积的计算公式不是直接给出的,而是让学生去进行探索、类比、归纳.不仅仅要求学生会计算,而且应该理解公式及其算法的意义.
本章教学时间约需15课时,具体安排如下:
3.1圆2课时
3.2圆的对称性 2课时
3.3圆心角 2课时
3.4圆周角 2课时
3.5弧长及扇形的面积 2课时
3.6圆锥的侧面积和全面积 1课时
复习、评估3课时,机动使用1课时,
合计15课时
一、教科书内容和课程教学目标
⑴本章知识结构框图如下:
①通过日常生活中的实例,让学生感受圆是生活中大量存在的图形.
②理解圆及其有关概念,了解弧、弦、圆心角的关系,探索并了解点与圆的位置关系.
③探索如何过一点、两点和不在同一直线上的三点作圆.
④使学生经历探索圆的性质,了解圆周角与圆心角的关系、直径所对圆周角的特征.
⑤认识圆的轴对称性和中心对称性.
⑥了解三角形的外心.
⑦会计算弧长及扇形的面积,会计算圆锥的侧面积和全面积.
⑶本章教材分析
本章主要学习圆的定义、弦、弧、弦心距、圆心角、圆周角、扇形和三角形的外接圆等有关概念.
在“圆”这一节,主要是让学生通过圆的形成归纳出圆的定义.虽然在小学阶段,学生已经具有了圆的有关的知识,但还没有抽象出“平面上到定点的距离等于定长的所有点组成的图形叫做圆”的概念.通过探索如何过一点、两点和不在同一条直线上的三点作圆,使学生认识到“不在同一条直线上的三个点确定一个圆”这一确定圆的条件,它不仅仅是一个画圆的问题,而是使学生体会到在画圆中所体现的归纳的思想.另外,也使学生初步了解三角形的外心等有关知识.本节主要使学生体会圆的概念的形成过程.圆是一种特殊的图形,它既是中心对称图形又是轴对称图形,这一点在前面学习对称性时,学生已经有所了解.本章安排圆的对称性主要是借助于圆的轴对称性,去探索“垂经定理”;借助于圆的旋转不变性去探索圆中弧、弦、弦心距、圆心角之间的关系.而且由对称性可以尝试用其他的方法来验证有关的结论.在探索圆周角和圆心角之间的关系时,主要是归结为同弧上圆周角与圆心角的关系(即圆周角定理),让学生形成分类讨论的思想.
弧长、扇形的面积、圆锥的侧面积和全面积的计算公式不是直接给出的,而是让学生去进行探索、类比、归纳.弧长的公式是类比圆的周长公式而归纳得出,扇形的面积公式是类比圆的面积公式而得;圆锥的侧面积是通过其侧面展开图是一个扇形,而由扇形的计算公式而得出的.因此,“弧长及扇形的面积、圆锥的侧面积和全面积”这两节不仅仅要求学生会计算,而且应该使他们理解公式的意义,理解算法的意义.
二、本章编写特点
⑴体现数学来源于生活,展示丰富多彩的几何世界
人们生活在三维空间中,丰富多彩的图形世界给“空间与图形”的学习提供了大量现
实有趣的素材.其中包含了大量与圆有关的现实物体、现实问题等内容,反映数学在建筑、机械、艺术等方面的广泛应用,体现数学丰富的文化价值的内容,既可以很好地体现圆作为联系数学与现实生活、科技发展的桥梁作用,也可以很好地呈现它丰富的数学内涵.在本章内容的呈现中,充分体现从生活中的立体图形到平面图形,立足学生已有的生活经验、初步的数学活动经历以及已经掌握的有关数学内容,分别从观察和分析生活中大量存在的圆入手,来探索一种特殊的曲线形——圆的有关性质.学生在已有的大量的空间与图形经验的基础上,通过折纸、对称、平移、旋转、推理等认识图形的性质.在本章设计中,在探索圆的垂径定理、弧、弦、圆心角的关系、圆周角和圆心角之间的关系时,充分利用多种方式来认识、验证有关圆的性质.
⑵从学生的已有知识和经验出发,引导学生探索发现圆的性质等知识,培养学生的探究习惯
本章在内容的编排上都力图提供生动有趣、便于学生活动、交流的问题情境,并通过深入观察、分析、探究等活动,进一步丰富学生对圆的正确理解和准确把握,形成有关对圆比较全面的认识.
《数学课程标准》(实验稿)对圆的性质的要求是:使学生经历探索圆的性质.即通过实例去探索,以达到理解的目的.比如,①通过探索如何过一点、两点和不在同一直线上的三点作圆,使学生认识到“不在同一条直线上的三个点确定一个圆”这一确定圆的条件,它不仅仅是一个画圆的问题,而是使学生体会到在画圆中所体现的归纳的思想.②通过折纸,让学生探索圆的对称性,并在此基础上,让学生再通过折纸探索出圆的有关性质(垂径定理)等有关内容.③利用圆的旋转不变性探索圆中弧、弦、圆心角之间的关系.而在探索圆周角和圆心角之间的关系时,主要是归结为同弧上圆周角与圆心角的关系.④利用“合作学习”“做一做”等让学生自己探索有关的结论,比如通过学生自己合作,把圆锥沿母线剪开、铺平,并探索出圆锥侧面积和全面积的计算公式等等.
整个设计意图,不仅在于引导学生观察和自觉分析生活现实和数学现实中的圆的现象,自觉总结圆的有关性质并自觉地应用到现实之中,逐步形成正确的数学观,并通过圆进一步丰富学生的数学活动经验和体验,在学习中有意识地培养学生积极的情感、态度,认识数学丰富的人文价值,促进观察、分析、归纳、概括等一般能力和审美意识的发展.从而进一步培养学生探究习惯、把握和研究“空间与图形”的水平.
⑶转换学习方式,强调学生的动手操作和主动参与
学习方式的转变是课程改革的一个重要目标,与其他数学内容相比,“空间与图形”
的教学更容易激起学生学习数学的热情.在本章的编写中,注意从学生已有的生活经验和已有的知识出发,给学生提供“现实的、有意义的、富有挑战性的”学习材料,提供充分的数学活动和交流的机会,引导他们在“做数学”的活动中,在自主探索的过程中获得知识和技能,掌握基本的数学思想方法.
《数学课程标准》中指出:“动手实践、自主探索与合作交流是学生学习数学的重要方式”.本章非常重视向学生提供充分从事数学活动的机会.课本通过“合作学习”“探究活动”“想一想”“做一做”等栏目中安排了大量的数学活动题材,其中一些重要的数学概念及数学方法,都是需要学生通过数学活动获得.例如,圆的定义、圆的对称性、圆锥的侧面积等等.学生在亲身体验和探索中认识数学解决问题,理解和掌握数学知识和方法.并通过与他人的合作,学会交流思想,学会表达自己的观点,学会质疑,学会倾听,学会尊重他人,学会评价信息.这种“过程”会改变数学学习的过程和结果,对促进学生的发展具有非常重要的意义.另外,通过这些“探究点”,它可以帮助学生认识图形,丰富直观,验证学生的空间想象能力.
三、教学建议
⑴注意与前两个学段的衔接
这一部分知识与前两个学段联系密切,大多数图形、概念在前两个学段都接触过,要衔接前两个学段,就要深入了解前面两个学段数学中“空间与图形”的内容、要求,了解它们与这一部分内容的联系与区别.
⑵在教学中要注意如下几点:
①要使学生从事观察、测量、折叠、平移、旋转、推理等活动,帮助他们有意识地积累活动经验,获得成功的体验.教学中,应鼓励学生动手、动口、动脑,并进行同伴之间的合作交流.
②充分利用现实生活和数学中的素材,使学生探索与圆有关的概念和性质.尽可能地设计具有挑战性的情景,激发学生求知、探索的欲望.
③本章的一个特点是由圆的旋转不变性、轴对称性导出圆的有关性质(如圆心角定理、垂径定理等),体现了利用运动观点来研究图形的思想和方法.也让学生通过本章的学习,体验用运动观点来研究图形的思想和方法.因此,在圆的对称性、圆周角与圆心角的关系等内容中,要有意识地满足学生多样化的学习要求.
④在观察、探究和推理活动中,使学生有意识地归纳数学思想方法,发展学生的有条理地思考,并能清晰地表达自己的发现.教学中,教师一方面应充分运用好课本已提供
的丰富的素材,另一方面也应该选取一些学生身边的、熟悉的材料,丰富教学内容,以帮助学生对圆的概念的认识和圆的性质的理解.
⑤从学习方式上,通过合作学习、探究活动这种形式,促进学生相互交流,从而最大限度获得数学能力的培养和体验数学思想.教学中应积极鼓励学生,当学生在探究过程中遇到困难时,应给予诱导启发,或给予必要的阶梯.让学生在这过程中体验如何学会学习,千万不能包办代替,过早给学生答案.应鼓励合作学习,从多角度思考,采用多种解决问题的办法,创造积极合作、讨论氛围.
⑥评价时要关注学生思考方式的多样化,注重对学生观察、操作、探索圆的性质、推理等活动进行评价,包括学生在活动中的主动性、参与程度、与同学合作与交流的意识、思考与表达的条理性等;比如,对有关圆的概念的评价应侧重于通过实例是否理解概念;对于圆的有关性质的评价应看学生是否借助于具体的思考方法去理解.对与圆有关的计算的评价,着重看学生是否懂得了基本的算理.
⑦在日常教学中,不仅仅关注学生是否计算或推出某个结论,而且应该关注学生在各种数学活动中的情感和态度,特别是学生在小组活动中的表现.对于学生在探索过程中出现的新的方法、新的思想,教师要及时帮助学生解决问题过程中的创意.
(徐鸿斌)。