空气-水换热器换热性能的测试实验
- 格式:doc
- 大小:97.00 KB
- 文档页数:3
实验五 套管换热器传热实验实验学时: 4 实验类型:综合实验要求:必修 一、实验目的通过本实验的学习,使学生了解套管换热器的结构和操作方法,比较简单内管与强化内管的差异。
二、实验内容1、测定空气与水蒸汽经套管换热器间壁传热时的总传热系数。
2、测定空气在圆形光滑管中作湍流流动时的对流传热准数关联式。
3、测定空气在插入螺旋线圈的强化管中作湍流流动时的对流传热准数关联式。
4、通过对本换热器的实验研究,掌握对流传热系数i α的测定方法。
三、实验原理、方法和手段两流体间壁传热时的传热速率方程为 m t KA Q ∆= (1)式中,传热速率Q 可由管内、外任一侧流体热焓值的变化来计算,空气流量由孔板与压力传感器及数字显示仪表组成的空气流量计来测定。
流量大小按下式计算:10012t t PA C V ρ∆⨯⨯⨯=其中:0C —孔板流量计孔流系数,0.65;0A —孔的面积,2m ;(可由孔径计算,孔径m d 0165.00=) P ∆—孔板两端压差,kPa ;1t ρ—空气入口温度(即流量计处温度)下的密度,3/m kg 。
实验条件下的空气流量V (h m /3)需按下式计算:11273273t t V V t ++⨯=其中:t —换热管内平均温度,℃;1t —传热内管空气进口(即流量计处)温度,℃。
测量空气进出套管换热器的温度t ( ℃ )均由铂电阻温度计测量,可由数字显示仪表直接读出。
管外壁面平均温度W t ( ℃ )由数字温度计测出,热电偶为铜─康铜。
换热器传热面积由实验装置确定,可由(1)式计算总传热系数。
流体无相变强制湍流经圆形直管与管壁稳定对流传热时,对流传热准数关联式的函数关系为:),,(d l P R f Nu r e =对于空气,在实验范围内,r P 准数基本上为一常数;当管长与管径的比值大于50 时,其值对Nu 准数的影响很小,故Nu 准数仅为e R 准数的函数,因此上述函数关系一般可以处理成:me R B Nu ⋅=式中,B 和 m 为待定常数。
教学实验2006空气对流换热实验台指导书目录1. 空气横掠圆管换热实验台实验指导书 (1)2. 翅片管束管外放热和阻力实验指导书 (6)3. 空气横掠平板换热实验台实验指导书 (17)4. 小型气水换热器实验台实验指导书 (19)5. 空气横掠可旋转圆管换热实验台实验指导书 (20)1.空气横掠圆管换热实验台实验指导书一、实验目的1,了解实验装置,熟悉空气流速及管壁温度的测量的方法,掌握测量仪器仪表的使用方法2,测定空气横掠单管平均表面传热系数,并将结果整理成准则关系式.3,掌握强制对流换热实验数据的处理及误差分析方法二、实验原理与实验装置根据对流换热的量纲分析,稳态强制对流换热规律可以用下列准则关系式来表示:经验表明上式可以表示成下列形式:(1)对于空气,当温度变化不大时,普朗特书Pr变化很小,可以作为常数处理.故(1)式可表示为(2)本实验的任务就是确定之值。
因此就需要测定数中所包含的各个物理量。
其中管径d为已知量,物性λ、,按定性温度查表确定.表面传热系数不能直接测出,必须通过测加热量,壁温及流体平均温度,根据(3)式来计算:(3)其中:电加热功率:单管外表面积试验装置结构及工作原理如图一所示:图1实验风洞系统简图1.风机支架2.风机3.风量调节手轮4.过渡管5.测压管6.测速段7. 过渡管8.测压管9.实验管段10. 测压管11.吸入管12.支架13. 加热元件14.控制盘三、实验步骤1.将皮托管与差压传感器连接好、校正零点;连接热电偶,再将加热器、功率表以及调压变压器的线路连接好。
经指导老师检查确认无误后,准备启动风机。
2.在关闭风机出口挡板的条件下启动风机,让风机空载启动,然后根据需要开启出口挡板,调节风量。
3.在调压变压器指针位于零位时,合电闸加热实验管,根据需要调整变压器,使其在某一热负荷下加热,并保持不变,使壁温达到稳定(壁温热电偶的温度在三分钟内保持读数不变,即可认为已达到稳定状态)后,开始记录热电偶温度、电功率、空气进出口温度。
【实验报告1-4】换热器换热性能实验实验目的:1、通过实验,了解不同传热面积、传热流量等因素对换热器的换热性能的影响;2、掌握换热器的使用方法和注意事项;3、了解热力制冷冷水机组换热器的工作原理及性能特点。
实验原理:热力制冷冷水机组换热器是将制冷剂从低温区域吸收热量后,通过空气或水对流将热量传递到环境中,从而实现制冷的过程。
其中,传递热量的部分即为换热器。
换热器的换热性能主要由以下因素影响:1、传热面积:换热器传热面积越大,换热器的传热性能越好;2、传热流量:换热器传热流量越大,换热器的传热性能越好;3、换热介质:换热介质的热传导率越大,换热器的传热性能越好;4、壳体结构:壳体结构越紧密,换热器的传热性能越好;5、流体流速:流体流速越大,换热器的传热性能越好。
实验设备:本实验采用的设备有:1、热力制冷冷水机组换热器;2、流量计、压力表等实验配套设备;3、水、空气等流体介质。
实验步骤:1、按照实验要求设置流量和传热面积;2、开启冷水机组和换热器,保证介质在流动状态;3、测量水、空气介质的压力和流量,记录数据;4、根据记录的数据,计算换热器的传热效率。
实验数据处理:测量完成后,需要对收集到的数据进行处理。
首先,计算出实验中所涉及的有关数据,如传热系数、传热效率等。
其次,对实验结果进行分析,找出影响换热器换热性能的因素,并进行总结。
实验注意事项:1、在使用换热器时,需要事先清洗干净;2、在设定流量和传热面积时,应注意范围不能超过实验设备的最大限度;3、实验过程中,应注意观察实验设备是否正常运行,防止出现故障;4、测量时应精确记录实验数据,避免误差;5、实验完成后,应及时清理实验设备并做好记录。
实验结论:通过实验,我们得到了不同传热面积、传热流量等因素对换热器换热性能的影响。
在实验中,我们发现流量和传热面积是影响换热效率的两个重要因素,其对于换热效率产生的影响较大。
同时,我们也了解了热力制冷冷水机组换热器的工作原理及性能特点。
传热实验一、实验目的1、熟悉套管换热器、列管换热器的结构及操作方法;2、通过对套管换热器空气-水蒸汽传热性能的实验研究,掌握对流传热系数的测定方法;3、确定套管传热管强化前后内管中空气的强制湍流换热关联式,并比较强化传热前后的效果;4、通过对列管换热器传热性能实验研究,掌握总传热系数K 的测定方法,并对变换面积前后换热性能进行比较。
二、实验原理1、普通套管换热器传热系数测定及准数关联式的确定:(1)对流传热系数i α的测定:对流传热系数i α可以根据牛顿冷却定律,通过实验来测定。
i i i mQ S t α=⨯⨯∆(1)i i m iQ t S α=∆⨯(2)式中:i α—管内流体对流传热系数,W/(m 2·℃);i Q —管内传热速率,W ;i S —管内换热面积,m 2;m t ∆—壁面与主流体间的温度差,℃。
平均温度差由下式确定:m w t t t∆=-(3)式中:t —冷流体的入口、出口平均温度,℃;w t —壁面平均温度,℃。
因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,w t 用来表示,由于管外使用蒸汽,所以w t 近似等于热流体的平均温度。
管内换热面积:i i iS d L π=(4)式中:i d —内管管内径,m ;i L —传热管测量段的实际长度,m 。
由热量衡算式:21()i i pi i i Q W c t t =-(5)其中质量流量由下式求得:3600i i i V W ρ=(6)式中:i V —冷流体在套管内的平均体积流量,m 3/h ;pi c —冷流体的定压比热,kJ/(kg·℃);i ρ—冷流体的密度,kg/m 3;pi c 和i ρ可根据定性温度查得,122i i m t t t +=为m 冷流体进出口平均温度;1i t 、2i t 、w t 、i V 可采取一定的测量手段得到。
(2)对流传热系数准数关联式的实验确定:流体在管内作强制湍流,被加热状态,准数关联式的形式为:m ni i i Nu ARe Pr =(7)其中:i i i i d Nu αλ=,i i i i i u d Re ρμ=,pi i i ic Pr μλ=。
翅片管式气-液换热器变工况下传热特性研究苑中显;刘忠秋;吴波【摘要】采用FLUENT软件对高温空气-混合硝酸盐在翅片管式换热器中的换热进行了三维数值模拟,研究其换热与流动特性.模拟主要考察对于不同压力工况下及不同Re数的高温空气,换热器的换热及阻力特性.计算结果表明:随着空气侧流速及空气压力的增加,空气侧表面换热系数都有显著增加,同时流动阻力也有所增加.低压力工况时的换热及阻力特性曲线几乎随空气流速呈线性相关,高压力工况流动和换热呈非线性趋势.将数值模拟结果与实验结果进行了对比,对数值模拟结果的准确性进行了验证,并得出了流体物性对换热器性能的影响,给出了翅片管换热器在不同条件下的换热准则方程式.【期刊名称】《制冷与空调(四川)》【年(卷),期】2018(032)005【总页数】7页(P476-482)【关键词】翅片管式换热器;数值模拟;高温空气;混合硝酸盐;压力工况【作者】苑中显;刘忠秋;吴波【作者单位】北京工业大学环能学院北京 100124;北京工业大学环能学院北京100124;北京工业大学环能学院北京 100124【正文语种】中文【中图分类】TB657.5;TQ018当前各电厂的发电装机容量与电网容量都是按照最大需求建设,随电网峰谷差日趋增大,必然导致非用电高峰时发电机组的停机或低负荷运行及电网容量浪费。
2012年全国常规燃煤发电机组发电总负荷系数仅为52.1%[1],电网负荷利用系数也小于55%[2]。
储能[3]可大幅提高火电机组实际运行效率,增强电网输电能力。
超临界压缩空气储能系统利用低谷电,将空气压缩并储存在储气罐中,使电能转化为空气的内能存储起来,它解决了常规压缩空气储能系统面临的依靠化石燃料、储能密度低、依靠大型储气室、响应速度慢等问题[4]。
在超临界压缩空气过程中,空气的温度会随之升高,这部分热量如何被有效蓄集具有重要的研究意义[5]。
本文设计出一种翅片管式气-液换热器,可把这部分热量储存在熔融盐中[6]。
传热系数测定的实验(水蒸气-空气体系)一.实验目的1.了解管套式换热器的结构2.观察水蒸气在水平换热管外壁上的冷凝现象,判断冷凝类型3.测定水蒸气—空气在换热器中的总传热系数K和对流给热系数a,加深对其概念和影响因素的理解。
4.学习线性回归法确定关联式Nu=ARe m pr0.4中常数A,m的值5.掌握热电偶测量温度的原理和方法二.实验原理1.总传热系数的测定在套管换热器中,环隙通以水蒸气,内管通冷空气,水蒸气冷凝放出热量加热空气。
当冷热液体在换热器内进行稳定传热时,该换热器同时满足热量衡算和传热速率方程,若忽略热损失,公式如下:Q=KAΔt m=q m c p(t2-t1)三.实验内容1.衡量水蒸气-空气通过换热器的总传热系数K对实验数据进行线性回归,求出准数方程Nu=ARe m pr0.4中的常数A,M的值2.通过计算分析影响总传热系数的因素四.实验装置来自蒸汽发生器的水蒸气进入不锈钢套管换热器,与来自风机的空气进行热交换,冷凝水通过管道排入地沟,冷空气经转自流量计进入套管换热器内管热交换后装置。
实验流程如图:五.实验步骤1.检查蒸汽发生器的仪表和水位是否正常。
2.打开换热器的总电源开关,打开仪表电源开关,观察仪器读数是否正常。
3.当蒸汽压稳定后,排除蒸汽发生器到实验装置之间管道中的冷凝水,防止夹带冷凝水的蒸汽损坏压力表及压力变送器。
4.打开换热器内的不凝性气体排除阀。
5.刚开始通入蒸汽时,要仔细调节蒸气进口阀的开度,让蒸气徐徐流入换热器中,逐渐加热,由冷态转变为热态,不得少于10MIN。
6.恒定空气流量,改变蒸气压,测量4组实验数据。
改变客气流量,恒定蒸汽压,测量4组数据7.实验完毕,清理实验场地。
传热系数测定的实验(水-热空气体系)一.实验目的1.了解列管式换热器的结构。
2.测定水-热空气在换热器中的总传热系数K和对流给热系数α加深对其概念影响因素的理解。
3.学习线性回归法确定关联式Nu=ARe m pr0.4中常数A,m的值4.掌握热电偶测量温度的原理和方法二.实验原理在列管式换热器中,壳程通冷水,管程通热空气,热空气冷却放热加热水。
浙江科技学院实验报告化工原理课程名称:学院:专业班:姓名:学号:同组人员:实验时间:年月日指导教师:一、实验课程名称:化工原理二、实验项目名称:空气-蒸汽对流给热系数测定 三、实验目的和要求:1、 了解间壁式传热元件,掌握给热系数测定的实验方法。
2、 掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。
3、 学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。
四、实验内容和原理实验内容:测定不同空气流量下进出口端的相关温度,计算α,关联出相关系数。
实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。
如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
达到传热稳定时,有()()()()m m W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα(4-1)热流体与固体壁面的对数平均温差可由式(4—2)计算,()()()22112211lnW W W W m W T T T T T T T T T T -----=- (4-2)式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。
固体壁面与冷流体的对数平均温差可由式(4—3)计算,()()()22112211lnt t t t t t t t t t W W W W m W -----=- (4-3)式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。
热、冷流体间的对数平均温差可由式(4—4)计算,Tt图4-1间壁式传热过程示意图()()12211221m t T t T ln t T t T t -----=∆ (4-4)当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数,()()MW p t t A t t c m --=212222α (4-5)实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2,l d A 22π=;和冷流体的质量流量,即可计算α2。
汽车散热器热器关内外传热特性的分析研究指导老师:徐之平学生:代国岭学号:102270028班级:工程热物理汽车散热器热器关内外传热特性的分析研究摘要本实验对南方英特空调有限公司生产的用于马自达2型车的散热器进行了实验计算,分析该散热器在一定进口温度条件下的标准散热量、换热系数、工质出口温度、工质流量、热平衡误差、对数平均温差、阻力损失和效能等等。
通过一系列的分析计算,可以知道散热器的各种性能,这样才能将散热器安装到对应的车型上,保证散热性能良好。
关键词:对流换热、传热特性、换热器近年来我国的汽车生产量在持续增长,汽车的小型化及小排量使得对汽车的散热要求越来越高,散热水箱体积越来越小的同时散热性能必须达到规定的散热要求,并且阻力损失要小(不能无限制的提工质的流速),散热器结构紧凑,散热管和散热翅带布局要合理,散热管采用错排的排列方式,散热管和散热翅带采用钎焊接以减小接触热阻,增大气侧散热面积和扰动,减小热边界层的厚度增大气侧换热系数,使散热器的换热性能大幅度增加。
一、实验原理:实验所用的马自达二型车用散热水箱如下图一示,其几何尺寸见表,实验时,热水在关内流动,空气横掠翅片管束,两种流体以逆流的方式进行热量的传递。
试验主要分为两个部分:一是当管内水的流量为定值时,变化横掠管束的空气流量;二是管外横掠翅片管束的空气流量为定值,变化管内水的流量。
最后分别对这两种情况进行传热性能和阻力特性的分析研究。
全部试验数据均在稳态工况时由计算机采集,并将最终结果在打印机上输出。
对所测得实验数据进行分析之后,利用散热器中水散失的热量等于空气带走的热量,就可以分析散热器的各种散热性能和效率。
图一二、实验仪器2.1散热器水箱及相关器材的尺寸2.2三、热力计算1、计算水侧出口温度:w w1w2T -T T ∆= (1)2、水侧放热量计算:)t t (CpG w2w1ww -⨯=Φw (2)其中Cpw 采取线性插值的方法求得。
空气-水换热器换热性能的测试实验
一、实验目的
1.本实验属于设计型实验,要求学生根据实验目标,给定实验设备,对整个实验方案、实验过程等进行全部实验设计;
2.熟悉气-水换热器性能的测试方法;
3.掌握气-水翅片管、光管换热器,在顺排、叉排、逆流、顺流各种情况下换热器的结构特点及其性能的差别。
二、实验装置简介(参见实验装置示意图)
图一、实验装置示意图
1.循环水泵
2.转子流量计
3.过冷器
4.换热器
5.实验台支架
6.吸入段
7.
整流栅8.加热前空气温度9. 换热器前静压10.U形差压计11. 换热器后静压12.加热后空气温度13.流量测试段14笛形管15. 笛形管校正安装孔16.风量调节盘17.引风机18.风机支架19.倾斜管压力计20.控制测试仪表盘21.水箱
气-水换热器实验装置由水箱、电加热器、循环水泵、水流量测量、水温度控制调节阀、压差测量、阀门、换热器、风管、整流栅、热电偶测温装置、空气流量测量、空气阻力测量、.风量调节盘、引风机等组成。
换热器型式有翅片管、光管两种,有顺流、逆流两种流动方式、布置方式有顺排、叉排两种。
1.换热器为表冷器,表冷器几何尺寸如下表:
2.水箱电加热器总功率为9KW,分六档控制,六档功率分别为1.5KW。
3.空气温度、热水温度用铜—康铜热电偶测量。
4.空气流量用笛形管配倾斜式微压计测量。
5.空气通过换热器的流通阻力,在换热器前后的风管上设静压测嘴,配倾斜式微压计测量;热水通过换热器的流通阻力,在换热器进出口处设测阻力测嘴,配用压差计测量。
6.热水流量用转子流量计测量。
三、实验目标
通过气--水换热器性能测试试验,测定并计算出换热器的总传热系数,对数平均传热温差和热平衡误差等,绘制传热性能曲线,并作比较:(1)以传热系数为纵坐标,热水流量或空气流量为横坐标绘制传热性能曲线;并就不同换热器,两种不同流动方式、两种不同布置方式,不同工况的传热情况和性能进行比较和分析。
四、实验设计内容:
1.根据实验目标和气--水换热器实验装置,编写出实验工作原理和实验数据计算处理公式;
2.实验方案设计,包括实验思路、实验方法、实验工况点的选择、热水进口温度大小选取(建议取60-80℃);
3验操作步骤设计,将整个实验操作过程步骤、注意事项编写出来。
4设计出实验数据记录表格,记录实验数据,实验数据的处理计算,并对实验结果进行分析,得出实验结论。
5提交实验设计报告书。
五、实验操作规程:
1.由班学习委员将该班所有学生分组,并指定小组长;
2.提前三周组织学生参观气-水换热器实验装置,由实验教师详细介绍实验装置,布置学生实验任务,在此期间,开放实验室,随时供学生参观;
3.学生进行实验原理、方案、方法、实验步骤设计;
4.实验教师审查学生设计内容,直到合格为止;
5.实验教师指导学生开展实验;
6.学生进行数据处理计算,提交所有实验报告设计书;
7.实验教师批阅实验报告设计书,给出实验成绩。
[注意事项]
热水温度不能超过80℃,不然,将使水泵因气蚀而不能正常工作。
停机注意事项:
1.先关闭全部电热器开关;
2.十分钟后关闭水泵、风机开关和再冷却器冷水开关,全关风机出风阀门。
3.最后,切断电源。