算法经典面试题
- 格式:docx
- 大小:17.52 KB
- 文档页数:7
算法工程师面试题第一篇:算法工程师面试题之一——搜索算法搜索算法是计算机科学中非常重要的一个领域,它涉及到如何高效地在大规模的数据集中查找指定的信息。
在大数据时代,搜索算法的优化和应用成为了很多企业以及互联网公司非常关注的问题。
作为一名算法工程师,熟悉各种搜索算法以及它们的优化策略非常重要。
在搜索算法中,最常见的就是线性搜索算法。
这种算法的思想很简单,就是逐个地比较目标值和每个元素,如果找到相等的元素则返回其索引,如果搜索完整个数据集都没有找到相等的元素,则返回-1。
然而,线性搜索算法的时间复杂度是O(n),其中n是数据集的大小,这意味着随着数据集的增大,搜索所需的时间也会线性增长,效率较低。
为了提高搜索的效率,人们提出了很多优化的搜索算法。
其中最著名的就是二分查找算法,也称为折半查找算法。
二分查找算法的前提是数据集必须是有序的,它通过每次将数据集分成两半来进行搜索。
如果目标值等于中间元素,则返回其索引;如果目标值小于中间元素,则在左半部分继续搜索;如果目标值大于中间元素,则在右半部分继续搜索。
通过不断缩小搜索范围,二分查找算法的时间复杂度为O(log n),其中n是数据集的大小。
相比于线性搜索算法,二分查找算法具有更高的效率。
除了二分查找算法,还有其他一些高效的搜索算法,比如哈希查找算法、树状数组、布隆过滤器等。
这些算法在不同的场景下有着不同的应用,选择合适的算法可以大幅度提高搜索效率。
在实际的面试过程中,除了对搜索算法有深入的了解,算法工程师还需要具备一定的编程能力。
面试官可能会出一些编程题目,要求面试者用代码实现某种搜索算法。
因此,平时要多加练习,掌握搜索算法的实现和优化技巧。
总而言之,搜索算法是算法工程师面试的重要内容之一。
面试者需要熟悉各种搜索算法以及它们的应用场景,同时还要具备一定的编程能力。
只有在理论和实践上都能够熟练掌握搜索算法,才能在面试中给出令人满意的答案。
第二篇:算法工程师面试题之二——排序算法排序算法是计算机科学中最基本的算法之一,它涉及到对一组数据按照一定的顺序进行排列。
百度算法工程师面试题8道含解析问题1:讲一下lora的原理Lora方法指的是在大型语言模型上对指定参数增加额外的低秩矩阵,也就是在原始PLM旁边增加一个旁路,做一个降维再升维的操作。
并在模型训练过程中,固定PLM的参数,只训练降维矩阵A与升维矩阵B。
而模型的输入输出维度不变,输出时将BA与PLM的参数叠加。
用随机高斯分布初始化A,用0矩阵初始化B。
问题2:讲一下GBDT的原理GBDT(Gradient Boosting Decision Tree)是一种集成学习方法,它通过迭代训练决策树,每一次迭代都试图修正前一次迭代的错误。
具体而言,GBDT通过拟合残差(目标值与当前模型的预测之差)来逐步改进模型。
在每一轮迭代中,新的决策树被训练以捕捉残差中的模式。
最终,所有树的预测被组合起来形成最终的预测模型。
问题3:翻译任务一般用什么架构翻译任务主要使用的是seq2seq架构,目前主流的翻译架构是基于Transformer模型的,它采用自注意力机制(self-attention)来捕捉输入序列中不同位置的关联信息,并通过编码器-解码器结构来实现翻译。
问题4:encoder-only, decoder-only, encoder-decoder的区别Encoder-only:只有编码器,用于将输入序列编码成固定维度的表示,常用于特征提取。
Decoder-only:只有解码器,用于从固定维度的表示生成输出序列,通常在生成式任务中使用。
Encoder-decoder:同时包含编码器和解码器,用于序列到序列的任务,如机器翻译。
编码器将输入序列编码成上下文信息,解码器使用该信息生成输出序列。
问题5:讲一下transformer的结构Transformer模型由编码器和解码器组成,其核心是自注意力机制。
每个编码器和解码器均由多个相同的层叠加而成,每一层包含自注意力子层和全连接前馈网络子层。
输入序列通过多头自注意力机制进行处理,然后通过前馈网络。
算法面试经典100题算法面试是计算机领域的重要环节,经典的算法问题往往能够考验求职者的解决问题的能力和思维属性。
在这里,我们将介绍100道经典的算法面试题,让你在面试中迎刃而解。
字符串:1. 判断一个字符串是否为回文字符串。
2. 给定一个字符串,求出其中出现次数最多的字符和出现的次数。
3. 实现一个函数,将字符串中的空格替换为"%20"。
4. 判断一个字符串是否与另一个字符串的字符种类和数量相同。
5. 找出一个字符串中出现次数为1的字符。
数组和矩阵:6. 寻找数组中的最大值和最小值。
7. 给定一个有序数组,实现两数之和。
8. 给定一个数组和一个目标值,找出数组中两数之和等于目标值的下标。
9. 给定一个有序数组和一个目标值,找出目标值在数组中第一次出现的下标。
10. 给定一个二维矩阵和一个目标值,找出目标值在矩阵中的位置。
链表:11. 反转链表。
12. 删除链表中的重复节点。
13. 找到链表的中间节点。
14. 找到链表的倒数第k个节点。
15. 判断链表是否为回文链表。
树:16. 实现二叉查找树,并对其进行插入和查找操作。
17. 实现二叉查找树的前序、中序和后序遍历。
18. 实现二叉查找树的广度优先遍历。
19. 判断两棵二叉树是否相同。
20. 判断一棵二叉树是否为平衡二叉树。
图:21. 判断一张图是否为二分图。
22. 实现拓扑排序。
23. 实现最短路径算法(如Dijkstra算法)。
24. 实现最小生成树算法(如Prim算法和Kruskal算法)。
25. 实现图的遍历(如深度优先遍历和广度优先遍历)。
排序和查找:26. 实现冒泡排序。
27. 实现快速排序。
28. 实现选择排序。
29. 实现插入排序。
30. 实现归并排序。
31. 实现希尔排序。
32. 实现堆排序。
33. 实现计数排序。
34. 实现基数排序。
35. 实现查找算法(如二分查找和哈希查找)。
动态规划:36. 实现斐波那契数列。
算法工程师面试真题单选题100道及答案解析1. 以下哪种数据结构适合用于实现快速查找最大值和最小值?A. 栈B. 队列C. 堆D. 链表答案:C解析:堆可以快速地获取最大值和最小值。
2. 快速排序在最坏情况下的时间复杂度是?A. O(nlogn)B. O(n^2)C. O(n)D. O(logn)答案:B解析:快速排序在最坏情况下,每次划分都极不均匀,时间复杂度为O(n^2)。
3. 以下哪种算法常用于在未排序的数组中查找特定元素?A. 冒泡排序B. 二分查找C. 顺序查找D. 插入排序答案:C解析:顺序查找适用于未排序的数组查找特定元素。
4. 一个有向图的邻接表存储结构中,顶点的邻接点是按照什么顺序存储的?A. 随机顺序B. 顶点编号的大小顺序C. 插入的先后顺序D. 无法确定答案:C解析:邻接表中顶点的邻接点是按照插入的先后顺序存储的。
5. 深度优先搜索遍历图的时间复杂度是?A. O(n)B. O(n + e)C. O(n^2)D. O(e)答案:B解析:深度优先搜索遍历图的时间复杂度为O(n + e),其中n 是顶点数,e 是边数。
6. 以下哪种排序算法是稳定的排序算法?A. 快速排序B. 希尔排序C. 冒泡排序D. 选择排序答案:C解析:冒泡排序是稳定的排序算法。
7. 一个具有n 个顶点的无向完全图,其边的数量为?A. n(n - 1) / 2B. n(n - 1)C. n^2D. 2n答案:A解析:无向完全图的边数为n(n - 1) / 2 。
8. 动态规划算法的基本思想是?A. 分治法B. 贪心算法C. 把问题分解成多个子问题并保存子问题的解D. 回溯法答案:C解析:动态规划的基本思想是把问题分解成多个子问题并保存子问题的解,避免重复计算。
9. 以下关于哈希表的说法,错误的是?A. 哈希表的查找时间复杂度为O(1)B. 哈希冲突可以通过开放定址法解决C. 哈希表的空间复杂度是固定的D. 哈希函数的设计会影响哈希表的性能答案:C解析:哈希表的空间复杂度不是固定的,取决于元素数量和负载因子等。
数据结构与算法面试题目录1. 数组 (3)2. 链表 (5)3. 栈 (9)4. 队列 (10)5. 堆(优先队列) (12)6. 二叉树 (15)7. 二叉查找树 (24)8. 字典树 (26)9. 平衡树(AVL) (26)10. 红黑树 (26)11. B树/B+树 (28)12. 哈希 (29)13. 图 (31)14. 字符串 (33)15. 排序 (36)16. 二分查找 (40)17. 跳跃列表 (41)18. 动态规划 (42)1.数组应用场景:1)数据比较少2)经常做的运算是按序号访问数据元素面试题选择题:1)对于长度为n的线性表,建立其对应的单链表的时间复杂度为()。
O(1)O(log2n)O(n)O(n^2)2)下列哪些不是线性表?队列栈关联数组链表3)稀疏矩阵一般的压缩存储方法有两种,即()二维数组和三维数组三元组和散列三元组和十字链表散列和十字链表4)将10阶对称矩阵压缩存储到一维数组A中,则数组A的长度最少为1004055805)设A是n*n的对称矩阵,将A的对角线及对角线上方的元素以列为主的次序存放在一维数组B[1..n(n+1)/2]中,对上述任一元素aij (1≤i,j≤n,且i≤j)在B中的位置为()i(i-1)/2+jj(j-1)/2+ij(j-1)/2+i-1i(i-1)/2+j-16)若有定义:int c[4][5],( *pc)[5];pc=c;那么,下列对数组C的元素引用正确的是( )。
pc+1* (pc+3)* (pc+1) +3* (*pc+2)问答题:1)数组和链表的区别思路:从逻辑结构上来看,数组必须实现定于固定的长度,不能适应数据动态增减的情况,即数组的大小一旦定义就不能改变。
当数据增加是,可能超过原先定义的元素的个数;当数据减少时,造成内存浪费;链表动态进行存储分配,可以适应数据动态地增减的情况,且可以方便地插入、删除数据项。
从内存存储的角度看;数组从栈中分配空间(用new则在堆上创建),对程序员方便快速,但是自由度小;链表从堆中分配空间,自由度大但是申请管理比较麻烦。
第1篇一、引言随着互联网的快速发展,网络算法在计算机网络中扮演着至关重要的角色。
网络算法涉及到路由、流量控制、拥塞控制、网络协议等方面,是计算机网络领域的研究热点。
为了帮助大家更好地应对网络算法面试,本文整理了以下网络算法面试题目及其解析,希望对大家的面试有所帮助。
一、路由算法1. 题目:请简要介绍最短路径算法(Dijkstra算法)和链路状态路由算法(OSPF算法)。
解析:最短路径算法是一种用于计算网络中两点之间最短路径的算法。
Dijkstra算法是一种基于贪心策略的算法,适用于图中的节点数量较少且边的权重不大于某个值的情况。
链路状态路由算法(OSPF)是一种基于链路状态信息的路由算法,能够快速收敛并适应网络拓扑结构的变化。
2. 题目:简述BGP(边界网关协议)的工作原理。
解析:BGP是一种外部网关协议,用于在不同自治系统(AS)之间交换路由信息。
BGP通过路由策略、路由属性、路径属性等机制,实现路由信息的交换和选择。
BGP协议具有以下特点:(1)无环路由选择:BGP协议能够避免路由环路,保证网络可达性。
(2)多路径支持:BGP协议支持多条到达同一目的地的路由,通过路由策略进行选择。
(3)策略路由:BGP协议支持路由策略,实现复杂路由控制。
二、流量控制算法1. 题目:请简要介绍TCP和UDP的流量控制机制。
解析:TCP和UDP是两种常见的传输层协议,它们分别采用了不同的流量控制机制。
(1)TCP流量控制:TCP协议通过滑动窗口机制实现流量控制。
发送方根据接收方的接收窗口大小调整发送速率,确保接收方能够及时处理接收到的数据。
(2)UDP流量控制:UDP协议没有内置的流量控制机制,但可以通过外部手段实现流量控制,如NAT(网络地址转换)等。
2. 题目:简述拥塞控制算法(如慢启动、拥塞避免、快速重传和快速恢复)。
解析:拥塞控制算法是保证网络稳定运行的重要手段。
以下为常见的拥塞控制算法:(1)慢启动:当网络出现拥塞时,发送方逐渐增加发送窗口大小,直到达到阈值。
JAVA经典算法⾯试40题及答案现在是3⽉份,也是每年开年企业公司招聘的⾼峰期,同时有许多的朋友也出来找⼯作。
现在的招聘他们有时会给你出⼀套⾯试题或者智⼒测试题,也有的直接让你上机操作,写⼀段程序。
算法的计算不乏出现,基于这个原因我⾃⼰搜集了⼀些算法上的题型。
希望对于⼤家有所帮助。
【程序1】题⽬:古典问题:有⼀对兔⼦,从出⽣后第3个⽉起每个⽉都⽣⼀对兔⼦,⼩兔⼦长到第四个⽉后每个⽉⼜⽣⼀对兔⼦,假如兔⼦都不死,问每个⽉的兔⼦总数为多少?1.程序分析:兔⼦的规律为数列1,1,2,3,5,8,13,21….public class exp2{public static void main(String args[]){int i=0;for(i=1;i<=20;i++)System.out.println(f(i));}public static int f(int x){if(x==1 || x==2)return 1;elsereturn f(x-1)+f(x-2);}}或public class exp2{public static void main(String args[]){int i=0;math mymath = new math();for(i=1;i<=20;i++)System.out.println(mymath.f(i));}}class math{public int f(int x){if(x==1 || x==2)return 1;elsereturn f(x-1)+f(x-2);}}【程序2】题⽬:判断101-200之间有多少个素数,并输出所有素数。
1.程序分析:判断素数的⽅法:⽤⼀个数分别去除2到sqrt(这个数),如果能被整除,则表明此数不是素数,反之是素数。
public class exp2{public static void main(String args[]){int i=0;math mymath = new math();for(i=2;i<=200;i++)if(mymath.iszhishu(i)==true)System.out.println(i);}}class math{public int f(int x){if(x==1 || x==2)return 1;elsereturn f(x-1)+f(x-2);}public boolean iszhishu(int x){for(int i=2;i<=x/2;i++)if (x % 2==0 )return false;return true;}}【程序3】题⽬:打印出所有的 “⽔仙花数 “,所谓 “⽔仙花数 “是指⼀个三位数,其各位数字⽴⽅和等于该数本⾝。
第1篇一、基础概念与算法1. 请简述推荐系统的基本概念和主要目标。
2. 推荐系统中的协同过滤算法有哪几种类型?请分别简述它们的原理。
3. 请简述基于内容的推荐算法的基本原理。
4. 请简述基于模型的推荐算法的基本原理。
5. 请简述推荐系统中的冷启动问题,以及解决方法。
6. 请简述推荐系统中的反馈攻击问题,以及解决方法。
7. 请简述推荐系统中的多样性、新颖性和覆盖度等评价指标。
8. 请简述推荐系统中的在线学习算法,以及应用场景。
9. 请简述推荐系统中的多目标优化问题,以及解决方法。
10. 请简述推荐系统中的个性化推荐算法,以及应用场景。
二、推荐算法实现1. 请简述如何实现基于内容的推荐算法。
2. 请简述如何实现基于模型的推荐算法。
3. 请简述如何实现协同过滤推荐算法。
4. 请简述如何实现基于知识图谱的推荐算法。
5. 请简述如何实现基于深度学习的推荐算法。
6. 请简述如何实现基于用户画像的推荐算法。
7. 请简述如何实现基于标签的推荐算法。
8. 请简述如何实现基于兴趣的推荐算法。
9. 请简述如何实现基于行为的推荐算法。
10. 请简述如何实现基于社交网络的推荐算法。
三、推荐系统架构与优化1. 请简述推荐系统的基本架构,包括数据采集、预处理、特征工程、模型训练、推荐生成等环节。
2. 请简述如何优化推荐系统的数据采集和预处理环节。
3. 请简述如何优化推荐系统的特征工程环节。
4. 请简述如何优化推荐系统的模型训练环节。
5. 请简述如何优化推荐系统的推荐生成环节。
6. 请简述如何优化推荐系统的个性化推荐算法。
7. 请简述如何优化推荐系统的多样性、新颖性和覆盖度等评价指标。
8. 请简述如何优化推荐系统的在线学习算法。
9. 请简述如何优化推荐系统的多目标优化问题。
10. 请简述如何优化推荐系统的实时推荐算法。
四、推荐系统应用场景1. 请简述推荐系统在电子商务领域的应用场景。
2. 请简述推荐系统在视频网站领域的应用场景。
算法面试测试题及答案一、选择题1. 在二叉树中,若某节点的左子树为空,则该节点的右子树也一定为空,这种二叉树被称为:A. 完全二叉树B. 满二叉树C. 堆D. 二叉搜索树答案:D2. 以下哪种排序算法的时间复杂度为O(nlogn)?A. 冒泡排序B. 选择排序C. 快速排序D. 插入排序答案:C二、简答题1. 请简述什么是递归,并给出一个递归算法的例子。
答案:递归是一种在函数内部调用自身的编程技巧。
它通常用于解决可以分解为相似子问题的问题。
一个典型的递归算法例子是计算阶乘的函数:```pythondef factorial(n):if n == 1:return 1else:return n * factorial(n - 1)```2. 描述快速排序算法的基本思想及其时间复杂度。
答案:快速排序是一种分治策略的排序算法。
基本思想是选择一个元素作为“基准”(pivot),然后将数组分为两部分,一部分包含所有小于基准的元素,另一部分包含所有大于基准的元素。
这个过程称为分区(partitioning)。
之后,递归地对这两部分进行快速排序。
快速排序的平均时间复杂度为O(nlogn),但在最坏情况下(例如数组已经排序或所有元素相同)时间复杂度为O(n^2)。
三、编程题1. 编写一个函数,实现对一个整数列表进行排序,并返回排序后的列表。
答案:```pythondef sort_list(nums):return sorted(nums)```2. 实现一个函数,判断一个链表是否为回文结构。
答案:```pythonclass ListNode:def __init__(self, x):self.val = xself.next = Nonedef is_palindrome(head):if not head or not head.next:return Truemid = get_mid(head)prev, slow = None, midwhile slow and slow.next:prev = midmid = mid.nextslow = slow.next.nextprev.next = reverse_list(mid)return is_symmetric(head, reverse_list(mid))def get_mid(head):fast, slow = head, headwhile fast and fast.next:fast = fast.next.nextslow = slow.nextreturn slowdef reverse_list(head):prev, curr = None, headwhile curr:next_temp = curr.nextcurr.next = prevprev = currcurr = next_tempreturn prevdef is_symmetric(l1, l2):while l1 and l2:if l1.val != l2.val:return Falsel1 = l1.nextl2 = l2.nextreturn True```请注意,以上代码仅为示例,实际编程中需要根据具体问题进行调整。
计算机算法面试题及答案1. 问题:请解释什么是时间复杂度,并给出一个例子。
答案:时间复杂度是衡量算法运行时间与输入规模之间关系的量度。
它通常用大O符号表示,例如O(n)、O(n^2)等。
一个例子是冒泡排序算法,其时间复杂度为O(n^2),因为当数组长度为n时,它需要进行n*(n-1)/2次比较。
2. 问题:描述快速排序算法的过程。
答案:快速排序是一种分治算法,它通过选择一个“基准”元素,将数组分为两部分,一部分包含小于基准的元素,另一部分包含大于基准的元素。
然后递归地对这两部分进行快速排序,直到每个子数组只有一个元素或者为空。
3. 问题:什么是动态规划?请给出一个应用实例。
答案:动态规划是一种通过将复杂问题分解为更小的子问题来解决的方法,并且通过记忆已解决的子问题的结果来避免重复计算。
一个典型的应用实例是斐波那契数列的计算,通过动态规划可以避免大量的重复计算,从而提高效率。
4. 问题:解释图的深度优先搜索(DFS)算法。
答案:深度优先搜索是一种用于遍历或搜索树或图的算法。
它从一个节点开始,尽可能深地搜索树的分支,直到达到一个叶节点,然后回溯到上一个节点,继续搜索下一个分支,直到所有节点都被访问过。
5. 问题:请描述堆排序算法的工作原理。
答案:堆排序是一种基于比较的排序算法,它利用了二叉堆的数据结构。
算法的核心是构建一个最大堆,然后不断移除堆顶元素(最大值),将其放置在数组的末尾,同时调整剩余元素以保持最大堆的性质,直到数组完全排序。
6. 问题:什么是哈希表?它有什么优点?答案:哈希表是一种通过哈希函数将键映射到表中一个位置来访问记录的数据结构。
它的优点包括高效的查找、插入和删除操作,平均时间复杂度为O(1),这使得哈希表在需要快速访问数据的场景中非常有用。
7. 问题:解释什么是递归算法,并给出一个递归函数的例子。
答案:递归算法是一种自我引用的算法,它通过重复调用自身来解决问题。
一个典型的递归函数例子是计算阶乘的函数,它定义为n! = n * (n-1)!,其中n!是n的阶乘。
常见算法面试题及答案1. 数组中重复的数字题目:在一个长度为n的数组中,存在一个数字出现两次,而其他数字均出现一次,请找出这个重复的数字。
答案:可以使用哈希表来解决这个问题,遍历数组,将每个数字作为键,出现次数作为值,如果出现次数大于1,则该数字就是重复的数字。
2. 旋转数组的最小数字题目:把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。
输入一个非递减排序的数组的一个旋转,输出旋转数组的最小元素。
答案:可以使用二分查找法。
首先判断数组是否有序,如果有序,则直接返回第一个元素。
如果无序,找到中间元素,比较中间元素和两端元素,如果中间元素小于右边元素,则左边有序,否则右边有序。
在有序的一侧使用二分查找法找到最小值。
3. 斐波那契数列题目:斐波那契数列的第n项是多少?答案:可以使用递归、动态规划或者公式法来解决。
递归方法简单但效率低,动态规划通过构建一个数组来存储已计算的值,公式法通过矩阵快速幂来计算。
4. 二叉树的镜像题目:请完成一个函数,实现二叉树的镜像。
答案:可以使用递归或者迭代的方法。
递归方法是遍历到每个节点,交换其左右子节点。
迭代方法可以使用栈来模拟递归过程。
5. 寻找数组中第k大的元素题目:在未排序的数组中找到第k大的元素。
答案:可以使用快速排序的分区算法,每次分区后找到第k大的元素。
也可以使用大顶堆,将数组元素全部加入堆中,然后重复k-1次弹出堆顶元素。
6. 合并两个有序链表题目:将两个有序链表合并为一个新的有序链表并返回。
答案:可以使用双指针的方法,分别指向两个链表的当前节点,比较节点值,将较小的节点添加到新链表中,然后移动指针,直到一个链表为空。
7. 字符串的排列题目:输入一个字符串,打印出该字符串中字符的所有排列。
答案:可以使用回溯法。
创建一个递归函数,每次选择一个字符作为排列的第一个字符,然后递归排列剩下的字符。
8. 两个栈实现队列题目:用两个栈实现一个队列。
队列的声明是先入先出,栈是后入先出。
1. 时针分针重合几次表面上有60个小格,每小格代表一分钟,时针每分钟走1/12小格,分针每分钟走1小格,从第一次重合到第二次重合分针比时针多走一圈即60小格,所以60/(1-1/12)=720/11每隔720/11分才重合一次(而并不是每小时重合一次)1440里有22个720/11,如果说算上0点和24点,那也是重合23次而已,但我觉得0点应该算到前一天的24点头上,所以每一天循环下来重合22次啊2. 找出字符串的最长不重复子串,输出长度建一个256个单元的数组,每一个单元代表一个字符,数组中保存上次该字符上次出现的位置;依次读入字符串,同时维护数组的值;如果遇到冲突了,就返回冲突字符中保存的位置,继续第二步。
也可以用hashmap保存已经出现的字符和字符的位置3. 说是有一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前十个词。
先用哈希,统计每个词出现的次数,然后在用在N个数中找出前K大个数的方法找出出现次数最多的前10个词。
4. 如题3,但是车次文件特别大,没有办法一次读入内存。
1) 直接排序,写文件时,同时写入字符串及其出现次数。
2) 可以用哈希,比如先根据字符串的第一个字符将字符串换分为多个区域,每个区域的字符串写到一个文件内,然后再用哈希+堆统计每个区域内前10个频率最高的字符串,最后求出所有字符串中前10个频率最高的字符串。
5. 有一个整数n,将n分解成若干个整数之和,问如何分解能使这些数的乘积最大,输出这个乘积m。
例如:n=12(1)分解为1+1+1+…+1,12个1, m=1*1*1……*1=1(2)分解为2+2+…+2,6个2,m=64(3)分解为3+3+3+3,4个3,m=81(4)大于等于4时分解时只能分解为2和3,且2最多两个f(n) = 3*f(n-3) n>4f(4) = 2*2f(3) = 3f(2) = 2分解为4+4+4,3个4,m=646. 求数组n中出现次数超过一半的数把数组分成[n/2]组,则至少有一组包含重复的数,因为如果无重复数,则最多只有出现次数等于一半的数。
第1篇一、基础知识1. 请解释一下什么是位运算,并举例说明其应用场景。
位运算是指对二进制位进行操作的运算,主要包括按位与(&)、按位或(|)、按位异或(^)、按位取反(~)、左移(<<)和右移(>>)等。
以下是一些应用场景:(1)按位与:用于判断两个整数的某一位是否同时为1。
(2)按位或:用于将两个整数的对应位进行或运算,得到结果。
(3)按位异或:用于将两个整数的对应位进行异或运算,如果两个位相同,则结果为0;如果两个位不同,则结果为1。
(4)按位取反:用于将整数的每一位取反,即将0变为1,将1变为0。
(5)左移:用于将整数的二进制表示向左移动指定的位数,右边的位被丢弃,左边补0。
(6)右移:用于将整数的二进制表示向右移动指定的位数,左边的位被丢弃,右边补0。
2. 请解释一下什么是数据类型,并列举常见的几种数据类型。
数据类型是指用于定义变量存储的数据种类的类型。
以下是一些常见的几种数据类型:(1)整型(int):用于存储整数,如int a = 10;(2)浮点型(float、double):用于存储实数,如float b = 3.14;(3)字符型(char):用于存储单个字符,如char c = 'A';(4)布尔型(bool):用于存储布尔值,如bool d = true;(5)数组:用于存储一系列相同类型的数据,如int arr[10];(6)结构体(struct):用于存储不同类型的数据,如struct Person {int age; char name[20];};(7)指针:用于存储变量的地址,如int ptr = &a。
3. 请解释一下什么是面向对象编程,并举例说明其应用场景。
面向对象编程(OOP)是一种编程范式,它将数据和行为封装在对象中,强调继承、封装和多态。
以下是一些应用场景:(1)设计大型软件系统,如操作系统、数据库等;(2)开发图形用户界面(GUI)应用程序;(3)开发网络应用程序,如Web应用、移动应用等;(4)开发游戏和模拟软件。
1、在排序算法中,哪种算法在最优情况下时间复杂度为O(n)?A. 快速排序B. 冒泡排序C. 插入排序(答案)D. 归并排序2、以下哪个数据结构常用于实现缓存淘汰策略中的LRU(Least Recently Used)?A. 栈B. 队列C. 双向链表(答案)D. 二叉树3、给定一个整数数组,要求找出其中两个数的和等于一个给定值,最有效的方法是使用:A. 双重循环遍历B. 哈希表(答案)C. 二分查找D. 排序后双指针4、在深度优先搜索(DFS)中,使用栈的主要目的是:A. 记录已访问节点B. 避免循环(答案,辅助避免重复访问形成环)C. 存储最短路径D. 提高搜索效率5、下列哪项不是动态规划解决问题的典型特征?A. 重叠子问题B. 最优子结构C. 无后效性(答案偏向于此选项不是最典型的特征,但通常也提及;严格来说,动态规划要求无后效性,但此题意图可能是寻找一个相对非典型的描述)D. 状态转移方程6、对于一个图结构,如果要找出其中是否存在环,最适合使用的算法是:A. Dijkstra算法B. Floyd-Warshall算法C. 拓扑排序(间接判断,若无法完成则存在环)(答案)D. A*算法7、在二叉树的遍历中,先序遍历的顺序是:A. 左子树 -> 根节点 -> 右子树B. 根节点 -> 左子树 -> 右子树(答案)C. 右子树 -> 根节点 -> 左子树D. 根节点 -> 右子树 -> 左子树8、下列哪种算法是用来解决最短路径问题的?A. 广度优先搜索(BFS,用于无权图的最短路径)B. 深度优先搜索(DFS)C. Dijkstra算法(答案,适用于非负权图)D. Prim算法(最小生成树)9、在机器学习中,决策树算法进行特征选择时,常用的准则是:A. 最大似然估计B. 信息增益(答案)C. 最小二乘法D. 交叉验证10、对于一个无序数组,如果需要频繁地进行查找操作,最好先对其进行:A. 插入排序B. 冒泡排序C. 快速排序(答案,虽然归并也适用,但快速排序通常更高效)D. 选择排序。
常见的算法面试题1、题目:二分查找问题描述:给定一个排序数组和一个目标值,在数组中查找目标值,并返回其索引。
如果目标值不存在于数组中,则返回 -1。
示例:输入: nums = [1,3,5,7], target = 3输出: 2解释: 目标值3在排序数组中的索引为2。
解题思路:二分查找是一种在有序数组中查找特定元素的搜索算法。
搜索过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜索过程结束;如果目标元素大于或小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且同样从中间元素开始比较。
如果在某一步骤数组为空,则代表找不到。
这种搜索算法每一次比较都使搜索范围缩小一半。
时间复杂度:O(log n),其中 n 是数组的长度。
空间复杂度:O(1)。
2、题目:归并排序问题描述:归并排序是一种采用分治法的排序算法。
它将一个数组分成两个子数组,分别对子数组进行排序,然后将有序的子数组合并成一个有序的数组。
示例:输入: nums = [3,2,1,6,5,4]输出: [1,2,3,4,5,6]解释: 将数组分成 [3,2,1] 和 [6,5,4],分别对两个子数组进行排序,得到[1,2,3] 和 [4,5,6],最后将两个有序的子数组合并得到 [1,2,3,4,5,6]。
解题思路:归并排序的基本步骤如下:将数组不断拆分成更小的子数组,直到每个子数组只包含一个元素,然后将这些子数组合并成一个有序的数组。
在合并的过程中,使用一个辅助数组来记录每个子数组的起始位置和长度,以便于后续的合并操作。
合并两个有序的子数组合并成一个有序的数组时,需要比较两个子数组中的元素大小,将较小的元素放入新数组中。
重复步骤 2 和步骤 3,直到整个数组有序为止。
时间复杂度:O(n log n),其中 n 是数组的长度。
归并排序的时间复杂度主要来自于拆分和合并两个过程,每次拆分的时间复杂度为 O(log n),合并的时间复杂度为 O(n)。
华为算法面试题及答案1. 题目:二分查找算法问题描述:给定一个升序排列的整数数组 nums,和一个目标值target。
写一个函数搜索 nums 中的 target,如果找到了 target,则返回它的索引;如果未找到,则返回-1。
答案:使用二分查找算法,首先定义两个指针 left 和 right,分别指向数组的起始位置和结束位置。
然后进入循环,计算中间位置mid = (left + right) / 2。
比较 nums[mid] 和 target 的大小:- 如果 nums[mid] == target,则返回 mid;- 如果 nums[mid] < target,则将 left 更新为 mid + 1;- 如果 nums[mid] > target,则将 right 更新为 mid - 1。
循环继续,直到 left > right 为止,此时如果未找到 target,则返回 -1。
2. 题目:链表中环的检测问题描述:一个链表中包含一个环,请编写一个函数来检测这个环。
答案:使用快慢指针法。
首先初始化两个指针 slow 和 fast,slow 每次移动一步,fast 每次移动两步。
如果链表中存在环,则fast 指针最终会追上 slow 指针。
如果 fast 指针到达链表末尾,说明链表无环。
3. 题目:最大子数组和问题描述:给定一个整数数组 nums,找出一个具有最大和的子数组,返回这个和。
答案:使用 Kadane 算法。
初始化两个变量 maxSoFar 和maxEndingHere,都设置为 nums[0]。
遍历数组,对于每个元素nums[i]:- 更新 maxEndingHere = max(nums[i], maxEndingHere +nums[i]);- 更新 maxSoFar = max(maxSoFar, maxEndingHere)。
遍历结束后,maxSoFar 就是最大子数组和。
10个经典的算法问题与解决方案算法问题是计算机科学中非常重要的一部分,对于准备面试或提升自己的技能都是很有帮助的。
下面列举了10个经典的算法问题及其解决方案:1.两数之和(Two Sum)问题描述:给定一个整数数组和一个目标值,找出数组中和为目标值的两个数。
解决方案:使用哈希表记录每个数字的索引,然后遍历数组,查找目标值减当前数的差是否存在于哈希表中。
2.盛最多水的容器(Container With Most Water)问题描述:给定一个非负整数数组,数组中的每个表示一条柱子的高度,找出两个柱子,使得它们与x轴构成的容器可以容纳最多的水。
解决方案:维护两个指针,分别指向数组的开始和结尾,计算当前指针所指的两条柱子之间的面积,并更新最大面积。
然后移动指向较小柱子的指针,重复计算直到两个指针相遇。
3.三数之和(3Sum)问题描述:给定一个整数数组,找出数组中所有不重复的三个数,使得它们的和为0。
解决方案:首先对数组进行排序,然后固定一个数字,使用双指针在剩余的数字中寻找另外两个数使得它们的和为相反数。
4.最大子序和(Maximum Subarray)问题描述:给定一个整数数组,找到一个具有最大和的连续子数组(子数组最少包含一个元素)。
解决方案:使用动态规划的思想,从数组的第一个元素开始依次计算以当前位置结尾的子数组的最大和,并保存最大值。
5.二分查找(Binary Search)问题描述:给定一个排序的整数数组和一个目标值,使用二分查找算法确定目标值是否存在于数组中,并返回其索引。
解决方案:通过比较目标值与数组的中间元素来确定目标值是在左半部分还是右半部分,并更新搜索范围进行下一轮查找。
6.背包问题(Knapsack Problem)问题描述:给定一组物品和一个背包,每个物品都有自己的重量和价值,在不超过背包容量的情况下,找到一个组合使得总价值最大化。
解决方案:使用动态规划的思想,定义一个二维数组表示背包容量和物品数量,从左上角开始计算每个格子可以放置的最大价值。
算法经典面试题
世界上第一位程序员是英国著名诗人拜伦的女儿AdaLovelace曾设计了巴贝奇分析机上解伯努利方程的一个程序。
她甚至还建立了循环和子程序的概念。
下面就由X为大家介绍一下程序员面试算法题的文章。
程序员面试算法题篇1
题目:输入一棵二元查找树,将该二元查找树转换成一个排序的双向链表。
要求不能创建任何新的结点,只调整指针的指向。
10
/ \
6 14
/ \ / \
4 8 12 16
转换成双向链表
4=6=8=10=12=14=16。
思路一:当我们到达某一个节点准备调整以该节点为根节点的子数时,先调整其左子树将左子树转换成一个排好序的左子链表,再调整其右子树转换成右子链表。
最近链接左子链表的最右节点、当前节点和右子链表的最左节点。
从树的根节点开始递归调整所有节点。
思路二:我们可以中序遍历整个树。
按照这个方式遍历树,比较小的节点优先访问。
如果我们每访问一个节点,假设之前访问过的节点已经调整为一个排序的双向链表,我们再把调整当前节点的指针链接到链表的末尾。
当所有的节点都访问过之后,整棵树也就转换成一个排序的双向链表了。
参考代码:
二元查找树的节点数据结构:
structBSTreeNode{
int value;
BSTreeNode *m_left;
BSTreeNode *m_right;
}
思路二对应的代码:
void ConvertNode(BSTreeNode* pNode, BSTreeNode*& pLastNodeInList)
{
if(pNode == NULL)
return;
BSTreeNode *pCurrent = pNode;
// Convert the left sub-tree
if (pCurrent->m_pLeft != NULL)
ConvertNode(pCurrent->m_pLeft, pLastNodeInList);
// Put the current node into the double-linked list pCurrent->m_pLeft = pLastNodeInList;
if(pLastNodeInList != NULL)
pLastNodeInList->m_pRight = pCurrent;
pLastNodeInList = pCurrent;
// Convert the right sub-tree
if (pCurrent->m_pRight != NULL)
ConvertNode(pCurrent->m_pRight, pLastNodeInList);
}
///////////////////////////////////////////////////
////////////////////
// Covert a binary search tree into a sorted double-linked list
// Input: pHeadOfTree - the head of tree
// Output: the head of sorted double-linked list
///////////////////////////////////////////////////
////////////////////
BSTreeNode* Convert_Solution1(BSTreeNode* pHeadOfTree)
{
BSTreeNode *pLastNodeInList = NULL;
ConvertNode(pHeadOfTree, pLastNodeInList);
// Get the head of the double-linked list
BSTreeNode *pHeadOfList = pLastNodeInList;
while(pHeadOfList && pHeadOfList->m_pLeft)
pHeadOfList = pHeadOfList->m_pLeft;
return pHeadOfList;
}
程序员面试算法题篇2
在数组中,数字减去它右边的数字得到一个数对之差。
求所有数对之差的最大值。
例如在数组{2, 4, 1, 16, 7, 5, 11, 9}中,数对之差的最大值是11,是16减去5的结果。
动态规划法:
double maxDif(vector v)
{ double max_dif = DBL_MIN;
double loc_min = DBL_MAX;
for(int i= -1;i>=0;i--) {
if (v[i] max_dif) max_dif = v[i] - loc_min;
}
return max_dif; }
程序员面试算法题篇3
输入一个整数和一棵二元树。
从树的根结点开始往下访
问一直到叶结点所经过的所有结点形成一条路径。
打印出和与输入整数相等的所有路径。
例如输入整数22和如下二元树
10
/ \
5 12
/ \
4 7
则打印出两条路径:10, 12和10, 5, 7。
二元树结点的数据结构定义为:
struct BinaryTreeNode // a node in the binary tree {
int m_nValue; // value of node
BinaryTreeNode *m_pLeft; // left child of node
BinaryTreeNode *m_pRight; // right child of node };
分析:这是百度的一道笔试题,考查对树这种基本数据结构以及递归函数的理解。
当访问到某一结点时,把该结点添加到路径上,并累加当前结点的值。
如果当前结点为叶结点并且当前路径的和刚好等于输入的整数,则当前的路径符合要求,我们把它打印出来。
如果当前结点不是叶结点,则继续访问它的子结点。
当前结点访问结束后,递归函数将自动回到父结点。
因此我们在函数退出之前要在路径上删除当前结点并减去当前结点的值,以确保返回父结点时路径刚好是根结点到父结点的路径。
我们不难看出保存路径的数据结构实际上是一个栈结构,因为路径要与递归调用状态一致,而递归调用本质就是一个压栈和出栈的过程。
参考代码:
void FindPath(BinaryTreeNode* pTreeNode,int expectedSum,std::vector& path,int& currentSum) {
if(!pTreeNode) return ;
currentSum+=pTreeNode->m_nValue;
_back(pTreeNode->m_nValue);
bool isLeaf=(!pTreeNode->m_pLeft && !pTreeNode->m_pRight);
if(currentSum== expectedSum && isLeaf){
std::vector::iterator iter= ;
for(;iter!= ;++iter) std::coutmpLeft) FindPath(pTreeNode->m_pLeft,expectedSum,path,curren tSum);
if(pTreeNode->m_pRight)
FindPath(pTreeNode->m_pRight, expectedSum, path,
currentSum);
currentSum -= pTreeNode->m_nValue;
_back ;
}。