工科大学物理练习8
- 格式:ppt
- 大小:714.50 KB
- 文档页数:103
2013-2014工科大学物理期末考试题整理制作人:1306学习部二、填空题1、在半径为R的圆周上运动的质点,其速率与时间的关系为v=ct2(式中c为常量),则t=0到t时刻质点走过的路程S(t)=_________,t时刻质点的切向加速度a t=_________,t时刻质点的法向加速度a n=____________.2、一物体的质量为M,置于光滑的水平地板上,今用一水平力F通过一质量为m的绳拉动3B4(567为8当于质量为______________kg的物体从500m高空落到地面释放的能量。
9、在真空中有一半径为a的3/4圆弧形的导线,其中通以稳定电流I,导线置于均匀外磁场B中,且B与导线所在平面垂直,则该载流导线弧bc所受的磁力大小为___________.10、平行板电容器的电容C为20.0 uF,两板上的电压变化率为1.5 X 105V/s,则平行板电容器中的位移电流为______________.三、大题(共40分)1、(本题10分)一根放在水平光华桌面上的匀质棒,可绕通过其一端的竖直固定光滑轴O 转动,棒的质量为m=1.5kg,长度为l=1.0m,对轴的转动惯量为J =13m l 2.初始时棒静止。
今有一水平运动的子弹垂直地射入棒的另一端,并留在棒中,如图所示。
子弹的质量为m ’=0.020kg,速率为v=400m s −1,试问:(1) 棒开始和子弹一起转动时的角速度w 有多大?(2) 若棒转动时受到大小为M =4.0N ﹒m 的恒定阻力矩作用,棒能转过多大的角度θ?I4. (本题10分)如图所示,等边三角形平面回路ACDA位于磁感应强度为B的均匀磁场内,磁场方向垂直于平面回路,回路上的CD段为滑动导线,它以匀速v远离A端运动,并始终保持回路是等边三角形.设滑动导线CD到A端的垂直距离为x,且t=0时,x=0.试求在下述两种不同的磁场情况下,回路中的感应电动势ε与时间t的关系:(1)B=B0 =常矢量(2)B=Kt,K=常矢量。
时间 空间与运动学1 下列哪一种说法是正确的( )(A )运动物体加速度越大,速度越快 (B )作直线运动的物体,加速度越来越小,速度也越来越小(C )切向加速度为正值时,质点运动加快 (D )法向加速度越大,质点运动的法向速度变化越快2 一质点在平面上运动,已知质点的位置矢量的表示式为j i r 22bt at +=(其中a 、b 为常量),则该质点作( ) (A )匀速直线运动 (B )变速直线运动 (C )抛物线运动 (D )一般曲线运动3 一个气球以1s m 5-⋅速度由地面上升,经过30s 后从气球上自行脱离一个重物,该物体从脱落到落回地面的所需时间为( )(A )6s (B )s 30 (C )5. 5s (D )8s4 如图所示湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖上的船向岸边运动,设该人以匀速率0v 收绳,绳长不变,湖水静止,则小船的运动是( )(A )匀加速运动 (B )匀减速运动 (C )变加速运动(D )变减速运动5 已知质点的运动方程j i r 33)s m 4()3(t m -⋅+=,则质点在2s 末时的速度和加速度为( )(A )j a j i v )s m 48( , )s m 48()s m 3(211---⋅=⋅+⋅=(B )j a j v )s m 48( , )s m 48(21--⋅=⋅=(C )j a j i v )s m 32( , )s m 32()s m 3(211---⋅=⋅+⋅=(D )j a j v )s m 32( , )s m 32(21--⋅=⋅=6 一质点作竖直上抛运动,下列的t v -图中哪一幅基本上反映了该质点的速度变化情况( )7 有四个质点A 、B 、C 、D 沿Ox 轴作互不相关的直线运动,在0=t 时,各质点都在00=x 处,下列各图分别表示四个质点的t v -图,试从图上判别,当s 2=t 时,离坐标原点最远处的质点( )8 一质点在0=t 时刻从原点出发,以速度0v 沿Ox 轴运动,其加速度与速度的关系为2kv a -=,k 为正常数,这质点的速度与所经历的路程的关系是( )(A )kx e v v -=0 (B ))21(200v x v v -=(C )201x v v -= (D )条件不足,无地确定9 气球正在上升,气球下系有一重物,当气球上升到离地面100m 高处,系绳突然断裂,重物下落,这重物下落到地面的运动与另一个物体从100m 高处自由落到地面的运动相比,下列哪一个结论是正确的( )(A )下落的时间相同 (B )下落的路程相同(C )下落的位移相同 (D )落地时的速度相同10 质点以速度231)s m 1(s m 4t v --⋅+⋅=作直线运动,沿直线作Ox 轴,已知s 3=t 时质点位于m 9=x 处,则该质点的运动方程为( ) (A )t x )s m 2(1-⋅= (B )221)s m 21()s m 4(t t x --⋅+⋅= (C )m t t x 12)s m 31()s m 4(331-⋅+⋅=-- (D )m t t x 12)s m 31()s m 4(331+⋅+⋅=--11 已知质点作直线运动,其加速度t a )s m 3(sm 232--⋅-⋅=,当0=t 时,质点位于00=x 处,且10s m 5-⋅=v ,则质点的运动方程为( ) (A )33221)s m 21()s m 1()s m 5(t t t x ---⋅-⋅+⋅= (B )3322)s m 21()s m 1(t t x --⋅-⋅=(C )3322)s m 31()s m 21(t t x --⋅-⋅= (D )3322)s m 1()s m 1(t t x --⋅-⋅=12 一个质点在Oxy 平面运动,其速度为j i v t )s m 8()s m 2(21--⋅-⋅=,已知质点0=t 时,它通过(3,7)位置处,那么该质点任意时刻的位矢是( )(A )j i r 221)s m 4()s m 2(t t --⋅-⋅= (B )j 7i r m])s m 4[(]3)s m 2[(221+⋅-+⋅=--t m t(C )j -(8m) (D )条件不足,不能确定13 质点作平面曲线运动,运动方程的标量函数为)( , )(t y y t x x ==,位置矢量大小22 y x +=r ,则下面哪些结论是正确的?( )(A )质点的运动速度是t x d d (B )质点的运动速率是t d d r v = (C ) d d t r v = (D ) d d t r 可以大于或小于 v14 质点沿轨道AB 作曲线运动,速率逐渐减小,在图中哪一个图正确表示了质点C 的加速度?( )15 以初速度0v 将一物体斜向上抛出,抛射角为o 45>θ,不计空气阻力,在g v t )cos (sin 0θθ-=时刻该物体的( )(A )法向加速度为g (B )法向加速度为g 32- (C )切向加速度为g 23- (D )切向加速度为g 32-16 一质点从静止出发绕半径为R 的圆周作匀变速圆周运动,角加速度为α,当质点走完一圈回到出发点时,所经历的时间是( )(A )R 221α (B )απ4(C )απ2 (D )不能确定17 一飞轮绕轴作变速转动,飞轮上有两点21 P P 和,它们到转轴的距离分别为d d 2 和,则在任意时刻,21 P P 和两点的加速度大小之比)/21a a 为( )(A )21 (B )41(C )要由该时刻的角速度决定 (D )要由该时刻的角加速度决定18 沿直线运动的物体,其速度与时间成反比,则其加速度与速度的关系是( )(A )与速度成正比 (B )与速度平方成正比 (C )与速度成反比 D )与速度平方成反比19 抛物体运动中,下列各量中不随时间变化的是( )(A )v (B )v (C )t v d d (D )t d d v20 某人以1h km 4-⋅速率向东前进时,感觉到风从正北方吹来,如果将速率增加一倍,则感觉风从东北吹来,实际风速和风向为( )(A )1h km 4-⋅从正北方吹来 (B )1h km 4-⋅从西北方吹来 (C )1h km 24-⋅从东北方向吹来 (D )1h km 24-⋅从西北方向吹来 C a c b d a a c c a b c c d b a b d d牛顿运动定律1 下列说法中哪一个是正确的?( )(A )合力一定大于分力 (B )物体速率不变,所受合外力为零(C )速率很大的物体,运动状态不易改变(D )质量越大的物体,运动状态越不易改变2 物体自高度相同的A 点沿不同长度的光滑斜面自由下滑,如右图所示,斜面倾角多大时,物体滑到斜面底部的速率最大()(A )30o (B)45o (C)60o (D )各倾角斜面的速率相等。
大学物理习题集上册物理教研室2004年元月目录部分物理常量练习一描述运动的物理量练习二刚体定轴转动的描述相对运动练习三牛顿运动定律非惯性系中的力学练习四动量角动量练习五功和能碰撞练习六刚体定轴转动的转动定律转动惯量练习七刚体定轴转动中的动能及角动量练习八力学习题课练习九状态方程压强公式练习十理想气体的内能分布律练习十一分布律(续) 自由程碰撞频率练习十二热力学第一定律等值过程练习十三循环过程练习十四热力学第二定律熵练习十五热学习题课练习十六谐振动练习十七谐振动能量谐振动合成练习十八阻尼受迫共振波动方程练习十九波的能量波的干涉练习二十驻波多普勒效应练习二十一振动和波习题课练习二十二光的相干性双缝干涉光程练习二十三薄膜干涉劈尖练习二十四牛顿环迈克耳逊干涉仪衍射现象练习二十五单缝圆孔光学仪器的分辨率练习二十六光栅X射线的衍射练习二十七光的偏振练习二十八光学习题课23h3456789101112131415图9.1 161718192021232425(A)图15.12627图17.24. 一平面简谐波沿x 轴负方向传播,已知x=x 0处质点的振动方程为y=A cos(ω t+ϕ0). 若(B)v (m/s)O1 x (m)ωA(A)·图18.3图18.54041距离 (从地上一点看两星的视线间夹角)是(A) 5.3×10-7 rad.(B) 1.8×10-4 rad .(C) 5.3×10-5 rad .(D) 3.2×10-3 rad二.填空题1. 惠更斯引入的概念提出了惠更斯原理,菲涅耳再用的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理.2. 如果单缝夫琅和费衍射的第一级暗纹发生在衍射角为30 的方位上,所用单色光波长λ =5×103 Å, 则单缝宽度为m .3. 平行单色光垂直入射于单缝上,观察夫琅和费衍射. 若屏上P点处为第二级暗纹,则单缝处波面相应地可划分为个半波带,若将单缝宽度减小一半, P点将是级纹.三.计算题1. 用波长λ =6328Å 的平行光垂直照射单缝, 缝宽a= 0.15mm , 缝后用凸透镜把衍射光会聚在焦平面上, 测得第二级与第三级暗条纹之间的距离为1.7mm , 求此透镜的焦距.四.问答题1. 在单缝衍射实验中, 当缝的宽度a远大于单色光的波长时, 通常观察不到衍射条纹, 试由单缝衍射暗条纹条件的公式说明这是为什么.练习二十六光栅X射线的衍射一.选择题1. 一束平行单色光垂直入射到光栅上,当光栅常数(a+b) 为下列哪种情况时(a代表每条缝为宽度) ,k =3、6、9等级次的主极大均不出现?(A) a+b=3a.(B) a+b=2a .(C) a+b=4a .(D) a+b=6a .2. 若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?(A) 1.0×10-1 mm .(B) 5.0×10-1 mm .(C) 1.0×10-2 mm .(D) 1.0×10-3 mm .3. 在双缝衍射实验中,若保持双缝s1和s2的中心之间的距离d不变,而把两条缝的宽度a 42略微加宽,则(A) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变少.(B) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变多.(C) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变少.(D) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目不变.(E) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变多.4. 某元素的特征光谱中含有波长分别为 1 = 450 n m 和 2 = 750 n m (1 n m = 10-9 m)的光谱线. 在光栅光谱中,这两种波长的谱线有重叠现象,重叠处 2的谱线的级次数将是(A) 2、3、4、5 …….(B) 2、5、8、11 …….(C) 2、4、6、8 …….(D) 3、6、9、12 …….5. 设光栅平面、透镜均与屏幕平行,则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级数k(A) 变小.(B) 变大.(C) 不变.(D) 的改变无法确定.二.填空题1. 用波长为5461 Å的平行单色光垂直照射到一透射光栅上,在分光计上测得第一级光谱线的衍射角 = 30 ,则该光栅每一毫米上有条刻痕.2. 可见光的波长范围是400 n m—760 n m,用平行的白光垂直入射到平面透射光栅上时,它产生的不与另一级光谱重叠的完整的可见光光谱是第级光谱.3. 一束平行单色光垂直入射到一光栅上,若光栅的透明缝宽度a与不透明部分宽度b相等,则可能看到的衍射光谱的级次为.三.计算题1. 一块每毫米500条缝的光栅,用钠黄光正入射,观察衍射光谱, 钠黄光包含两条谱线,其波长分别为5896 Å和5890 Å, 求在第二级光谱中这两条谱线互相分离的角度.2. 一衍射光栅,每厘米有200条透光缝,每条透光缝宽为a =2×10-3 c m ,在光栅后放一焦距f =1m 的凸透镜,现以 = 6000 Å的平行单色光垂直照射光栅,求: (1) 透光镜a的单缝衍射中央明条纹宽度为多少?(2) 在该宽度内, 有几个光栅衍射主极大?练习二十七光的偏振一.选择题1. 一束光强为I0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45 角,若不考虑偏振片的反射和吸收,则穿过两个偏振片后的光强I为4344454647。
工科物理实验I_北京科技大学中国大学mooc课后章节答案期末考试题库2023年1.实验一静态拉伸法测材料弹性模量,以下关于弹性模量说法正确的是()答案:弹性模量是材料的属性,只和材料本身性质有关系2.实验八弹簧振子运动规律的实验研究中,关于本实验下列说法错误的是()答案:用计算机作图时应使打印出的图足够大以减小作图误差3.实验二用扭摆法测量物体的转动惯量,关于刚体对轴转动惯量,下列说法正确的是()答案:取决于刚体的质量、质量的空间分布和轴的位置。
4.实验二扭摆法测量物体的转动惯量实验中,将转动惯量转化为哪个直接测量()答案:周期5.实验三空气比热容比的测定,什么是空气的比热容比()答案:定压热容量/定容热容量6.实验十基本电表的使用以及伏安特性研究,研究发光二极管LED伏安特性曲线,测量正向伏安特性时,由于LED的电阻小,应该避免电流表内阻的加入;测量反向伏安特性时,由于LED的电阻大,则电流表内阻可以忽略,并且需要测量通过LED的电流更加精确,那么正确的接线方式是()答案:测量正向伏安特性曲线时用外接法;测量反向伏安特性曲线时用内接法;7.实验四用电桥测电阻中,关于本实验说法错误的是()答案:电桥调平后调节R0改变△R0,当改变相同的△R0检流计偏转越小,说明电桥的灵敏度越高8.实验十一用四端法测量Fe-Cr-Al丝的电阻率中,关于本实验说法错误的是()答案:应用误差等分配原则可以计算出待测电压的上限和下限9.实验五示波器的使用中,以下说法错误的是()答案:可以通过示波器改变原始波形的频率10.实验六声速测量,用行波法测波长时,图形从某一方位的直线变为另一方位的直线,在此过程中换能器移动的最小距离为()答案:11.实验十二多普勒效应,根据多普勒效应,当声源固定,观测者远离声源时,观测者接收到的声波频率比声源频率_______;若观测者做加速运动远离声源,则接收频率逐渐_______。
()答案:小减小;12.实验十三几何光学综合实验中,以下操作注意事项不正确的是()答案:物距-像距法测凹透镜焦距时,凹透镜用来成像的是实物13.实验十四分光仪的调节及三棱镜折射率测量,在分光仪望远镜自准直调节中,当绿十字单面镜反射像呈现在分划板的上十字位时,可以判定______与______垂直。
第12章相律与相图1.试计算下列平衡体系的自由度数:(1) 298.15 K、101 325Pa下固体NaCl与其水溶液平衡;(2) I2(s) ? I2(g);(3) NaCl(s)与含有HCl的NaCl饱和溶液。
(答案:①0,②1,③3)解:(1) K = 2, R = 0, b = 0, φ= 2∴C = K-R-b = 2, 又T, p已指定∴f = C -φ + n = 2- 2 + 0 = 0(2) K=1, R = 0, b = 0, φ=2∴C = K-R-b =1- 0- 0 =1则f = C -φ + n = 1- 2 + 2 = 1(3) K=3, R = 0, b = 0, φ=2则C = K-R-b =3–0–0 = 3∴f = C -φ + n =3- 2 + 2 = 32.固体NH4HS和任意量的H2S及NH3气体混合物组成的体系按下列反应达到平衡:NH4HS(s) ? NH3(g)+H2S(g)(1) 求该体系组元数和自由度数;(2) 若将NH4HS放在一抽空容器内分解,平衡时,其组元数和自由度数又为多少?(答案:①2,2,②1,1)解:(1) K=3, R = 1, b = 0, φ=2∴C = K-R-b =st1:chsdate Year="2000" Month="3" Day="1" IsLunarDate="False" IsROCDate="False">3 -1- 0 = 2 即体系组元数为2而体系的自由度数f = C -φ + n = 2 – 2 + 2 = 2(2) K=3, R = 1, b = 1, φ=2∴该体系平衡时的组元数C = K-R-b =3 – 1 – 1 = 1而体系的自由度数 f = C -φ + n = 1- 2 + 2 = 13.求下列体系的组元数和自由度数:(1) 由Fe(s)、FeO(s)、C(s)、CO(g)、CO2(g)组成的平衡体系;(2) 由Fe(s)、FeO(s)、Fe3O4(s)、C(s)、CO(g)、CO2(g)组成的平衡体系;(3) Na2SO4水溶液,其中有Na2SO4(s)、H2O、H + 和OH -;(4) 已知Na2SO4水溶液中有+、、(l)、(s)、H + 和OH -。
物理习题解答(48学时)注意:题号为红色字体的题目或者是标注过了解的计算题进行了解即可。
第一章 质点运动学一、选择题:1(D ),2(D ), 3(C ), 4(B ), 5(D ), 6(B ), 7(B ), 8(B ),9(D ), 10(C ), 11(B ), 12(C ) 二、填空题:1、 )]()5cos()5sin([50SI j t i t+-, 0, 圆;2、]sin 2cos )[(22t t Aetωβωωωββ+--, 2,1,0)21(=+n n ωπ;3、tS ∆,t v ∆-02 ;4、24020)(,R bt v b bt v +++;5、)/(4,1622s rad Rt ; 6、(1),(3),(4);7、)1(22S S +;8、)(4SI j i +-; 9、)/(20s m ;10、)/(1.02s m ;11、)(1,)(,2RC b cRct b c ±--;12、)/(20),/(3.17s m s m三、计算题1.解:(1))/(5.0/s m t x v -=∆∆=;(2)269/t t dt dx v -==, s m v /6)2(-=; (3)m x x x x s 25.2|)5.1()2(||)1()5.1(|=-+-=.2.解:t dt dv a 4/==,tdt dv 4=⎰⎰=tvtdt dv 04, 22t v =22/t dt dx v ==⎰⎰=xtdt t dx 10022)(103/23SI t x +=.3.(了解)解:(1)t v x 0=, 221gt y =轨迹方程是:2022/v g x y =.(2)0v v x =, gt v y =.速度大小为: 222022t g v v v v y x +=+=.方向为:与X轴的夹角)/(01v gt tg -=θ22202//t g v t g dt dv a t +==,与v 同向.222002122/)(t g v g v a g a tn +=-=,方向与t a 垂直.4.解:由t kv dt dv 2/-=ktdt v dv -=2 积分:⎰⎰-=tdt k vdv2 C kt v +-=-2211当0=t 时,0v v = 01v C -=∴ 得:21211v kt v += 5.解:设质点在x 处的速率为v ,262x dtdx dx dv dt dv a +=⋅==⎰⎰+=x vdx x vdv 020)62(s m x x v /)(22/13+=6.解:选地面为静止参考系s ,火车为运动参考系s ',雨滴为运动质点p : 已知:绝对速度:ps v大小未知,方向与竖直方向夹030牵连速度:s m v s s /35=',方向水平; 相对速度:s p v '大小未知,方向偏向车后045.ss '由速度合成定理:s s s p ps v v v ''+=由矢量关系式画出矢量图,由几何关系可得:3530sin 30cos 00=+ps ps v vs m v ps /6.25=.第二章 牛顿定律一、选择题:1(B ),2(D ), 3(E ), 4(C ), 5(B ), 6(C )。
大学物理力学练习题及答案一、选择题(每题2分,共20分)1. 一个物体质量为2kg,受到的力是3N,该物体的加速度大小为多少?A. 0.3 m/s^2B. 1.5 m/s^2C. 6 m/s^2D. 1 N/kg答案:B2. 假设一个物体在重力作用下自由下落,那么它的重力势能和动能之间的关系是?A. 重力势能和动能相等B. 重力势能大于动能C. 重力势能小于动能D. 重力势能减少,动能增加答案:A3. 力的合成是指两个或多个力合并后的结果。
如果两个力大小相等并且方向相反,则它们的合力为A. 0B. 1C. 2D. 无法确定答案:A4. 在一个力的作用下,一个物体做匀速直线运动。
可以推断出物体的状态是A. 静止状态B. 匀速运动状态C. 加速运动状态D. 不能判断答案:B5. 牛顿运动定律中,质量的作用是用来描述物体对力的抵抗程度,质量越大,则物体对力的抵抗越小。
A. 对B. 错答案:B6. 一个物体以20 m/s的速度做匀速圆周运动,周长为40π m,物体的摩擦力大小为F,那么物体受到的拉力大小为多少?A. 0B. FC. 2FD. 4F答案:C7. 一个质量为1 kg的物体向左受到3 N的力,向右受到2 N的力,则该物体的加速度大小为多少?A. 1 m/s^2B. 2 m/s^2C. 3 m/s^2D. 5 m/s^2答案:A8. 弹力是一种常见的力,它的特点是随着物体变形而产生,并且与物体的形状无关。
A. 对B. 错答案:A9. 一个物体受到两个力,力的合力为2 N,其中一个力的大小为1 N,则另一个力的大小为多少?A. 1 NB. 0 NC. -1 ND. 无法确定答案:A10. 在竖直抛体运动过程中,物体的速度在上升过程中逐渐减小,直到达到峰值后开始增大。
A. 对B. 错答案:B二、计算题(每题10分,共40分)1. 一个物体以5 m/s的初速度被一个10 N的力加速,物体质量为2 kg,求物体在2秒后的速度。
⼤学物理习题及解答(运动学、动量及能量)1-1.质点在Oxy 平⾯内运动,其运动⽅程为j t i t r )219(22-+=。
求:(1)质点的轨迹⽅程;(2)s .t 01=时的速度及切向和法向加速度。
1-2.⼀质点具有恒定加速度j i a 46+=,在0=t 时,其速度为零,位置⽮量i r 100=。
求:(1)在任意时刻的速度和位置⽮量;(2)质点在oxy 平⾯上的轨迹⽅程,并画出轨迹的⽰意图。
1-3. ⼀质点在半径为m .r 100=的圆周上运动,其⾓位置为342t +=θ。
(1)求在s .t 02=时质点的法向加速度和切向加速度。
(2)当切向加速度的⼤⼩恰等于总加速度⼤⼩的⼀半时,θ值为多少?(3)t 为多少时,法向加速度和切向加速度的值相等?题3解: (1)由于342t +=θ,则⾓速度212t dt d ==θω,在t = 2 s 时,法向加速度和切向加速度的数值分别为 222s 2t n s m 1030.2-=??==ωr a22s t t s m 80.4d d -=?==t r a ω(2)当2t 2n t 212a a a a +==时,有2n 2t 3a a=,即 22212)24(3)r t (tr = s 29.0s 321==t此时刻的⾓位置为 rad.t 153423=+=θ (3)要使t n a a =,则有2212)24()t (r tr =s .t 550=3-1如图所⽰,在⽔平地⾯上,有⼀横截⾯2m 20.0=S 的直⾓弯管,管中有流速为1s m 0.3-?=v 的⽔通过,求弯管所受⼒的⼤⼩和⽅向。
解:在t ?时间内,从管⼀端流⼊(或流出)⽔的质量为t vS m ?=?ρ,弯曲部分AB 的⽔的动量的增量则为()()A B A B v v t vS v v m p -?=-?=?ρ依据动量定理p I ?=,得到管壁对这部分⽔的平均冲⼒()A B v v I F -=?=Sv t ρ从⽽可得⽔流对管壁作⽤⼒的⼤⼩为N 105.2232?-=-=-='Sv F F ρ作⽤⼒的⽅向则沿直⾓平分线指向弯管外侧。
第十章练习一一、选择题1、以下四种运动〔忽略阻力〕中哪一种是简谐振动?〔〕(A)小球在地面上作完全弹性的上下跳动(B)细线悬挂一小球在竖直平面上作大角度的来回摆动(C)浮在水里的一均匀矩形木块,将它局部按入水中,然后松开,使木块上下浮动 (D)浮在水里的一均匀球形木块,将它局部按入水中,然后松开,使木块上下浮动2、质点作简谐振动,距平衡位置时,加速度a=/s 2,则该质点从一端运动到另一端的时间为〔 〕3、如图下所示,以向右为正方向,用向左的力压缩一弹簧,然后松手任其振动,假设从松手时开场计时,则该弹簧振子的初相位为〔〕(A) 0 (B) 2π (C) 2π-(D) π 4、一质量为m 的物体与一个劲度系数为k 的轻弹簧组成弹簧振子,当其振幅为A 时,该弹簧振子的总能量为E 。
假设将其弹簧分割成两等份,将两根弹簧并联组成新的弹簧振子,则新弹簧振子的振幅为多少时,其总能量与原先弹簧振子的总能量E 相等〔〕(A)2A (B) 4A(C)2A (D)A 二、填空题1、简谐振动A x =)cos(0ϕω+t 的周期为T ,在2Tt =时的质点速度为,加速度为。
2、月球上的重力加速度是地球的1/6,假设一个单摆(只考虑小角度摆动)在地球上的振动周期为T ,将该单摆拿到月球上去,其振动周期应为。
3、一质点作简谐振动,在同一周期内相继通过相距为11cm 的A,B 两点,历时2秒,速度大小与方向均一样,再经过2秒,从另一方向以一样速率反向通过B 点。
该振动的振幅为,周期为。
4、简谐振动的总能量是E ,当位移是振幅的一半时,k E E =,P E E =,当xA=时,k P E E =。
三、计算题1、一振动质点的振动曲线如右图所示, 试求:(l)运动学方程; (2)点P 对应的相位;(3)从振动开场到达点P 相应位置所需的时间。
2、一质量为10g 的物体作简谐运动,其振幅为24 cm ,周期为4.0s ,当t=0时,位移为+24cm 。
工科热学总复习参考资料一、填空题1、一定量理想气体,从同一状态开始把其体积由0V 压缩到021V ,分别经历等压、等温、绝热三种过程.其中:__________过程外界对气体做功最多;__________过程气体内能减小最多;__________过程气体放热最多.2、质量为M ,摩尔质量为μ的理想气体在温度为T 的平衡态下,根据能量按自由度均分定理,每个自由度的能量均为 ;内能为 。
3、一理想卡诺热机在温度为300 K 和400 K 的两个热源之间工作。
则卡诺热机效率为 ;若把高温热源温度提高100 K ,则其效率可提高为原来的 倍;4、已知氧气的压强Pa ,体积233.0010 m V -=⨯,则其内能E = ___J 。
5、理想气体的压强和温度公式分别是___和___。
6、 常温常压下,一定量的某种理想气体,其分子可视为刚性分子,自由度为i ,在等压过程中吸热为Q ,对外做功为A ,内能增加为E ∆,则 A /Q =________. =∆Q E / ________.7、在p V 图上(1)系统的某一平衡态用________来表示;(2)系统的某一平衡过程用________来表示;(3)系统的某一平衡循环过程用________来表示.8、如图所示,一定量的理想气体经历a →b →c 过程,在此过程中气体从外界吸收热量Q ,系统内能变化ΔE ,请在以下空格内填上>0或<0或=0:Q ________,ΔE ________.二、选择题1、如果卡诺热机的循环曲线所包围的面积从图中的abcda 增大为ab ′c ′da ,那么循环abcda 与ab ′c ′da 所做的净功和热机效率变化情况是:( )(A)净功增大,效率提高. (B)净功增大,效率降低.(C)净功和效率都不变. (D)净功增大,效率不变.2、在温度分别为 327 ℃和27 ℃的高温热源和低温热源之间工作的热机,理论上的最大效率为( )(A)25%. (B)50%. (C)75%. (D)91.74%.3、“理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外做功.”对此说法,有如下几种评论,哪种是正确的?( )(A)不违反热力学第一定律,但违反热力学第二定律.(B)不违反热力学第二定律,但违反热力学第一定律.(C)不违反热力学第一定律,也不违反热力学第二定律.(D)违反热力学第一定律,也违反热力学第二定律.4、 热力学第一定律表明: ( )(A) 系统对外做的功不可能大于系统从外界吸收的热量.(B) 系统内能的增量等于系统从外界吸收的热量.(C) 不可能存在这样的循环过程,在此循环过程中,外界对系统做的功不等于系统传给外界的热量.(D) 热机的效率不可能等于1.5、 如图所示,bca 为理想气体绝热过程,b 1a 和b 2a与吸收热量的情况是: ( )(A) b 1a 过程放热,做负功;b 2a 过程放热,做负功.(B) b 1a 过程吸热,做负功;b 2a 过程放热,做负功.(C) b 1a 过程吸热,做正功;b 2a 过程吸热,做负功.(D) b 1a 过程放热,做正功;b 2a 过程吸热,做正功.6、根据热力学第二定律判断下列哪种说法是正确的. ( )(A) 功可以全部变为热,但热不能全部变为功.(B) 热量能从高温物体传到低温物体,但不能从低温物体传到高温物体.(C) 气体能够自由膨胀,但不能自动收缩.(D) 有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能变为有规则运动的能量.7、根据热力学第二定律判断下列哪种说法是正确的(A) 功可以全部变为热,但热不能全部变为功.(B) 热量能从高温物体传到低温物体,但不能从低温物体传到高温物体. O pO T V图8 (C) 气体能够自由膨胀,但不能自动收缩.(D) 有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能变为有规则运动的能量.8、下列说法正确的是___。
工科力学总复习参考资料一、填空题1、牛顿第二定律的微分表达式是 。
2、人造地球卫星绕地球作椭圆运动,地球在椭圆的一焦点上,则卫星相对地球的动量 ,动能 ,角动量 (填守恒或不守恒)。
3、某质点在力i x F )54(+=(SI )的作用下沿x 轴作直线运动。
在从x=0移动到x=10m的过程中,力F 所做功为 。
4、一质点沿x 方向运动,其加速度随时间的变化关系为t a 23+=(SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度大小v= 。
5、角动量守恒的条件是 ,质点系的内力 系统的角动量(改变或不改变),刚体转动的角动量表达式为 。
6、经典力学的时空观是 ,时空坐标变换关系是 ;爱因斯坦相对论的时空观是 ,时空坐标变换关系是 。
7、两列波产生稳定干涉图样的条件是: 、 、 。
8、刚体运动的两种基本形式是___和___。
9、质点运动方程223x t t =+-,x 以米计,t 以秒计,则该质点2秒末的速度v = 。
10、机械波按传播方向与振动方向之间的关系可分为___波和___波。
11、产生机械波必须具备两个条件即 和 ;绳波是 ,声波是 。
(填横波或纵波)12、已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量),则质点的速度表达式是 ,加速度表达式是 ,质点运动轨迹方程是 。
13、质点运动经一闭合路径,保守力对质点作的功为 ;保守力作正功时,系统内相应的势能 (增加或减小)。
二、选择题1、一个物体能否被看作质点,你认为主要由以下四个因素中哪个因素决定 :(A) 物体的大小 (B) 物体的内部结构(C) 所研究问题的性质 (D) 物体的形状2、一运动质点在某瞬时位于矢径),(y x r 的端点处,其速度大小为 (A)dtdr (B)dt r d(C)dtr d || (D) 22)()(dt dy dt dx + 3、一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为(A )t R t R ππ2,2 (B ) t R π2,0 (C ) 0,0 (D ) 0,2tR π 4、弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为(A)kA 2 (B) kA 2/2 (C) kA 2/4 (D)05、下列哪种力不是保守力(A )重力 (B )万有引力 (C )库仑力 (D )摩擦力6、下列叙述中正确的是___。
《工科大学化学》物理化学部分课后习题参考答案第 1 章化学热力学基本定律与函数第第第 1 1 1 章章章化学热力学基本定律与函数化学热力学基本定律与函数化学热力学基本定律与函数习题?1.1mol 双原子理想气体在 300 K、101 kPa 下,经恒外压恒温压缩至平衡态,并从此状态下QU WH恒容升温至 370 K、压强为 1 010 kPa。
求整个过程的、、及。
(答案:△U 1455 J,△H 2037 J,W17727 J,Q -16272 J)UH解: 第一步:恒外压恒温压缩至平衡态, 0, 03 3V 8.314×300/101×10 24.695dm ,13 3此平衡态的体积就是末态的体积 V , V 8.314×370/1010×10 3.046dm2 2-3此平衡态的压强 P’8.314×300/3.046×10 818.84kPa3 -3W-P’V -V -818.92×10 ×3.046-24.695×10 17727 J17.727 kJ2 1-QW17.727 kJ Q-17.727 kJ第一步: 因恒容 W0UQ C T -T 20.79×370-3001455.3 J1.455 kJv v,m 2 1H20.79+R×702037.3 J2.037 kJ整个过程:W17.727 kJ;Q -17.727+1.455 -16.27 kJ;UH1.455 kJ ;2.037 kJ。
UH2.设有 0.1 kg N ,温度为 273.15 K,压强为 101325 Pa,分别进行下列过程,求、、2QW及。
?1 恒容加热至压强为 151987.5 Pa;2 恒压膨胀至原体积的 2 倍;3 恒温可逆膨胀至原体积的 2倍;4 绝热可逆膨胀至原体积的2倍。
?4 4(答案: ①△U Q 1.01×10 J,△H 1.42×10 J,W 0;V②△H QP 28.4 kJ,△U 20.20 kJ,W -8.11 kJ;③ Q 5622 J ,W -5622 J,△H △U 0 J;④ Q 0,W △U -4911 J,△H - 6875 J)解: 将 N 气视为双原子理想气体,则2-1 -1C 29.10 J?mol ?K ;p,m-1 -1C 20.79 J?mol ?Kv,m1 W0, 末态温度 T 1.5T 1.5×273.15 K2 14U∴ Qvn CvT2-T1 100/28×20.79×1.5×273.15-273.151.01×10 J4Hn C T -T 100/28×29.10×1.5×273.15-273.151.42×10 Jp 2 12 末态温度 T 2T 2×273.15K2 1HQ n CpT -T 100/28×29.10×2×273.15-273.15 28388 J28.4 kJp 2 1Un CvT2-T1 100/28×20.79×273.15 20201 J20.20 kJVW -P -101325×100/28×8.314×273.15/101325 -8110J -8.11kJUH3 理想气体恒温, 0,W -Q -100/28×8.314×273.15×ln2 -5622 J -5.62 kJ0.4 0.4T V T V1 12 24 运用理想气体绝热过程方程:0.4 0.4T 1/2 ×T 1/2 ×273.15 207 K2 1Q0UTW n Cv,m 100/28×20.79×207-273.15 -4911 J - 4.911 kJH 100/28×29.10×207-273.15-6875 J -6.875 kJ-13.在 373.15 K、101325 Pa 下,1 mol 水缓慢蒸发。
第一章 质点运动学本章提要1、 参照系:描述物体运动时作参考的其他物体.2、 运动函数:表示质点位置随时间变化的函数.位置矢量:k t z j t y i t x t r r)()()()(++==位置矢量:)()(t r t t r r-∆+=∆一般情况下:r r∆≠∆3、速度和加速度: dtrd v= ; 22dt r d dt v d a == 4、匀加速运动: =a 常矢量 ; t a v v +=0 2210t a t v r +=5、一维匀加速运动:at v v +=0 ; 2210at t v x += ax v v 2202=-6、抛体运动: 0=x a ; g a y -=θcos 0v v x = ; gt v v y -=θsin 0t v x θcos 0= ; 2210sin gt t v y -=θ7、圆周运动:t n a a a+=法向加速度:22ωR R v a n == 切向加速度:dtdv a t =8、伽利略速度变换式:u v v+'=典型例题分析与解答1.如图所示,湖中有一小船.岸上有人用绳跨过定滑轮拉船靠岸.设滑轮距水面高度为h,滑轮到原船位置的绳长为l.当人以匀速v 拉绳,船运动的速度v '为多少 解:取如图所示的坐标轴, 由题知任一时刻由船到滑轮的绳长为l=l 0-vt 则船到岸的距离为:22022)(-h -vt l -h l x ==因此船的运动速率为:20 ⎪⎪⎭⎫ ⎝⎛--==vt l h l vdtdxv2.一质点具有恒定的加速度2)46(m/s j i a+=,在t=0时刻,其速度为零, 位置矢量i r10= m.求:1在任意时刻的速度和位置矢量;2质点在 xoy 平面的轨迹方程,并画出轨迹的示意图.解. 1由加速度定义dt vd a =,根据初始条件 t 0=0 v 0=0 可得⎰⎰⎰+==tt v )dt j i (dt a v d 046s m j t i t v /)46(+=由dtrd v =及 t 0=0ir r100==得⎰⎰⎰+==t t r r dt j t i t dt v r d 0)46(0m j t i t j t i t r r ]2)310[(2322220 ++=++=2由以上可得质点的运动方程的分量式x=xt y=yt 即 x=10+3t 2y=2t 2消去参数t,得质点运动的轨迹方程为 3y=2x-20这是一个直线方程.由m i r100=知x 0=10m,y 0=0.而直线斜率 32===tga dy/dx k ,X10则1433'= a 轨迹方程如图所示3. 质点的运动方程为23010t t -x +=和22015t t-y =,SI 试求:1 初速度的大小和方向;2加速度的大小和方向.解.1速度的分量式为 t -dx/dt v x 6010+==t -dy/dt v y 4015==当t=0时,v 0x =-10m/s,v 0y =15m/s,则初速度的大小为01820200.v v v y x =+=m/s 而v 0与x 轴夹角为 1412300'== xy v v arctga2加速度的分量式为 260-xx ms dtdv a ==240-y y ms dt dv a == 则其加速度的大小为 17222.a a a yx =+=ms -2 a 与x 轴的夹角为 1433'== -a a arctgxy β或91326'4. 一质点以25m/s 的速度沿与水平轴成30°角的方向抛出.试求抛出5s 后,质点的速度和距抛出点的位置.解. 取质点的抛出点为坐标原点.水平方向为x 轴竖直方向为y 轴, 质点抛出后作抛物线运动,其速度为 αcos 0v v x =gt v v y -=αsin 0则t=5s 时质点的速度为 v x =s v y =s质点在x,y 轴的位移分别为Xx=v 0x t= 060220.-gt t-v y y ==m 质点在抛出5s 后所在的位置为 )06025108(j .-i .j y i x r=+=m5.两辆小车A 、B 沿X 轴行驶,它们离出发点的距离分别为 XA=4t+t 2, XB= 2t 2+2t 3SI 问:1在它们刚离开出发点时,哪个速度较大2两辆小车出发后经过多少时间才能相遇3经过多少时间小车A 和B 的相对速度为零 解.1 t /dt dx v A A 24+==264t t /dt dx v B B +==当 t=0 时, v A =4m/s v B =0 因此 v A > v B2当小车A 和B 相遇时, x A =x B 即 322224t t t t +=+ 解得 t=0、 无意义3小车A 和B 的相对速度为零,即 v A -v B =0 3t 2+t-2=0 解得 t= . -1s 无意义.第二章 质点力学牛顿运动定律本章提要 1、牛顿运动定律牛顿第一定律 o F = 时 =v常矢量牛顿第二定律 k ma i ma i ma a m F z y x++==牛顿第三定律 'F F-= 2、技术中常见的几种力:重力 g m P= 弹簧的弹力 kx f -= 压力和张力滑动摩擦力 N f k k μ= 静摩擦力 N f s s μ≤3、基本自然力:万有引力、弱力、电磁力、强力.4、用牛顿运动定律解题的基本思路:认物体→看运动→查受力画示力图→列方程 5、国际单位制SI量纲:表示导出量是如何由基本量组成的幂次式.典型例题分析与解答1. 一木块在与水平面成a 角的斜面上匀速下滑.若使它以速度v 0沿此斜面向上滑动,如图所示. 证.选如图所示坐标,当木块匀速下滑时, mgsina-f =0因此木块受到的摩擦阻力为 f = mgsina 1 当木块上行时,由牛顿第二定律有 - mgsina - f=ma 2联立12式可得a= -2gsina式中负号表示木块沿斜面向上作匀减速直线运动.木块以初速v 0开始向上滑至某高度时,v=0,由v 2=v 02+2as 可得木块上行距离为s=-v 02/2a=v 02/4gsina2.如图所示,已知F=×104N,m1=×103kg,m2=×103kg 两物体与平面间的摩擦系数为,设滑轮与绳间的摩擦系数均不计算.求质量m 2物体的速度及绳对它的拉力. 解.如图所示,设m 2的加速度为a 2,m 1的加速度 为a 1.由牛顿第二定律分别列出m 1,m 2的运动方xyN f PPF Nfam 1gm 2gFf 2T程为22221111a m g m -T a m g m -F-T ==μμ由于滑轮质量、滑轮与绳之间的摩擦力不计,则有021=''-T T 考虑到2211T ',T T 'T ==,且绳子不被拉长,则有122a a = 联立上述各式,可得2121227844)2(22-m.s .m m m m g F-a =++=μN .a g m T 422210351)(⨯=+=μ3.在一只半径为R 的半球形碗内,有一粒质量为m 的小钢球.当小钢球以角速度ω在水平面内沿碗内壁作匀速圆周运动时,它距碗底有多高解.如图所示,钢球以角速度ω在水平面内沿碗内壁作匀速圆周运动.当它距碗底高为h 时,其向心加速度为θωωsin 22R r a n ==,钢球所受到的作用力为重力P 和碗壁对球的支持力N,其合力就是钢球匀速圆周运动所需的向心力F.由图 有 θωθsin sin 2mR N F ==`则 2ωmR N = 1 考虑到钢球在垂直方向受力平衡,则有 mg P N ==θcos 2由图可知 /R R-h )(cos =θ. 故有 2ωR-g/h =4. 一质量为m 的小球最最初位于如图所示的A 点,然后沿半径为r 的光滑圆弧的内表面ADCB 下滑.试求小球在点C 时的角速度和对圆弧表面的作用力.解.取图所示的坐标系,小球在运动过程中受重力P 和圆弧内表面的作用力N.由FP牛顿第二定律得小球在切向方向运动方向方程为 t t ma F = 即 mdv/dt a -mg =sin由 /dt rd ds/dt v α== 可得 /v rd dt α=. 将其代入上式后,有 ααd -rg vdv sin =根据小球从A 运动到C 的初末条件对上式两边进行积分,则有 ⎰⎰=απαα2)sin (0d rg vdv v 得αcos 2rg v =小球在C 点的角速度为 /r g v/r αωcos 2== 小球在法线方向的运动方程为 F n =ma n 即 ααcos 2cos 2mg /r mv N-mg ==由此得小球对圆弧的作用力为 αcos 3mg --N N'==5.有一个可以水平运动的倾角为α的斜面,斜面上放一质量为m 的物体,物体与斜面间的静摩擦系数为μ,如果要使物体在斜面上保持静止,斜面的水平加速度应如何解.物体m 在斜面上保持静止,因而具有和斜面相同的加速度a.可以直观的看出,如果斜面的加速度太小,则物体将向下滑;如果斜面的加速度过大, 则物体会向上滑.1假定物体静止在斜面上,但有向下滑的趋势; 物体受力分析如图1所示,由牛顿运动定律有)(sin cos -a m -N f =αα 0cos sin =+-mg N f ααN f μ≤则 g aμa aa-μa sin cos cos sin +≥1假定物体静止在斜面上,但有向上滑的趋势;物体受力分析如图2所示,由牛顿运DCtmgaxy动定律有)(sin cos -a m -N f =-αα 0cos sin =+--mg N f ααN f μ≤则 g aμa aμa a sin cos cos sin -+≤故g a μa a μa a g a μa a a-μsin cos cos sin sin cos cos sin -+≤≤+第三章 功与能本章提要 1、功:r d F dW⋅=⎰⎰⎰⎰++==⋅==BAB ABAz y x dz f dy f dx F dr F r d F dW W )(cos θ2、动能定理:21212221mv mv W -= 3、保守力与非保守力:⎰=⋅=Lr d F W 0 保 ⎰≠⋅=Lr d F W 0非4、势能:对保守内力可以引入势能概念 万有引力势能:rm m GE p 21-=以两质点无穷远分离为势能零点. 重力势能:mgh E p =以物体在地面为势能零点.弹簧的弹性势能:221kx E p =以弹簧的自然伸长为势能零点. 5、机械能受恒定律:在只有保守内力做功的情况下,系统的机械能保持不变. 1、用力推地面上的石块.已知石块的质量为20kg,力的方向和地面平行. 推力随位移的增加而线性增加,即F=6xSI.试求石块由x 1=16m 移到x 2= 20m 的过程中,推力所作的功.xy解.由于推力在作功过程中是一变力,按功的定义有J -xdx x d F W x x 432)1620(3622201621===⋅=⎰⎰2、一颗速率为700m/s 的子弹,打穿一木块后速率降为500m/s.如果让它继续穿过与第一块完全相同的第二块木板.求子弹的速率降到多少解.由动能定理可知,子弹穿过第一块和第二块木板时克服阻力所作的功分别为222123212212122211mv-mv W mv -mv W ==式中v 1为子弹初速率,v 2为穿过第一块木板后的速率,v 3为穿过第二块木板后的速率.由题意知两块木板完全相同,因此子弹穿过木板过程中克服阻力所作的功可认为相等,即 W 1=W 2,故有 2221232121212221mv -mv mv -mv =由此得子弹穿过第二块木板后的速率为 m/s -v v v 100221223==3、.用铁锤把钉子敲入木板.设木板对钉子的阻力与钉子进入木板的深度成正比.若第一次敲击能把钉子打入木板m 101.0-2⨯.第二次打击时, 保持第一次打击钉子的速度,那么第二次能把钉子打多深.解.锤敲钉子使钉子获得动能.钉子钉入木板是使钉子将获得的动能用于克服阻力作功.由于钉子所受阻力f 与进入木板的深度x 成正比,即f=kx,其中k 为阻力系数.而锤打击钉子时,保持相同的速度,故钉子两次进入木板过程中所作功也相等, 所以有⎰⎰=xkxdx kxdx 01.001.00m x 0141.0=即钉子经两次敲击进入木板的总深度为.由此可知第二次打击使钉子进入木板的深度为 m .x-x d 004101==4、一半径为R 的光滑球固定在水平面上. 另有一个粒子从球的最高点由静止沿球面滑下.摩擦力略去不计.求粒子离开球的位置以及粒子在该位置的速度.解.如图所示,粒子在光滑球面上滑动时仅受球面支持力和地球引力 mg 的作用.由于N 始终与球的运动方向垂直,故系统机械能守恒.当粒子从最高点A 滑至离开球的位置B时,有 θcos 221mgR mv mgR += 根据牛顿第二定律,有21cos mv N mg R=-θ 而粒子刚好离开时,N=0.因此有θθcos cos 21mgR mgR mgR +=则物体刚离开球面处的角位置为此时,粒子的速率为Rg gR v 32cos ==θ v 的方向与P 夹角为 8.4190=-=θa5、一劲度系数为K 的水平轻弹黉,一端固定在墙上,另一端系一质量为M 的物体A 放在光滑的水平面上.当把弹黉压缩x 0后,再靠着A 放一质量为m 的物体B,如图所示.开始时系统处于静止,若不计一切摩擦.试求:1物体A 和B 分离时,B 的速度;2物体A 移动过程中离开o 点的最大距离.解.1以A 、B 及弹黉为系统,假定A 、B 分离时的共同速度为v. 由机械能守恒定律,有2021221)(kx v m M =+则 0)(x m M K/v +=2若设x 为物体A 离开o 点的最大距离,由系统机械能守恒,有221221kx Mv =则0)(x m M M/x +=248arccos 32.==θ第四章 动量本章提要1、动量定理:合外力的冲量等于质点或质点系动量的增量.21p p dt F -=对于质点系∑=ii p p2、动量受恒定律:系统所受合外力为零时,∑=ii p p常矢量.3、质心的概念质心的位矢:∑∑=i i i iii c r m m mrm r )1(⎰=dm r mr c1 4、质心运动定律:质点系所受的合外力等于其总质量乘以质心的加速度.c a m F=质点系的动量受恒等同于它的质心速度不变.1、如图所示,质量为m 、速度为v 的子弹,射向质量为M 的靶,靶中有一小孔, 内有劲度系数为k 的弹黉,此靶最初处于静止状态,但可在水平面作无摩擦滑动.求子弹射入靶内弹黉后,弹黉的最大压缩距离.解.质量为m 的子弹与质量为M 的靶之间的碰撞是从子弹与固定在靶上的弹黉接触时开始的,当弹黉受到最大压缩时,M 和m 具有共同的速度v 1, 此时弹黉的压缩量为x 0.在碰撞过程中,子弹和靶组成的系统在水平方向上无外力作用, 故由动量守恒定律可得1)(v M m mv += 1在碰撞过程中,系统的机械能守恒,有20212121221)(kx v M m mv ++= 2M联立1 2式,得)(0M m k mMvx +=2、质量为kg 107.2-23⨯、速率为m/s 106.07⨯的粒子A, 与另一个质量为其一半而静止的粒子B 发生完全弹性的二维碰撞,碰撞后粒子A 的速率为m/s 105.07⨯.求 1粒子B 的速率及相对粒子A 原来速度方向的偏角;2;粒子A 的偏转角.解.取如图所示的坐标.当A 、B 两粒子发生碰撞时,系统的动量守恒.在xoy 平面内的二维直角坐标中,有αβcos mv cos mv 21mv B221A222A1+=+=x B x A mv mv αβin s m v sin m v 0B221A2-=由碰撞前后系统机械能守恒,有2A2212B2212A121mv(m/2)vmv+=则碰撞后粒子B 的速率为m /s.104.69v 7B2⨯=粒子B 相对于粒子A 原方向的偏转角6'54 =β, 粒子A 的偏转角20'22 =a3、如图所示为一弹黉振子,弹黉的劲度系数为K,质量不计.有一质量为m 、速度为v 的子弹打入质量为M 的物体,并停留在其中,若弹黉被压缩的长度为x,物体与平面间的滑动摩擦系数为μ,求子弹的初速度. 解.以M 、m 和弹黉为研究对象,系统在水平 方向动量守恒,有mv=m+Mu 1子弹打入物体后,在弹黉被压缩的过程中, 由功能原理,可得v A1B2M)gx (m Kx M)u (m 221221++=+μ 2 联立12式得gx2m)/(M Kx m Mm v 2μ+++=4、质量为m 的物体从斜面上高度为h 的A 点处由静止开始下滑,滑至水平段B 点停止.今有一质量为m 的子弹射入物体中,使物体恰好能返回到斜面上的A 点处. 求子弹的速率.解.以地球和物体为研究系统,物体从A 处滑到B 处的过程中,由功能原理可得摩擦力的功的数值 为 W f =mgh取子弹和物体为系统,子弹射入物体的过程系统的动量守恒,有 mv=2mu再以地球、物体和子弹为系统,由功能原理有2mgh -(2m)u 2W 221f = 由此可得gh 4v =5、如图所示,质量为m 的小球沿斜坡在h 处由静止开始无摩擦滑下, 在最低点与质量为M 的钢块作完全弹性碰撞.求:1碰撞后小球沿斜坡上升的高度.2若钢块和地面间摩擦系数为μ,碰撞后钢块经过多长时间后停下来.解.小球沿斜坡滑下过程中系统机械能守恒221mv mgh = 小球m 以速度v 在斜坡底端和M21Mv m v m v +=A m22212121221Mv mv mv +=小球沿斜坡上升过程中系统机械能守恒,有mgh'mv 2121=若钢块M 在平面上运动经t ∆秒后停下来,由动量定理有2Mv -0t Mg -=∆μ联立求解可得h m M m M h'2⎪⎭⎫⎝⎛+-= g h m M m t /2)(2+=∆μ 第五章 刚体的转动本章提要:1、 刚体的定轴转动:角速度:dt d θω=角加速度;dtd ωβ=匀加速转动:t βωω+=0 22100t t βωθθ+=- βθωω2202=-2、 刚体的定轴转动定律:βJ M =3、 刚体的转动惯量:∑=iii rm J 2⎰=dm r J 2平行轴定理2md J J c +=4、 力矩的功:⎰=θMd W转动动能:221ωJ E k =刚体定轴转动的动能定理:2021221ωωJ J W -=刚体的重力势能:c p mgh E =机械能守恒定律:只有保守力做功时,=+p k E E 常量5、 角动量:质点的角动量:v r m P r L⨯=⨯=质点的角动量定理:L dtd M=质点的角动量守恒定律:=⨯==v m r L M, 0常矢量刚体定轴转动的角动量:ωJ L = 刚体定轴转动的角动量定理:L dtd M =刚体定轴转动的角动量受恒定理:当合外力矩为零时 =ωJ 常量1、设某机器上的飞轮的转动惯量为转动的角速度为,在制动力矩的作用下,飞轮经过20s 匀减速地停止转动,求角加速度和制动力矩.解.由题意知飞轮作匀减速运动,角加速度β应为常量,故有-1.57rad/s 31.4)/20-(0)/t -(0===ωωβ.根据转动定律,可得制动力矩-99.9N.m (-1.57)63.6J M =⨯==β式中负号表示角加速度、制动力矩的方向均与飞轮转动的角速度方向相反. 2、如图a 所示为一阿脱伍德Atwood 机.一细而轻的绳索跨过一定滑轮, 绳的两端分别悬有质量为m 1和m 2的物体,且m 1>m 2.设定滑轮是一质量为M 、半径为r 的圆盘,绳的质量不计,且绳与滑轮间无相对运动.试求物体的加速度和绳的张力.如果略去滑轮的运动,将会得到什么结果解.分别作出滑轮M,物体m 1和m 2的受力分析图如图b 所示.由于绳索质量不计,且长度不变,故m 1和m 2,均为.对物体m 1和m 2以及滑轮M , m 1g-T 1=m 1a 1 T ’2-m 2g=m 2a ’ βJ )r T -(T 21= 3m 21aa2P 11 2而 221Mr J = 4βr a = 5 联立12345式,可得g M/2m m m -m a 2221++=g m M/2m m M/22m T l 2221+++=g m M/2m m M/22m T 22212+++=如果略去滑轮的运动,即T 1=T 2=T,有2121m m )g m -(m a +=212121m m gm 2m T T T +===3、质量为,长为的均匀细棒,可绕垂直于棒的一端的水平轴转动.如将此棒放在水平位置,然后任其下落.求:1在开始转动时的角加速度;2下落到铅直位置时的动能;3下落到铅直位置时的角速度.解.1如图所示,棒绕端点o 的转动惯量J=m l 2/3. 在水平位置时,棒所受的重力矩 M根据转动定律,得36.8rad.s )3g/(2M/J ===l β 2取棒和地球为系统,心点A 处为重力势能零点.在棒的转动过程中只有 保守内力作功,系统的机械能守恒.棒从静止时的水 平位置下落到竖直位置时,其动能为 E k =mg l /2=3棒在竖直位置时的动能就是此刻棒的转动动能,则有E k =1/2 J ω2,所以竖直位置时棒的角速度为8.57rad/s 3g//J 2E k ===l ω4、如图所式,A 、B 两个轮子的质量分别为m 1和m 2,半径分别为r 1和r 2.另有一绳绕在两轮上,并按图示连接.其中A 轮绕固定轴o 转动.试求:1B 轮下落时, 其轮心的加速度;2细绳的拉力.解.取竖直向下为x 轴正向,两轮的受力分析如图示.A 轮绕轴o 作定轴转动,故有A 211211r m r ' T β= 且 1A A /r a =β故 A 121a m ' T = 1对于B 轮除了绕其轴C 的转动外,还有B 轮质心C 的平动.根据牛顿定律,B 轮质心运动方程为 c 22a m T -g m = 2又根据转动定律,对B 的转动有 B 222212r m Tr β=且有 2B B /r a =β故 B 221a m T = 3 而 T=T 'a A =a c -a B 4 联立求解可得2T/m 1=a c -2T/m 2 故 21c212m 2m a m m T +=5联立25式可得 2121c 2m 3m )g m 2(m a ++=2121c 2m 3m gm m )a -(g m T +==5、在图示的装置中,弹黉的劲度系数K=m,滑轮的转动惯量J= 半径R=,物体质量m=6×10-2kg.开始时用手将物体托住使弹黉为原长, 系统处于静止状态.若不计一切摩擦,求物体降落处的速率.解.以滑轮、物体、弹黉和地球为系统,在物体下落过程中.A2Bx设物体下落h=时的速率为v,则 221221221mv J(v/R)Kh mgh ++=0.16m/s )(J/R m Kh)h-(2mg v 2=+=6、如图所示,质量为m 1和m 2 的两物体通过定滑轮用轻绳连接在一起,滑轮与轴、物体与桌面的摩擦忽略不计.当m 1由静止下降距离h 时,求:1若滑轮质量不计,此时m 1的速率是多少2若滑轮的转动惯量J=MR 2/2,此时m 1的速率又为多少 3若在2中把m 1换成拉力F,此时滑轮的角加速度为多少 解.1物体在下落过程中系统的机械能守恒,有221211)v m (m gh m += )m gh/(m 2m v 211+=2考虑到滑轮的转动,在物体下落的过程中,221221212J )v m (m gh m ω++= M/2)m gh/(m 2m v 211++=3由转动定律,有 βJ T)R -(F = 而 βR m m T 22==a 则 M/2)R]F/[(m 2+=β第六章 气体动理论本章提要1、 系统和外界,宏观量和微观量;2、 平衡态和平衡过程;3、 理想气体状态方程:RT mPV μ=普适气体常数: -1-1k mol 8.31J R ⋅⋅=mm h阿佛加德罗常数:123m ol 10023.6-⨯=A N 玻尔兹曼常数:123k J 1038.1--⋅⨯==AN Rk 4、 理想气体的压强:k n v nm P ε32231==5、 温度的统计概念:kT 23=k ε 6、 能均分定理:每一个自由度的平动动能为:kT 21一个分子的总平均动能为:kT 2i=ε mol μM理想气体的内能为:RT 2i M E μ=7、 速率分布函数:NdvdNv f =)( 三速率:最概然速率μRT2kT2==mv p平均速率 πμπRT8kT 8==m v 方均根速率μRT3kT32==mv8、 分子的平均自由程:Pd n d 222kT21ππλ==9、 输送过程:内摩擦输送分子定向动量热传导输送无规则运动能量 扩散输送分子质量1、目前实验室所能获得的真空,其压强为×10-8pa.试问在27℃的条件下, 在这样的真空中每立方厘米内有多少个气体分子 解. 由 P=nkT 可得单位体积内的分子数 n=P/kT=×1012m -3故每立方厘米内的分子数为×106个2、2g 氢气装在20×10-3m 3的容器中,当容器内的压强为×104Pa 时, 氢气分子的平均平动动能为多大解.理想气体分子的平均平动动能取决于温度,且有kT mv23221=, 而一定量气体在确定的体积和压强的前提下,其温度可由状态方程得MRPVT μ=则 J 101.99MRPV23k mv 21-221⨯==μ3、 求温度为127℃的氢气分子和氧气分子的平均速率, 方均根速率及最概然速率.解.分别按平均速率,方均根速率和最概然速率的计算公式, 可求得氢分子相对应的各种速率为m/s 102.06RT/1.60v 3⨯==μm/s 102.23RT/1.73v 32⨯==μm/s 101.82RT/1.41v 3p ⨯==μ由于三种速率与分子的摩尔质量成反比,而4/H 0=μμ,则氧分子的三种速率均为氢分子速率的1/4.即v 0=×102m/s,m/s 105.58v 22⨯=, v p0=×102m/s4、在30×10-3m 3的容器中装有20g 气体,容器内气体的压强为×105Pa,求 气体分子的最概然速率解.最概然速率 μRT/1.41v p =,式中气体的温度T 可根据状态方程,以压强P和体积V 代替,即 PV/(MR)T μ=, 故 389m/s PV /M 1.41v P ==5、收音机所用电子管的真空度为×10-3Pa.试求在27℃时单位体积中的分子数及分子的平均自由程设分子的有效直经d=×10-8cm. 解. 由压强公式可得单位体积中的分子数 n=P/kT=×1017m -3 分子的平均自由程为7.77m P)d 2kT/(2==πλ第七章 热力学基础本章提要1、 准静态过程:过程中的每一个时刻,系统的状态都接近于平衡态.准静态过程中系统对外做的体积功pdV dW = ⎰=21V V PdV W2、 热量:系统和外界或两个物体由于温度不同而交换的热运动能量.3、 热力学第一定律:W )E (E Q 12+-= dW dE dQ +=4、 理想气体的摩尔摩尔热容量:R C 2iV =R C 22i P +=迈耶公式:R C C V P =- 摩尔热容比:i2i C C V P +==γ 5、 理想气体的四种过程:等体过程:0PdV dW V ==RdT dT C E dQ 2V V iM Md μμ===)T R(T )T (T C E E Q 12212V 12V -=-=-=i M Mμμ等压过程:PdV dE dQ P +=)T (T C )T R(T )T (T C PdVE E Q 12P 12212V V 12P 21-=-+-=+-=⎰μμμMiM MV等温过程:0dT = 0dE =pdV dW dQ T T == 1212T T P P RTlnV V RTlnPdV Q W μμMM====⎰ 绝热过程:0dQ = )T(T C PdV W 12V μM --==⎰a 绝热方程:=γPV 常量 =-T V 1γ常量 =--γγT P 1常量6、 循环过程:热循环正循环:系统从高温热源吸热,对外做功,向低温热源放热. 循环效率:121Q Q 1-Q W==η 致冷循环逆循环:系统从低温热源吸热,接收外界做功,向高温热源放热. 致冷系数:21212-Q Q Q =W Q =ω 7、 卡诺循环:系统只与两个恒温热源进行热量交换的准静态循环过程.正循环的效率:12T T 1-=c η 逆循环的致冷系数:212T T T -=c ω8、热力学第二定律:克劳修斯说法热传导 开尔文说法功热转换 9、可逆过程和不可逆过程不可逆:各种实际宏观过程都是不可逆的,而它们的不可逆性又是相互沟通的.三个实例:功热转换、热传导、气体自由膨胀.可逆过程:外界条件改变无穷小的量就可以使过程反向进行的过程其结果是系统和外界能同时回到初态,无摩擦的准静态过程是可逆过程.1、一定质量的空气,吸收了×103J 的热量,并保持在×105Pa 下膨胀,体积从10-2m 3增加到15×10-3m 3,问空气对外作了多少功内能增加了多少 解.空气等压膨胀所作的功为 W=PV 2-V 1=×102J 由热力学第一定律 W E Q +∆=, 可得空气内能的改变为J 101.12W -Q E 3⨯==∆2、100g 水蒸气自120℃升到140℃.问1在等体过程中,2在等压过程中,各吸收了多少热量.解. 水蒸气为三原子分子,其自由自由度为i=6,定体摩尔热容C v =i/2R, 定压摩尔热容 C p =i/2+1R,则 1等体过程中吸收的热量为J102.77 )T -)R(T (M/)T -(T )C (M/dT )C (M/Q 3122i12v v v ⨯====μμμ2等压过程中吸收的热量为J103.69 )T -1)R(T )(i/2(M/)T -(T )C (M/dT )C (M/Q 31212p p p ⨯=+===μμμ3、压强为×105Pa,体积为10-3m 3的氧气0℃加热到100℃,问1当压强不变时, 需要多少热量2当体积不变时,需要多少热量3 在等压或等体过程中各作多少功 解. 在给定状态下该氧气的摩尔数为)/(RT PV M/11=μ1压强不变的过程即等压过程,氧气所需的热量为130J)T -)(T /T (PV )T -)R(T /(RT PV )T -(T )C (M/Q 12112712112712p p ====μ2体积不变的过程即等体过程,氧气所需的热量为92.8J)T -)(T /T (PV )T -)R(T /(RT PV )T -(T )C (M/Q 12112512112512v v ====μ3由热力学第一定律 W E Q +∆= 得等压过程中氧气所作的功为37.1J)T -)(i/2)R(T (M/-)T -1)R(T )(i/2(M/E -Q W 1212p p =+=∆=μμ此结果亦可由 )V -P(V PdV W 12p ==⎰ 及 V 1/V 2=T 1/T 2得到. 在等体过程中氧气所作的功为0)T -(T )C (M/-)T -(T )C (M/E -Q W 12v 12v v v ==∆=μμ此结果亦可直接由 0PdV W v ==⎰ 得到.4、如图所示,使1mol 的氧气1由a 等温的到b;2由a 等体的变到c;再由c 等压变到b.试分别计算所作的功和所吸收的热量.解.1氧气在a 到b 的等温过程中所作的功为J103.15)/V ln(V V P )/V RTln(V PdV W 3a b b b ab M b aT⨯====⎰μ由于等温过程中内能不变,由热力学第一定律W E Q +∆=,可得氧气在a 到b 过程中所吸收的热量为 Q=WT=×103J2由于等体过程中气体不作功,而等压过程中所作的功为V P W P ∆=,图中ac 为等体过程,cb 为等压过程.因此,氧气在acb 过程中所作的功为VW=W ac +W cb =W cb =P c V b -V c =×103J氧气在acb 过程中所吸收的热量为ac 和cb 两个过程中吸收热量之和,即J102.27 )V -(V P )R]/[(M/)V P -V P )(C -(C )(M/ )T -(T )C (M/)T -(T )C (M/Q Q Q 3c b c b b c c p v c b p a c v cb ac ⨯===+=+=μμμμ5、一卡诺热机的低温热源温度为7℃,效率为40%,若将其效率提高到50%,求高温热源的温度提高多少度解. 由卡诺热机的效率η=1-T 2/T 1可知, 具有相同低温热源而效率分别为η'和η"的两热机,其高温热源的温度分别为 T 1'=T 2/1-η' T 1"=T 2/1-η" 因此,为提高效率而需提高的温度为 △T=T 1"-T 1'=第八章 静电场本章提要:1、 电荷的基本性质:两种电荷;量子性;电荷守恒;相对不变性2、 库仑定律:两个静止的点电荷之间的作用力:0221041E r r q q πε=真空中的介电常数:212120m N C 1085.8---⋅⋅⨯=ε3、 电场力叠加原理:∑=ii F F4、 电场强度:0q FE=5、 场强叠加原理:∑=i i E E ∑i 0i 2i i 0r r q 41E πε= ⎰020r r dq 41E πε= 6、 电通量:⎰⋅=Φse S d E7、 高斯定律:∑⎰=⋅iisq1S d E ε8、 典型静电场:均匀带电球面:⎪⎩⎪⎨⎧=(球面外)(球面内)020r rq 410πεE 均匀带电无限长直线:r02E πελ=,方向垂直于带电直线. 均匀带电无限大平面:02E εδ=,方向垂直于带电平面. 9、 静电场对电荷的作用力:E q F=10、静电场是保守力场:0d E =⋅⎰Ll11、电势差:⎰⋅=-QQ P d E U U Pl电势:⎰∞⋅=Pl d E U P电势叠加原理:∑=i U U12、电荷的电势:r04q U πε=电荷连续分布的带电体的电势:⎰=r04dq U πε13、场强E和电势U 的关系:积分形式:⎰∞⋅=Pl d E U P微分形式:U E -∇=电场线处处与等势面垂直,并指向电势降低方向,电场线密处等势面间间距小.14、电荷在外电场的电势能:qU W =移动电荷时电场力做的功:Q p Q P PQ W W )U q(U A -=-=1,.解.1如图所示,各点电荷在点o 处产生的场强两两对应相消,所以,点o 处场强 E o =02 取图中所示坐标.位于六角形的三条对角线上的电荷分别在点o 处产生的场强为 E 1,E 2,E 3,且E 1=E 2=E 3,点o 处的总场强在坐标轴上 的分量分别为sin60E -sin60E E 0E -cos60E cos60E E 12y 321x ===+=所以 0j E i E E y x 0=+=3此时六角形的三条对角线上的电荷在o 处 所产生的场强分别为图所示的 E 1,E 2,E 3.且E 1=E 2=E 3点o 处的总场强在坐标轴的分量分别为=sin60E -sin60E =E k4q/a =2k2q/a =2E =cos60E +E +cos60E =E 31y 222321x所以 E o =k4q/a 2++--++++4取图所示坐标,除在x 轴上的点o 处所产生的场强彼此加强外, 其它两条对角线上的电荷在中心点o 处的场强彼此相消.所以,总场强为 Eo=2kq/a 2=k2q/a 28-5.一半径为R 的半圆细环,均匀分布+Q 电荷,求环心处的电场强度.解. 以环心o 为原点取如图坐标轴,在环上取一线元d l ,其所带电量为 R)Qdl/(dq π=,它在环心处的电场强度dE 在y 轴上的分量为)R 1/sin R Qd 41dE 20y θππεl =由于环对y 轴对称,电场强度在x 的分量为零.因此半圆环上的电荷在环心o 处的总的电场强度为j R 2Q -j d sin R 4Q - j d sin R Q 41-j dE -E 202020230y επθθεπθππεπ====⎰⎰⎰l 8-9.两条无限长相互平行的导线,均匀带有相反电荷,相距为a,电荷线密度为λ.1求两导线构成的平面上任一点的场强设该点到其中一导线的垂直距离为x;2求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.解.1以一导线上任一点o 为原点,在两导线所在平面内,垂直于导线的方向为x 轴.在x 轴任一点P 处的场强 E=E ++E - ,其中E +和E -分别为正、负带电导线在P 点的场强.根据长直导线附近的场强公式,有x 2E 0πελ=+ x )-(a 2E 0πελ=-所以,点P 处的合场强为yox )-x (a a2)E (E E 0-πελ=+=+2 由于带正电的导线在带负电导线处的场强 a2E 0πελ=+,所以,根据 F=qE 可得带负电导线上单位长度电荷所受的电场力a2E -F 02-πελλ-==+同理,可得带正电的导线上单位长度电荷所受到的电场力为 a2E F 02πελλ==-+ 故有 F +=F -,两导线相互吸引.8-11.设匀强电场的场强E 与半径为R 的半球面的轴平行,试计算通过此半球面的电场强度通量.解.如图所示通过半球面的电场线与垂直通过大圆面S 的电场线相同,而通过面S 的电通量为E R ES 2π==Φ所以,通过半球面的电通量亦为E R 2π8-20.在题8-13中,如两球面分别带有相等而异号的电荷±Q,两球面的半径分别为R 1和R 2,问两球面间的电势差为多少解.如图所示,由题8-13解可知,两球面间的电 场强度 20r 4Q E rπε=则两球面间的电势差为)R 1R 1(414Q r d E U 21020r 21-==⋅=⎰⎰πεπεR R dr r。