初中九年级数学圆的讲义
- 格式:docx
- 大小:44.64 KB
- 文档页数:7
九年级数学上册圆的知识点总结一、圆的概念1.圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆(或圆可以看做是所有到定点O的距离等于定长r的点的集合)。
2.圆心O、半径r、直径d:使圆上任意一点与定点O的距离等于r的动点O叫做圆心,连接圆心与圆上任意一点的线段叫做半径,圆心O与定点A之间的距离叫做直径。
二、圆的性质1.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等,所对的弦的弦心距相等。
2.在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
3.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
4.圆内接四边形的对角互补。
三、垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
四、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半;在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
五、点和圆的三种位置关系设⊙O的半径为r,点P到圆心的距离OP=d,则有:1.d>r 点P在⊙O外;2.d=r 点P在⊙O上;3.d<r 点P在⊙O内。
六、直线和圆的三种位置关系设⊙O的半径为r,圆心O到直线l的距离为d,则有:1.d>r 直线l与⊙O相离;2.d=r 直线l与⊙O相切;3.d<r 直线l与⊙O相交。
七、正多边形和圆各边相等,各内角都相等的多边形叫做正多边形。
在平面内,各边相等,各内角也都相等的多边形叫做正多边形。
正多边形的外接圆的半径叫做半径;正多边形的中心叫做中心;正多边形的内切圆的半径叫做内心;正多边形的一组邻边的垂直平分线的交点叫做中心。
正n边形的中心角公式:360°/n;正n边形一条边的长度公式:2rsin(180°/n)。
圆目录圆的定义及相关概念垂经定理及其推论圆周角与圆心角圆心角、弧、弦、弦心距关系定理圆内接四边形会用切线, 能证切线切线长定理三角形的内切圆了解弦切角与圆幂定理(选学)圆与圆的位置关系圆的有关计算一.圆的定义及相关概念【考点速览】考点1:圆的对称性:圆既是轴对称图形又是中心对称图形。
经过圆心的每一条直线都是它的对称轴。
圆心是它的对称中心。
考点2:确定圆的条件;圆心和半径①圆心确定圆的位置,半径确定圆的大小;②不在同一条直线上的三点确定一个圆;考点3:弦:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
直径是圆中最大的弦。
弦心距:圆心到弦的距离叫做弦心距。
弧:圆上任意两点间的部分叫做弧。
弧分为半圆,优弧、劣弧三种。
(请务必注意区分等弧,等弦,等圆的概念)弓形:弦与它所对应的弧所构成的封闭图形。
弓高:弓形中弦的中点与弧的中点的连线段。
(请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高)固定的已经不能再固定的方法:求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。
如下图:考点4:三角形的外接圆:锐角三角形的外心在 ,直角三角形的外心在 ,钝角三角形的外心在 。
考点5点和圆的位置关系 设圆的半径为r ,点到圆心的距离为d , 则点与圆的位置关系有三种。
①点在圆外⇔d >r ;②点在圆上⇔d=r ;③点在圆内⇔ d <r ;【典型例题】例1 在⊿ABC 中,∠ACB =90°,AC =2,BC =4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分别与⊙C 有怎样的位置关系,并说明你的理由。
例2.已知,如图,CD 是直径,︒=∠84EOD ,AE 交⊙O 于B ,且AB=OC ,求∠A 的度数。
M A B C DOEBC例3 ⊙O 平面内一点P 和⊙O 上一点的距离最小为3cm ,最大为8cm ,则这圆的半径是_________cm 。
一对一讲课教案一、圆的概念:1. 描述性概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,其中固定端点O叫做圆心,OA叫做半径.2 圆的表示方式:通经常使用符号⊙表示圆,概念中以O为圆心,OA为半径的圆记作“O⊙”,读作“圆O”.3 同圆、同心圆、等圆:圆心相同且半径相等的圆叫同圆;圆心相同,半径不相等的两个圆叫做同心圆;能够重合的两个圆叫做等圆.注意:同圆或等圆的半径相等.1. 弦:连结圆上任意两点的线段叫做弦.2. 直径:通过圆心的弦叫做圆的直径,直径等于半径的2倍.3. 弦心距:从圆心到弦的距离叫做弦心距.4. 弧:圆上任意两点间的部份叫做圆弧,简称弧.以A B、为端点的圆弧记作AB,读作弧AB.5. 等弧:在同圆或等圆中,能够相互重合的弧叫做等弧.6. 半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.7. 优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.8. 弓形:由弦及其所对的弧组成的图形叫做弓形.1. 圆心角:极点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,咱们也称如此的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等.2. 圆周角:极点在圆上,而且两边都和圆相交的角叫做圆周角.3. 圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.推论3:若是三角形一边上的中线等于这边的一半,那么那个三角形是直角三角形.4. 圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论:在同圆或等圆中,若是两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量别离相等.一、圆的对称性1. 圆的轴对称性:圆是轴对称图形,对称轴是通过圆心的任意一条直线.2. 圆的中心对称性:圆是中心对称图形,对称中心是圆心.3. 圆的旋转对称性:圆是旋转对称图形,不管绕圆心旋转多少角度,都能与其自身重合.二、垂径定理1. 垂径定理:垂直于弦的直径平分这条弦,而且平分弦所对的两条弧.2. 推论1:⑴平分弦(不是直径)的直径垂直于弦,而且平分弦所对的两条弧;⑵弦的垂直平分线通过圆心,而且平分弦所对的两条弧;⑶平分弦所对的一条弧的直径,垂直平分弦,而且平分弦所对的另一条弧.3. 推论2:圆的两条平行弦所夹的弧相等.练习题;1.判定:(1)直径是弦,是圆中最长的弦。
合作探究探究点1 圆的定义情景激疑在准备好的一张纸上以点〇为圆心、3 cm为半径画一个圆,观察画图过程.由此你会得出什么结论?知识讲解定义1:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的圆形叫做圆.其固定的端点O叫做圆心,线段OA叫倣半径.以O点为圆心的圆,记作O,读作“圆O〞.定义2:圆心为O、半径为r的圆可以看成是所有到定点O的间隔等于定长r的点的集合.注意〔1)圆心确定圆的位置,半径确定圆的大小.(2) 确定一个圆首先确定圆心,再确定半径,二者缺一不可.(3) 定点是圆心,定长是半径.(4) “圆〞指的是“圆周〞,而不是“圆平面〞.典例剖析例1 以下说法错误的有 ( )(1) 经过P点的圆有无数个;(2) 以P点为圆心的圆有无数个;(3) 半径为3cm且经过P点的圆有无数个。
(4) 以P点为圆心、3cm为半径的圆有无数个.A. 1个B. 2个C. 3个D. 4个解析确定一个圆必须满足两个条件,即圆心和半径,只满足一个条件或不满足任何一个条件的圆都有无数个,故(1)(2)正确,(3)虽然半径,但P点不是圆心,实际上也只是一个条件,能作无数个圆,故(3)正确;(4)满足两个条件,只能作一个圆,所以(4)错误.综上所述,错误的说法有1个,应选A答案 A错因分析导致此题错误的主要原因是对于确定一个圆的两个要素(圆心和半径)理解不够准确。
类题打破1 以O点为圆心画圆,可以画______ 个圆;以4 cm为半径画圆.可以面_____个圆.答案无数无数点拨确定圆的条件:一是圆心,二是半径.探究点2 与圆有关的概念知识讲解连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径。
圆上任意两点间的局部AB.读作“圆弧AB〞或“弧AB〞,圆的任意一条直径的两个端点把图分成两条弧,每一条弧都叫做半圆。
注意 (1)弦和弧是有区别的,弦是线段,而弧是曲线。
(2)直径是圆中最长的弦,而弦不都是直径。
第17讲 正多边形和圆、弧长和扇形面积 第一部分 知识梳理 知识点一:圆与内正多边形的计算1、正三角形 在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::1:3:2OD BD OB =;2、正四边形 同理,四边形的有关计算在Rt OAE ∆中进行,::1:1:2OE AE OA =3、正六边形 同理,六边形的有关计算在Rt OAB ∆中进行,::1:3:2AB OB OA = 知识点二、扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:180n R l π=; (2)扇形面积公式: 213602n R S lR π== n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长 S :扇形面积2、圆柱侧面展开图:3、圆锥侧面展开图第二部分 考点精讲精练考点1、正多边形和圆的求解例1、六边形的边长为10cm ,那么它的边心距等于( )A .10cmB .5cmC .cm D .cm 例2、已知正多边形的边心距与边长的比为21,则此正多边形为( ) A .正三角形 B .正方形 C .正六边形 D .正十二边形例3、如图,在⊙O 内,AB 是内接正六边形的一边,AC 是内接正十边形的一边,BC 是内接正n 边形的一边,那么n= .例4、圆的内接正六边形边长为a,这个圆的周长为.例5、如图,已知边长为2cm的正六边形ABCDEF,点A1,B1,C1,D1,E1,F1分别为所在各边的中点,求图中阴影部分的总面积S.举一反三:1、下列命题中的真命题是()A.三角形的内切圆半径和外接圆半径之比为2:1B.正六边形的边长等于其外接圆的半径C.圆外切正方形的边长等于其边A心距的倍D.各边相等的圆外切多边形是正方形2、已知正方形的边长为a,其内切圆的半径为r,外接圆的半径为R,则r:R:a=()A.1:1:B.1::2 C.1::1 D.:2:43、某工人师傅需要把一个半径为6cm的圆形铁片加工截出边长最大的正六边形的铁片,则此正六边形的边长为 cm.4、如图,正六边形与正十二边形内接于同一圆⊙O中,已知外接圆的半径为2,则阴影部分面积为.5、如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,连接PB,QE,PE,BQ.设运动时间为t(s).(1)求证:四边形PEQB为平行四边形;(2)填空:①当t= s时,四边形PBQE为菱形;②当t= s时,四边形PBQE为矩形.考点2、弧长的计算例1、一条弧所对的圆心角是90°,半径是R,则这条弧长是()A.B.C.D.例2、一个滑轮起重装置如图所示,滑轮半径是10cm,当重物上升10cm时,滑轮的一条半径OA绕轴心O,绕逆时针方向旋转的角度约为(假设绳索与滑轮之间没有滑动,π取3.14,结果精确到1°)()A.115°B.160°C.57°D.29°例3、已知:如图,四边形ABCD内接于⊙O,若∠BOD=120°,OB=1,则∠BAD= 度,∠BCD= 度,弧BCD的长= .例4、如图,在Rt△ABC中,∠C=90°,∠A=60°,AC=cm,将△ABC绕点B旋转至△A′BC′的位置,且使点A、B、C′三点在一条直线上,则点A经过的最短路线的长度是.例5、如图,菱形ABCD的边长为6,∠BAD=60°,AC为对角线.将△ACD绕点A逆时针旋转60°得到△AC′D′,连接DC′.(1)求证:△ADC≌△ADC′;(2)求在旋转过程中点C扫过路径的长.(结果保留π)举一反三:1、弧长为6π的弧所对的圆心角为60°,则弧所在的圆的半径为()A.6 B.6C.12D.182、如图,一块边长为10cm的正方形木板ABCD,在水平桌面上绕点D按顺时针方向旋转到A′B′C′D′的位置时,顶点B从开始到结束所经过的路径长为()A.20cm B.20cm C.10πcm D.5πcm3、一段铁路弯道成圆弧形,圆弧的半径是2km.一列火车以每小时28km的速度经过10秒通过弯道.那么弯道所对的圆心角的度数为度.(π取3.14,结果精确到0.1度).4、已知矩形ABCD的长AB=4,宽AD=3,按如图放置在直线AP上,然后不滑动地转动,当它转动一周时(A→A′),顶点A所经过的路线长等于.5、如图,在一个横截面为Rt△ABC的物体中,∠CAB=30°,BC=1米.工人师傅把此物体搬到墙边,先将AB边放在地面(直线l)上,再按顺时针方向绕点B翻转到△A1B1C1的位置(BC1在l上),最后沿BC1的方向平移到△A2B2C2的位置,其平移的距离为线段AC的长度(此时A2C2恰好靠在墙边).(1)请直接写出AB、AC的长;(2)画出在搬动此物的整个过程A点所经过的路径,并求出该路径的长度(精确到0.1米).考点3、扇形面积的计算例1、已知五个半径为1的圆的位置如图所示,各圆心的连线构成一个五边形,那么阴影部分的面积是()A.B.2π C.D.3π例2、一个商标图案如图中阴影部分,在长方形ABCD中,AB=8cm,BC=4cm,以点A 为圆心,AD为半径作圆与BA的延长线相交于点F,则商标图案的面积是()A.(4π+8)cm2 B.(4π+16)cm2C.(3π+8)cm2 D.(3π+16)cm2例3、如图,E是正方形ABCD内一点,连接EA、EB并将△BAE以B为中心顺时针旋转90°得到△BFC,若BA=4,BE=3,在△BAE旋转到△BCF的过程中AE扫过区域面积.例4、如图,有一直径为1米的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形,则剩下部分的(阴影部分)的面积是.例5、如图,已知P为正方形ABCD内一点,△ABP经过旋转后到达△CBQ的位置.(1)请说出旋转中心及旋转角度;(2)若连接PQ,试判断△PBQ的形状;(3)若∠BPA=135°,试说明点A,P,Q三点在同一直线上;(4)若∠BPA=135°,AP=3,PB=,求正方形的对角线长;(5)在(4)的条件下,求线段AP在旋转过程中所扫过的面积.举一反三:1、若一个扇形的面积是相应圆的41,则它的圆心角为( ) A .150° B .120° C .90° D .60°2、如图所示的4个的半径均为1,那么图中的阴影部分的面积为( )A .π+1B .2πC .4D .63、如图,O 为圆心,半径OA=OB=r ,∠AOB=90°,点M 在OB 上,OM=2MB ,用r 的式子表示阴影部分的面积是 .4、如图,直角△ABC 的直角顶点为C ,且AC=5,BC=12,AB=13,将此三角形绕点A 顺时针旋转90°到直角△AB′C′的位置,在旋转过程中,直角△ABC 扫过的面积是 .(结果中可保留π)5、如图,四边形ABCD 是长方形,AB=a ,BC=b (a >b ),以A 为圆心AD 长为半径的圆与CD 交于D ,与AB 交于E ,若∠CAB=30°,请你用a 、b 表示图中阴影部分的面积.考点4、圆锥侧面积计算例1、如果圆锥的高为3cm ,母线长为5cm ,则圆锥的侧面积是( )A .16πcm 2B .20πcm 2C .28πcm 2D .36πcm 2例2、新疆哈萨克族是一个游牧民族,喜爱居住毡房,毡房的顶部是圆锥形,如图所示,为防雨需要在毡房顶部铺上防雨布.已知圆锥的底面直径是5.7m ,母线长是3.2m ,铺满毡房顶部至少需要防雨布(精确到1m 2)( )A .58 m 2B .29 m 2C .26 m 2D .28 m 2例3、扇形的圆心角为150°,半径为4cm ,用它做一个圆锥,那么这个圆锥的表面积为 cm 2.例4、在十年文革期间的“高帽子”.这种“高帽子”是用如图①所示的扇形硬纸板,做成如图②所示的无底圆锥体.已知接缝的重叠部分的圆心角为30°.(1)求重叠部分的面积.(结果保留π)(2)计算这顶“高帽子”有多高?(结果保留根号)例5、已知:一个圆锥的侧面展开图是半径为20cm,圆心角为120°的扇形,求这圆锥的底面圆的半径和高.举一反三:1、若圆锥的侧面积为12πcm2,它的底面半径为3cm,则此圆锥的母线长为()A.4πcm B.4 cm C.2πcm D.2 cm2、圆锥的轴截面是一个等腰三角形,它的面积是10cm2,底边上的高线是5cm,则圆锥的侧面展开图的弧长等于()A.87πcm B.47πcm C.8 cm D.4 cm3、如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的高为。
九年级数学圆的知识
九年级数学中,圆的知识包括以下内容:
1. 圆的定义:圆是由平面上所有到定点距离相等的点组成的集合。
2. 圆的元素:圆心是圆的中心点,用O表示;半径是圆心到圆上任意一点的距离,用r表示;直径是通过圆心的一条线段,两端点在圆上,直径的长度是半径的两倍。
3. 圆的性质:
- 圆上任意两点与圆心的距离相等。
- 圆上的点与圆心的距离等于半径。
- 圆的直径是最长的线段,且等于半径的两倍。
- 圆的任意弦都可以作为直径,即两端点在圆上的线段。
- 圆的任意弦都可以分成两段,两段长度乘积等于这条弦所对应的弧的长度乘积。
- 圆的周长是圆周上一周的长度,等于2πr,其中π是一个无理数,约等于3.14159。
- 圆的面积是圆内部的所有点组成的区域的大小,等于πr²。
4. 圆的相关定理:
- 弧长定理:圆的弧所对应的圆心角的度数等于弧长所占圆周的度数。
- 弦切定理:在圆上,切线与弦的乘积等于切点外的弦与切点外
的弦的乘积。
- 切线定理:在圆上,切线与切点外的弦的乘积等于切点外的弦与切点外的弦的乘积。
- 弧度制:角度的度数可以转化为弧度制,1°对应π/180弧度。
以上是九年级数学中关于圆的基本知识,还有更深入的内容如圆锥、圆柱、圆台等,这些内容超出了本回答的范围。
圆一.圆的定义及相关概念考点1:圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
考点2:确定圆的条件:圆心和半径①圆心确定圆的位置,半径确定圆的大小;②不在同一条直线上的三点确定一个圆。
考点2:(圆的性质)圆的对称性:圆既是轴对称图形又是中心对称图形。
经过圆心的每一条直线都是它的对称轴。
圆心是它的对称中心。
考点3:弦:连结圆上任意两点的线段叫弦。
经过圆心的弦叫做直径。
直径是圆中最大的弦。
弦心距:圆心到弦的距离叫做弦心距。
弧:圆上任意两点间的部分叫做弧。
弧分为半圆,优弧、劣弧三种。
(请务必注意区分等弧,等弦,等圆的概念)弓形:弦与它所对应的弧所构成的封闭图形。
弓高:弓形中弦的中点与弧的中点的连线段。
(请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高)考点4:三角形的外接圆:锐角三角形的外心在,直角三角形的外心在 ,钝角三角形的外心在。
考点5点和圆的位置关系设圆的半径为r,点到圆心的距离为d,则点与圆的位置关系有三种。
①点在圆外⇔d>r;②点在圆上⇔d=r;③点在圆内⇔ d<r;【典型例题】例1 在⊿ABC 中,∠ACB =90°,AC =2,BC =4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分别与⊙C 有怎样的位置关系,并说明你的理由。
例2.已知,如图,CD 是直径,︒=∠84EOD ,AE 交⊙O 于B ,且AB=OC ,求∠A 的度数。
例3 ⊙O 平面内一点P 和⊙O 上一点的距离最小为3cm ,最大为8cm ,则这圆的半径是_________cm 。
例4 在半径为5cm 的圆中,弦AB ∥CD ,AB=6cm ,CD=8cm ,则AB 和CD 的距离是多少?例5 如图,⊙O 的直径AB 和弦CD 相交于点E ,已知AE=6cm ,EB=2cm,ο30=∠CEA , 求CD 的长.例6.已知:⊙O 的半径0A=1,弦AB 、AC 的长分别为3,2,求BAC ∠的度数.AB DCO· E二.垂径定理及其推论考点1垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论1:①平分弦(不是直径)的直径重直于弦,并且平分弦所对的两条弧.②弦的垂直平分线经过圆心,并且平分弦所对的两条弧.③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.推论2.圆的两条平行弦所夹的弧相等.垂径定理及推论1中的三条可概括为:①经过圆心;②垂直于弦;③平分弦(不是直径);④平分弦所对的优弧;⑤平分弦所对的劣弧.以上五点已知其中的任意两点,都可以推得其它两点固定的已经不能再固定的方法:求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。
圆目录一.圆的定义及相关概念二.垂经定理及其推论三.圆周角与圆心角四.圆心角、弧、弦、弦心距关系定理五.圆内接四边形六.会用切线, 能证切线七.切线长定理八.三角形的内切圆九.了解弦切角与圆幂定理(选学)十.圆与圆的位置关系十一.圆的有关计算十二.圆的基础综合测试十三.圆的终极综合测试一.圆的定义及相关概念【考点速览】考点1:圆的对称性:圆既是轴对称图形又是中心对称图形。
经过圆心的每一条直线都是它的对称轴。
圆心是它的对称中心。
考点2:确定圆的条件;圆心和半径①圆心确定圆的位置,半径确定圆的大小;②不在同一条直线上的三点确定一个圆;考点3:弦:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
直径是圆中最大的弦。
弦心距:圆心到弦的距离叫做弦心距。
弧:圆上任意两点间的部分叫做弧。
弧分为半圆,优弧、劣弧三种。
(请务必注意区分等弧,等弦,等圆的概念)弓形:弦与它所对应的弧所构成的封闭图形。
弓高:弓形中弦的中点与弧的中点的连线段。
(请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高)固定的已经不能再固定的方法:求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。
如下图:考点4:三角形的外接圆:锐角三角形的外心在,直角三角形的外心在,钝角三角形的外心在。
考点5点和圆的位置关系设圆的半径为r,点到圆心的距离为d,则点与圆的位置关系有三种。
①点在圆外⇔d>r;②点在圆上⇔d=r;③点在圆内⇔d<r;【典型例题】例1 在⊿ABC 中,∠ACB=90°,AC=2,BC=4,CM是AB边上的中线,以点C为圆心,以5为半径作圆,试确定A,B,M三点分别与⊙C 有怎样的位置关系,并说明你的理由。
例2.已知,如图,CD是直径,AE交⊙O于B,且AB=OC,求例3 ⊙O平面内一点P和⊙O最小为3cm,最大为8cm_________cm。
例4 在半径为5cm的圆中,弦AB=6cm,CD=8cm,则AB和CD的距离是多少?例5 如图,⊙O的直径AB和弦CD相交于点E,已知AE=6cm,EB=2cm, 30=∠CEA,求CD的长.例6.已知:⊙O的半径0A=1,弦AB、AC的长分别为3,2,求BAC∠的度数.【考点速练】1.下列命题中,正确的是()A BDCO·EA.三点确定一个圆B.任何一个三角形有且仅有一个外接圆C.任何一个四边形都有一个外接圆D.等腰三角形的外心一定在它的外部2.如果一个三角形的外心在它的一边上,那么这个三角形一定是()A.等腰三角形B.直角三角形C.等边三角形D.钝角三角形3.圆的内接三角形的个数为()A.1个B.2 C.3个D.无数个4.三角形的外接圆的个数为()A.1个B.2 C.3个D.无数个5.下列说法中,正确的个数为()①任意一点可以确定一个圆;②任意两点可以确定一个圆;③任意三点可以确定一个圆;④经过任一点可以作圆;⑤经过任意两点一定有圆.A.1个B.2个C.3个D.4个6.与圆心的距离不大于半径的点所组成的图形是( )A.圆的外部(包括边界);B.圆的内部(不包括边界);C.圆;D.圆的内部(包括边界) 7.已知⊙O的半径为6cm,P为线段OA的中点,若点P在⊙O上,则OA的长( )A.等于6cmB.等于12cm;C.小于6cmD.大于12cm8.如图,⊙O的直径为10cm,弦AB为8cm,P是弦AB上一点,若OP的长为整数, 则满足条件的点P有( )A.2个B.3个C.4个D.5个9.如图,A是半径为5的⊙O内一点,且OA=3,过点A且长小于8的弦有( )A.0条B.1条C.2条D.4条10.要浇铸一个和残破轮片同样大小的圆形轮片,需要知道它的半径,用圆规和直尺在图中作出它的一条半径.(要求保留作图痕迹)11.如图,已知在ABC ∆中,︒=∠90A ,AB=3cm ,AC=4cm ,以点A 为圆心,AC 长为半径画弧交CB 的延长线于点D ,求CD 的长.12=16cm ,拱高CD =4cm 半径是__m 。
圆目录一.圆的定义及相关概念二.垂经定理及其推论三.圆周角与圆心角四.圆心角、弧、弦、弦心距关系定理五.圆内接四边形六.会用切线, 能证切线七.切线长定理八.三角形的内切圆九.了解弦切角与圆幂定理(选学)十.圆与圆的位置关系十一.圆的有关计算十二.圆的基础综合测试十三.圆的终极综合测试一.圆的定义及相关概念【考点速览】考点1:圆的对称性:圆既是轴对称图形又是中心对称图形。
经过圆心的每一条直线都是它的对称轴。
圆心是它的对称中心。
考点2:确定圆的条件;圆心和半径①圆心确定圆的位置,半径确定圆的大小;②不在同一条直线上的三点确定一个圆;考点3:弦:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
直径是圆中最大的弦。
弦心距:圆心到弦的距离叫做弦心距。
弧:圆上任意两点间的部分叫做弧。
弧分为半圆,优弧、劣弧三种。
(请务必注意区分等弧,等弦,等圆的概念)弓形:弦与它所对应的弧所构成的封闭图形。
弓高:弓形中弦的中点与弧的中点的连线段。
(请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高)固定的已经不能再固定的方法:求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。
如下图:考点4:三角形的外接圆:锐角三角形的外心在,直角三角形的外心在,钝角三角形的外心在。
考点5点和圆的位置关系 设圆的半径为r ,点到圆心的距离为d ,则点与圆的位置关系有三种。
①点在圆外⇔d >r ;②点在圆上⇔d=r ;③点在圆内⇔ d <r ;【典型例题】例1 在⊿ABC 中,∠ACB=90°,AC=2,BC=4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分别与⊙C 有怎样的位置关系,并说明你的理由。
例2.已知,如图,CD 是直径,∠AE 交⊙O 于B ,且AB=OC 度数。
例3 ⊙O 平面内一点P 和⊙O 上一点的距离最小为3cm ,最大为8cm ,则这圆的半径是_________cm 。
圆目录一.圆的定义及相关概念二.垂经定理及其推论三.圆周角与圆心角四.圆心角、弧、弦、弦心距关系定理五.圆内接四边形六.会用切线 , 能证切线七.切线长定理八.三角形的内切圆九.了解弦切角与圆幂定理(选学)十.圆与圆的位置关系十一.圆的有关计算十二.圆的基础综合测试十三.圆的终极综合测试一.圆的定义及相关概念【考点速览】考点1:圆的对称性:圆既是轴对称图形又是中心对称图形。
经过圆心的每一条直线都是它的对称轴。
圆心是它的对称中心。
考点2:确定圆的条件;圆心和半径①圆心确定圆的位置,半径确定圆的大小;②不在同一条直线上的三点确定一个圆;考点3:弦:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
直径是圆中最大的弦。
弦心距:圆心到弦的距离叫做弦心距。
弧:圆上任意两点间的部分叫做弧。
弧分为半圆,优弧、劣弧三种。
(请务必注意区分等弧,等弦,等圆的概念)弓形:弦与它所对应的弧所构成的封闭图形。
弓高:弓形中弦的中点与弧的中点的连线段。
(请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高)固定的已经不能再固定的方法:求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。
如下图:考点4:三角形的外接圆:锐角三角形的外心在,直角三角形的外心在 ,钝角三角形的外心在。
考点5点和圆的位置关系设圆的半径为r,点到圆心的距离为d,则点与圆的位置关系有三种。
①点在圆外⇔d>r;②点在圆上⇔d=r;③点在圆内⇔ d<r;【典型例题】例1 在⊿ABC中,∠ACB=90°,AC=2,BC=4,CM 是AB边上的中线,以点C为圆心,以5为半径作圆,试确定A,B,M三点分别与⊙C有怎样的位置关系,并说明你的理由。
例2.已知,如图,CD是直径,⊙O于B,且AB=OC,求∠A例3 ⊙O平面内一点P和⊙O3cm,最大为8cm例 4 在半径为5cm的圆中AB=6cm,CD=8cm,则AB和CD例5 如图,⊙O 的直径AB 和弦CD 相交于点E ,已知AE=6cm ,EB=2cm, 30=∠CEA ,求CD 的长.例6.已知:⊙O 的半径0A=1,弦AB 、AC 的长分别为3,2,求BAC ∠的度数. 【考点速练】1.下列命题中,正确的是( )A .三点确定一个圆B .任何一个三角形有且仅有一个外接圆C .任何一个四边形都有一个外接圆D .等腰三角形的外心一定在它的外部2.如果一个三角形的外心在它的一边上,那么这个三角形一定是( )A .等腰三角形B .直角三角形C .等边三角形D .钝角三角形3.圆的内接三角形的个数为( )A .1个B .2C .3个D .无数个 4.三角形的外接圆的个数为( )A .1个B .2C .3个D .无数个5.下列说法中,正确的个数为( )①任意一点可以确定一个圆;②任意两点可以确定A BDC O · E一个圆;③任意三点可以确定一个圆;④经过任一点可以作圆;⑤经过任意两点一定有圆.A.1个 B.2个 C.3个 D.4个6.与圆心的距离不大于半径的点所组成的图形是( )A.圆的外部(包括边界);B.圆的内部(不包括边界);C.圆;D.圆的内部(包括边界)7.已知⊙O的半径为6cm,P为线段OA的中点,若点P在⊙O上,则OA的长( )A.等于6cmB.等于12cm;C.小于6cmD.大于12cm8.如图,⊙O的直径为10cm,弦AB为8cm,P是弦AB上一点,若OP的长为整数, 则满足条件的点P有( )A.2个B.3个C.4个D.5个9.如图,A是半径为5的⊙O内一点,且OA=3,过点A且长小于8的弦有( )A.0条B.1条C.2条D.4条10.要浇铸一个和残破轮片同样大小的圆形轮片,需要知道它的半径,用圆规和直尺在图中作出它的一条半径.(要求保留作图痕迹)11.如图,已知在ABCA,AB=3cm,∠90∆中,︒=AC=4cm ,以点A 为圆心,AC 长为半径画弧交CB 的延长线于点D ,求CD 的长.12、如图,有一圆弧开桥拱,拱的跨度拱高CD =4cm13、△ABC 中,AB=AC=10,BC=12,则它的外接圆半径是__。
初中九年级数学圆的讲义
圆
一、基本概念与性质
在平面内把线段OP绕着端点O旋转一周,端点P所形成的图形叫做圆。
其中,点O叫做圆心,线段OP叫做半径。
以点O为圆心的圆,记作⊙O ,读作圆O 。
点和圆的位置关系:
如果⊙O的半径是r,点P到圆心O的距离为d,则
d>r时,点P在__________
d=r时,点P在__________
d<r时,点p在__________< p="">
圆是中心对称图形,圆心是它的对称中心。
圆是轴对称图形,过圆心的任意一条直线都是它的对称轴。
弦与弧
连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径,是圆最长的弦。
圆上任意两点间的部分叫圆弧,简称弧,符号:
以C、D为端点的弧,记作,读作
圆的任意一条直径的两个端点把圆分成两条弧,每条弧都叫做半圆,大于半
圆的弧叫做优弧,小于半圆的弧叫做劣弧。
顶点在圆心的角叫做圆心角,顶点在圆上且两边与圆相交的角叫做圆周角。
圆心相同,半径不相等的两个圆叫做同心圆,能够互相重合的两个圆叫做等圆,
能够互相重合的弧叫做等弧。
同圆或等圆的半径相等。
圆心角、弧、弦之间的关系:
1.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
2.推论:在同圆或等圆中,若两条弧相等,那么它们所对的圆心角和弦都相等。
在同圆或
等圆中,若两条弦相等,则它们所对的圆心角和弧都相等。
3.圆心角的度数与它所对的弧的度数相等。
圆心角与圆周角的关系:
1.同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
2.推论:半圆(或直径)所对的圆周角是直角,90°圆周角所对的弦是直径。
垂径定理:
1.垂直弦的直径平分弦,并且平分弦所对的两条弧。
2.推论:平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧
确定圆的条件:
1.经过一点A作圆
2.经过A、B两点作圆
3.经过A、B、C三点作圆——
a)当三点位于一条直线时
b)当三点不在一条直线上时
4.结论:不在同一条直线上的三点确定一个圆
三角形的三个顶点确定一个圆。
这个圆叫做三角形的外接圆,外
接圆的圆心叫做三角形
的外心。
外心的性质:
1.三角形的外心是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等。
2.三角形外接圆有且只有一个,即给定三角形的外心唯一。
但一个圆的内接三角形有
无数个,这些三角形的外心重合。
3.尺规作图:
一个四边形的4个顶点都在同一个圆上,这个四边形叫做圆的内接四边形,这个圆叫做
四边形的外接圆。
圆内接四边形的对角互补。
直线与圆有两个公共点时,叫做直线与圆相交,这条直线叫做圆的割线
直线与圆有唯一公共点时,叫做直线与圆相切。
这条直线叫做圆的切线,公共点叫做切点。
直线与圆没有公共点时,叫做直线与圆相离。
直线与圆的位置关系:
如果⊙O的半径是r,圆心O到直线l的距离为d,则
d<r时,直线与圆相交< p="">
d=r时,直线与圆相切
d>r时,直线与圆相离
切线
1.定义:经过半径的外端并且垂直于这条半径的直线就是圆的切线。
(反证法)
2.性质:圆的切线垂直于过切点的半径。
3.切线的长度:圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长。
4.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连
线平分这两条切线的夹角。
与三角形各边都相切的圆叫做三角形的内切圆,三角形内切圆的圆心叫做
三角形的内心,这个三角形叫做圆的外切三角形。
三角形的内心就是三角形三条内角平分线的交点,三角形的内心到三边的
距离相等。
探索:圆与圆的位置关系
1、圆和圆的位置关系
如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。
如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。
如果两个圆有两个公共点,那么就说这两个圆相交。
2、圆心距:两圆圆心的距离叫做两圆的圆心距。
3、圆和圆位置关系的性质与判定
设两圆的半径分别为R和r,圆心距为d,那么
两圆外离d>R+r
两圆外切d=R+r
两圆相交R-r<d<r+r(r≥r)< p="">
两圆内切d=R-r(R>r)
两圆内含dr)
4、两圆相切、相交的重要性质
如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。
正多边形与圆
1.正多边形:各边相等,各角也相等的多边形
2.只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆叫做这个
正多边形的外接圆。
3.几个概念:
中心:正多边形外接圆的圆心叫做这个正多边形的中心
半径:正多边形外接圆的半径叫做这个正多边形的半径
边心距:正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距
中心角:正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角
4.对称性:
(1)轴对称:正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。
(2)中心对称:边数为偶数的正多边形是中心对称图形,它的对称中心是_________ 5.画法:先用量角器或尺规等分圆,再做正多边形。
二、圆的有关计算
1.圆的周长与面积
周长C=2πr
面积S=πr2
2.圆心角所对的弧长
在半径为R的圆中,圆的周长是_____°圆心角所对的弧长;因此
1°的圆心角所对的弧长是_______
n°的圆心角所对的弧长l是______
3.扇形
由组成圆心角的两条半径和圆心角所对的弧所围成的圆形叫做扇形。
扇形的面积与组成扇形的圆心角的大小有关。
圆心角越大,扇形面积也越大。
4.扇形的面积:
在半径为R的圆中,360°的圆心角所对的扇形的面积S=_____,故圆心角为n°的扇形面积是:
S
扇形
=
5.圆锥的侧面展开图与侧面积计算
圆锥的侧面展开图是一个扇形,这个扇形的半径是圆锥侧面的母线,圆心是
圆锥的顶点,弧长是圆锥底面圆的周长。
——圆锥的侧面积是扇形面积。
如果设扇形的半径为l,弧长为c,圆心角为n,则它们之间有如下关系:
c=nπl 180
同时,如果设圆锥底面半径为r,周长为C,侧面母线长为l,那么它的侧面积是:
S
圆锥侧面=πrl=
1
2
Cl
圆锥的全面积为:S
圆锥全面积
=πrl+πr2
*圆柱侧面积:S
圆柱侧面积
=2πr?
</d<r+r(r≥r)<>
</r时,直线与圆相交<>
</r时,点p在__________<>。