初中三角函数公式及其定理
- 格式:pdf
- 大小:287.16 KB
- 文档页数:2
初中三角函数公式及其定理三角函数是数学中的一个分支,它研究的是一个角与其对边、邻边及斜边之间的关系。
在初中数学中,学生往往会接触到一些基本的三角函数公式及定理。
下面将介绍一些常用的三角函数公式及定理。
一、基本三角函数公式及定义1. 正弦函数(sin):在直角三角形中,一个锐角的对边与斜边的比值叫做这个锐角的正弦。
在三角形ABC中,锐角A的正弦定义为sinA = BC/AC。
2. 余弦函数(cos):在直角三角形中,一个锐角的邻边与斜边的比值叫做这个锐角的余弦。
在三角形ABC中,锐角A的余弦定义为cosA = AB/AC。
3. 正切函数(tan):在直角三角形中,一个锐角的对边与邻边的比值叫做这个锐角的正切。
在三角形ABC中,锐角A的正切定义为tanA = BC/AB。
4.相关公式:(1)余角公式:sin(90°-A) = cosA,cos(90°-A) = sinA,tan(90°-A) = 1/tanA。
(2)同角互余:sinA = 1/cscA,cosA = 1/secA,tanA = 1/cotA。
(3)倒数关系:cscA = 1/sinA,secA = 1/cosA,cotA = 1/tanA。
二、三角函数的基本性质1. 周期性:正弦函数和余弦函数的周期都是2π,即sin(x+2π) = sinx,cos(x+2π) = cosx。
2. 对称性:正弦函数是奇函数,即sin(-x) = -sinx;余弦函数是偶函数,即cos(-x) = cosx。
3. 正交性:正弦函数和余弦函数在一个周期内的积分为0,即∫[0, 2π] sinx cosx dx = 0。
4.正负关系:在第一象限和第二象限,正弦函数的值大于0,余弦函数的值大于等于0;在第三象限和第四象限,正弦函数的值小于0,余弦函数的值小于等于0。
三、三角函数的诱导公式1.加法公式:(1)sin(A±B) = sinA cosB ± cosA sinB(2)cos(A±B) = cosA cosB ∓ sinA sinB(3)tan(A±B) = (tanA ± tanB) / (1 ∓ tanA tanB)2.减法公式:(1)sin(A-B) = sinA cosB - cosA sinB(2)cos(A-B) = cosA cosB + sinA sinB(3)tan(A-B) = (tanA - tanB) / (1 + tanA tanB)3.二倍角公式:(1)sin2A = 2sinA cosA(2)cos2A = cos²A - sin²A = 1 - 2sin²A = 2cos²A - 1(3)tan2A = 2tanA / (1 - tan²A)4.三倍角公式:(1)sin3A = 3sinA - 4sin³A(2)cos3A = 4cos³A - 3cosA5.半角公式:(1)sin(A/2) = ±√[(1-cosA)/2](2)cos(A/2) = ±√[(1+cosA)/2](3)tan(A/2) = ±√[(1-cosA)/(1+cosA)]四、三角函数的定理1. 正弦定理:在任意三角形ABC中,有a/sinA = b/sinB = c/sinC,其中a、b、c分别为边BC、AC、AB的长度,A、B、C分别为角A、B、C的度数。
初一数学三角形公式总结归纳数学三角公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。
下面是小编为大家整理的关于初一数学三角形公式,希望对您有所帮助!常见三角诱导公式公式一:终边相同的角的同一三角函数的值相等设α为任意锐角,弧度制下的角的表示:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:π+α的三角函数值与α的三角函数值之间的关系设α为任意角,弧度制下的角的表示:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα初中数学三角函数公式大全两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积公式2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB倍角公式Sin2A=2SinA.CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2是sinA的平方sin2(A))半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))积化和差公式sinαsinβ=[cos(α-β)-cos(α+β)]/2cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2万能公式sinα=2tan(α/2)/[1+tan^(α/2)]cosα=[1-tan^(α/2)]/1+tan^(α/2)]tanα=2tan(α/2)/[1-tan^(α/2)]三角形的公式定理1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.过一点有且只有一条直线和已知直线垂直6.直线外一点与直线上各点连接的所有线段中,垂线段最短7.平行公理经过直线外一点,有且只有一条直线与这条直线平行8.如果两条直线都和第三条直线平行,这两条直线也互相平行9.同位角相等,两直线平行10.内错角相等,两直线平行11.同旁内角互补,两直线平行12.两直线平行,同位角相等13.两直线平行,内错角相等14.两直线平行,同旁内角互补15.定理三角形两边的和大于第三边16.推论三角形两边的差小于第三边17.三角形内角和定理三角形三个内角的和等于180°18.推论1直角三角形的两个锐角互余19.推论2三角形的一个外角等于和它不相邻的两个内角的和20.推论3三角形的一个外角大于任何一个和它不相邻的内角21.全等三角形的对应边、对应角相等22.边角边公理有两边和它们的夹角对应相等的两个三角形全等23.角边角公理有两角和它们的夹边对应相等的两个三角形全等24.推论有两角和其中一角的对边对应相等的两个三角形全等25边边边公理有三边对应相等的两个三角形全等26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27.定理1:在角的平分线上的点到这个角的两边的距离相等28.定理2:到一个角的两边的距离相同的点,在这个角的平分线上29.角的平分线是到角的两边距离相等的所有点的集合30.等腰三角形的性质定理等腰三角形的两个底角相等31.推论1:等腰三角形顶角的平分线平分底边并且垂直于底边32.等腰三角形的顶角平分线、底边上的中线和高互相重合33.推论3:等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35.推论1:三个角都相等的三角形是等边三角形36.推论2:有一个角等于60°的等腰三角形是等边三角形37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38.直角三角形斜边上的中线等于斜边上的一半39.定理线段垂直平分线上的点和这条线段两个端点的距离相等40.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42.定理1关于某条直线对称的两个图形是全等形43.定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44.定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45.逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47.勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48.定理四边形的内角和等于360°49.四边形的外角和等于360°50.多边形内角和定理n边形的内角的和等于(n-2)×180°51.推论任意多边的外角和等于360°52.平行四边形性质定理1平行四边形的对角相等53.平行四边形性质定理2平行四边形的对边相等54.推论夹在两条平行线间的平行线段相等55.平行四边形性质定理3平行四边形的对角线互相平分56.平行四边形判定定理1两组对角分别相等的四边形是平行四边形57.平行四边形判定定理2两组对边分别相等的四边形是平行四边形58.平行四边形判定定理3对角线互相平分的四边形是平行四边形59.平行四边形判定定理4一组对边平行相等的四边形是平行四边形60.矩形性质定理1矩形的四个角都是直角61.矩形性质定理2矩形的对角线相等62.矩形判定定理1有三个角是直角的四边形是矩形63.矩形判定定理2对角线相等的平行四边形是矩形64.菱形性质定理1菱形的四条边都相等65.菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66.菱形面积=对角线乘积的一半,即S=(a×b)÷267.菱形判定定理1四边都相等的四边形是菱形68.菱形判定定理2对角线互相垂直的平行四边形是菱形69.正方形性质定理1正方形的四个角都是直角,四条边都相等70.正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71.定理1关于中心对称的两个图形是全等的72.定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73.逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74.等腰梯形性质定理等腰梯形在同一底上的两个角相等75.等腰梯形的两条对角线相等76.等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77.对角线相等的梯形是等腰梯形78.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79.推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰80.推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边81.三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82.梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83.(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84.(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85.(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87.推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88.定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90.定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91.相似三角形判定定理1两角对应相等,两三角形相似(ASA)92.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93.判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94.判定定理3三边对应成比例,两三角形相似(SSS)95.定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96.性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97.性质定理2相似三角形周长的比等于相似比98.性质定理3相似三角形面积的比等于相似比的平方。
初中数学三角函数公式三角函数的公式:1. 余弦定理:\cos A=\frac{b^2 + c^2 - a^2}{2bc};2. 正弦定理:\sin A=\frac{\sqrt{a^2 - b^2 - c^2}}{2bc};3. 梯形公式:S=\frac{1}{2} a \times b \sin C;4. 两边和定理:a\sin A=b\sin B=c\sin C;5. 余切定理:\tan A=\frac{1}{\sin A}\;6. 正切定理:\cot A=\frac{1}{\tan A}\;三角函数的概念问题可以追溯到古希腊人。
他们考虑了三角函数如何影响几何形状和外形,从而得到了代表三角形的几个基本函数,即正弦函数、余弦函数和正切函数。
三角函数在很多领域有着广泛的用途,比如在地理学和天文学中,它们帮助计算地球上特定地点的坐标,确定太阳位置等等;在单元电路中它们可以用来计算电流和电压;在许多工程应用中,它们可以用来计算房屋的张力,测量角度等等。
三角函数的公式有多种,主要有:1. 余弦定理:它有助于计算三角形的两个角的余弦值,当我们知道该三角形的三条边的长度的时候:余弦定理的表达式为:\cos A=\frac{b^2 + c^2 -a^2}{2bc};2. 正弦定理:它可以帮助我们计算三角形三个角度中其中一个角度的正弦值,以及三角形三条边的关系:正弦定理的表达式:\sin A=\frac{\sqrt{a^2 - b^2 - c^2}}{2bc};3. 梯形公式:它可以帮助我们计算出三角形的面积,它有两种表示形式:一:根据三角形三条边的长度,可以表示为:S=\frac{1}{2} a \times b \sin C;二:根据三角形的三个内角的度数,可以表示为:S=\frac{abc}{4R};4. 两边和定理:它可以帮助我们计算出一个三角形的面积,这个定理可以用来得出三角形三个角度两条边之间的关系:两边和定理的表达式为:a\sin A=b\sin B=c\sin C;5. 余切定理:它可以帮助我们计算出三角形的余切值,当我们知道角的正弦值时:余切定理的表达式为:\tan A=\frac{1}{\sin A}\;6. 正切定理:它可以帮助我们计算出三角形的正切值,当我们知道角的余弦值时:正切定理的表达式:\cot A=\frac{1}{\tan A}\;以上这些定理和公式都是三角函数中最重要最常用的,因为三角函数具有广泛的应用,所以必须熟悉这些定理和公式,以便于灵活地应用。
(完整)初中常用三角函数公式初中常用三角函数公式
三角函数是数学中常见的概念,它们在初中阶段的数学研究中起着重要的作用。
以下是一些常用的三角函数公式:
1. 正弦函数公式:
- 正弦函数的定义:在直角三角形中,对于一个锐角角度A,正弦函数的值等于对边与斜边的比值,可以表示为sin(A) = 对边/斜边。
2. 余弦函数公式:
- 余弦函数的定义:在直角三角形中,对于一个锐角角度A,余弦函数的值等于邻边与斜边的比值,可以表示为cos(A) = 邻边/斜边。
3. 正切函数公式:
- 正切函数的定义:在直角三角形中,对于一个锐角角度A,正切函数的值等于对边与邻边的比值,可以表示为tan(A) = 对边/邻边。
4. 余切函数公式:
- 余切函数的定义:在直角三角形中,对于一个锐角角度A,余切函数的值等于邻边与对边的比值,可以表示为cot(A) = 邻边/对边。
5. 正割函数公式:
- 正割函数的定义:在直角三角形中,对于一个锐角角度A,正割函数的值等于斜边与邻边的比值,可以表示为sec(A) = 斜边/邻边。
6. 余割函数公式:
- 余割函数的定义:在直角三角形中,对于一个锐角角度A,余割函数的值等于斜边与对边的比值,可以表示为csc(A) = 斜边/对边。
这些公式是初中数学中常用的三角函数公式,它们可以用来解决与三角函数相关的各种问题。
熟练掌握这些公式并灵活运用,有助于提高数学解题能力和理解几何概念的能力。
三角函数公式定理三角函数是数学中非常重要的一门学科,涵盖了三角函数公式及定理等内容。
在数学中,三角函数以角度为自变量,输出的值与三角形的各个边的比相关,常见的三角函数有正弦函数、余弦函数、正切函数等。
在解决三角形相关问题、解析几何、波动现象等方面都有广泛的应用。
首先,让我们来了解一些基本的三角函数公式。
其中最基础和常用的就是正弦函数公式和余弦函数公式。
正弦函数公式:sin(A ± B) = sinAcosB ± cosAsinBsin2A = 2sinAcosAsin(2A ± B) = sin(2A)cos(B) ± cos(2A)sin(B)余弦函数公式:cos(A ± B) = cosAcosB ∓ sinAsinBcos2A = cos^2(A) - sin^2(A) = 1 - 2sin^2(A) = 2cos^2(A) - 1 cos(2A ± B) = cos(2A)cos(B) ∓ sin(2A)sin(B)此外,还有其他一些常见的重要三角函数公式,如正切函数公式、余切函数公式、半角公式等等,在实际应用中十分有用。
对于不同的三角函数,还有一些重要的三角函数定理。
其中最基础的就是三角函数与三角形内角的关系,即:sin(A) = a/ccos(A) = b/ctan(A) = a/b其中a、b、c分别表示三角形中某一角的对边、邻边和斜边的长度。
此外,还有著名的正弦定理和余弦定理。
正弦定理可以用来计算三角形各边与角的关系,具体形式为:a/sinA = b/sinB = c/sinC = 2R其中a、b、c表示三角形的三边的长度,A、B、C表示三个内角(对应的顶点为a、b、c),R为该三角形外接圆的半径。
而余弦定理可以用来计算三角形的边与角的关系,具体形式为:a^2 = b^2 + c^2 - 2bc某cosA这个定理可以用来求解三角形的边长或角度。
初中三角函数公式及其定理之阳早格格创做1、勾股定理:曲角三角形二曲角边a 、b 的仄圆战等于斜边c 的仄圆2、如下图,正在Rt △ABC 中,∠C 为曲角,则∠A 的钝角三角函数为(∠A 可换成∠B):3、任性钝角的正弦值等于它的余角的余弦值;任性钝角的余弦值等于它的余角的正弦值.4、切值等于它的余角的正切值.5、0°、30°、45°、60°、90°特殊角的三角函数值(要害)6、正弦、余弦的删减性:A90B 90∠-︒=∠︒=∠+∠得由B A 对于边邻边CA90B 90∠-︒=∠︒=∠+∠得由B A当0°≤α≤90°时,sin α随α的删大而删大,cos α随α的删大而减小. 7、正切、余切的删减性:当0°<α<90°时,tan α随α的删大而删大,cot α随α的删大而减小.1、解曲角三角形的定义:已知边战角(二个,其中必有一边)→所有已知的边战角.依据:①边的闭系:222c b a =+;②角的闭系:A+B=90°;③边角闭系:三角函数的定义.(注意:尽管预防使用中间数据战除法)2、应用举例:(1)俯角:视线正在火仄线上圆的角;俯角:视线正在火仄线下圆的角.(2)坡里的铅曲下度h 战火仄宽度l 的比喊干坡度(坡比).用字母i 表示,即hi l=.坡度普遍写成1:m 的形式,如1:5i =等. 把坡里与火仄里的夹角记做α(喊干坡角),那么tan h i lα==. 3、从某面的指北目标按逆时针转到目标目标的火仄角,喊干圆背角.如图3,OA 、OB 、OC 、OD 的目标角分别是:45°、135°、225°.4、指北或者指北目标线与目标目标 线所成的小于90°的火仄角,喊干目标角.如图4,OA 、OB 、OC 、OD 的目标角分别是:北偏偏东30°(东北目标) , 北偏偏东45°(东北目标), 北偏偏西60°(西北目标), 北偏偏西60°(西北目标).。
推导初中三角函数的推导方法三角函数是数学中非常重要的概念,它在物理、几何和工程等各个领域中都有广泛的应用。
在初中阶段,学生首次接触到三角函数,并学习如何推导它们的数学形式。
本文将介绍初中阶段推导三角函数的方法。
一、正弦函数的推导1. 假设在直角三角形中,∠A 是锐角,边长为 a 的边是斜边,边长为 x 的边是对边,边长为 h 的边是邻边。
2. 根据勾股定理:h² = a² - x²。
3. 将方程两边同时除以 a²:(h²/a²) = 1 - (x²/a²)。
4. 将方程两边开方,得到:(h/a) = √(1 - (x²/a²))。
5. 由三角函数定义可知,sinA = h/a,因此可得到正弦函数的推导公式:sinA = √(1 - (x²/a²))。
二、余弦函数的推导1. 假设在直角三角形中,∠A 是锐角,边长为 a 的边是斜边,边长为 x 的边是对边,边长为 h 的边是邻边。
2. 根据勾股定理:h² = a² - x²。
3. 将方程两边同时除以 a²:(h²/a²) = 1 - (x²/a²)。
4. 由三角函数定义可知,cosA = x/a,因此可得到余弦函数的推导公式:cosA = √(1 - (h²/a²))。
三、正切函数的推导1. 假设在直角三角形中,∠A 是锐角,边长为 a 的边是斜边,边长为 x 的边是对边,边长为 h 的边是邻边。
2. 根据正切函数定义,tanA = x/h。
3. 将正弦函数和余弦函数的推导公式代入,得到正切函数的推导公式:tanA = x/√(a² - x²)。
四、割函数、余割函数和正割函数的推导1. 根据三角函数定理可知,割函数 secA = 1/cosA,余割函数 cscA = 1/sinA,正割函数 cotA = 1/tanA。
一、锐角三角函数:初中数学公式定理大全sin A =∠A 的对边cos A =∠A 的邻边① ∠A 是 Rt △ABC 的任一锐角,则∠A 的正弦:tan A = ∠A 的对边斜边 ,∠A 的余弦: 斜 边 ,∠A 的正切:∠A 的邻边; 并且 sin 2A +cos 2A =1. 0<sin A <1,0<cos A <1,tan A >0. ∠A 越大,∠A 的正弦和正切值越大,余弦值反而越小.② 余角公式:sin(90º-A )=cos A ,cos(90º-A )=sin A .铅垂高度=ℎ ℎ③ 斜坡的坡度:i =水平宽度 ④ 特殊角的三角函数值:l .设坡角为 α,则 i =tan α=l . l二、二次函数: y = ) 1.定义:一般地,如果 ,那么 y 叫做 x 的二次函数. 2. 抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当a > 0时,开口向上;当a < 0时,开口向下;|a |相等,抛物线的开口大小、形状相同。
②平行于 y 轴(或重合)的直线记作x = ℎ,特别地,y 轴记作直线x = 0。
y = ax 2 + bx + c = a(x + b )2 + 4ac ‒ b2(‒ b , 4ac ‒ b 2) x = ‒ b(1)公式法:2a4a,∴顶点是 2a4a,对称轴是直线2a(2)配方法:运用配方的方法,将抛物线的解析式化为y = a (x ‒ ℎ)2+ k 的形式,得到顶点为(h,k),对称轴是直线x = ℎ(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。
(x ,y ) (x ,y ) x = x 1 + x 2 若已知抛物线上两点 1 、 2 (及 y 值相同),则对称轴方程可以表示为:2 4.抛物线y = ax 2 + bx + c 中,a ,b ,c 的作用(1)a 决定开口方向及开口大小,这与y = ax 2中的a 完全一样. b a y = ax 2 + bx + c x =‒ bb = 0 (2) 和 共同决定抛物线对称轴的位置.由于抛物线 的对称轴是直线 2a ,故:① 时,对b > 0a b< 0 a称轴为 y 轴;②a (即 、b 同号)时,对称轴在 y 轴左侧;③a (即 、b 异号)时,对称轴在 y 轴右侧.(3)c 的大小决定抛物线y = ax 2+ bx + c 与 y 轴交点的位置. 当x = 0时,y=c ,∴抛物线y = ax 2+ bx + c 与 y 轴有且只有一个交点(0,c )① c = 0,抛物线经过原点; ②c > 0,与 y 轴交于正半轴;③c < 0,与 y 轴交于负半轴b < 0α以上三点中,当结论和条件互换时,仍成立。
三角函数定理公式大全在数学中,三角函数是一组基本的函数,用于描述角度和边长之间的关系。
三角函数定理是描述三角形中角度和边长之间的关系的公式集合。
三角函数定理被广泛应用于三角形的计算和解决各种实际问题。
在本篇文章中,我们将介绍三角函数的各种定理公式。
1. 正弦定理(Sine Rule):在任意三角形ABC中,边长a,b,c与对应的角A,B,C之间满足以下关系:a/sinA = b/sinB = c/sinC这意味着一个三角形的任意一边的长度与它所对应的角的正弦值成比例。
2. 余弦定理(Cosine Rule):在任意三角形ABC中,边长a,b,c与对应的角A,B,C之间满足以下关系:c² = a² + b² - 2ab*cosCb² = a² + c² - 2ac*cosBa² = b² + c² - 2bc*cosA这意味着一个三角形的任意一边的平方与其他两边的平方以及其夹角的余弦值有关。
3. 正切定理(Tangent Rule):在任意三角形ABC中,边长a,b,c与对应的角A,B,C之间满足以下关系:tanA = a/btanB = b/atanC = c/a这意味着一个三角形的任意一边的长度与其他两边的长度之间的比率与对应的角的正切值成比例。
4. 正割定理(Secant Rule):在任意三角形ABC中,边长a,b,c与对应的角A,B,C之间满足以下关系:secA = 1/cosAsecB = 1/cosBsecC = 1/cosC这意味着一个三角形的任意一边的长度与对应的角的余弦值的倒数成比例。
5. 余割定理(Cosecant Rule):在任意三角形ABC中,边长a,b,c与对应的角A,B,C之间满足以下关系:cosecA = 1/sinAcosecB = 1/sinBcosecC = 1/sinC这意味着一个三角形的任意一边的长度与对应的角的正弦值的倒数成比例。
初中三角函数的公式有半角公式sin(A/2)=±√((1-cosA)/2)、倍角公式Sin2A=2SinA*CosA、两角和与差公式Sin2A=2SinA*CosA、平方关系公式sin²α+cos²α=1、倒数关系公式tanα·cotα=1等等。
1初中数学三角函数公式锐角三角函数公式sinα=∠α的对边/斜边cosα=∠α的邻边/斜边tanα=∠α的对边/∠α的邻边cotα=∠α的邻边/∠α的对边2倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2是sinA的平方sin2(A))2初中三角函数正切定理公式在平面三角形中,正切定理说明任意两条边的和除第一条边减第二条边的差所得的商等于这两条边的对角的和的一半的正切除第一条边对角减第二条边对角的差的一半的正切所得的商。
正切定理:(a+b)/(a-b)=tan((α+β)/2)/tan((α-β)/2)。
3初中三角函数余弦定理定义:对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。
对于边长为a、b、c而相应角为A、B、C的三角形,有:a^2=b^2+c^2-2bc·cosAb^2=a^2+c^2-2ac·cosBc^2=a^2+b^2-2ab·cosC也可表示为:cosC=(a^2+b^2-c^2)/2abcosB=(a^2+c^2-b^2)/2accosA=(c^2+b^2-a^2)/2bc这个定理也可以通过把三角形分为两个直角三角形来证明。
如果这个角不是两条边的夹角,那么三角形可能不是唯一的(边-边-角)。
要小心余弦定理的这种歧义情况。
延伸定理:第一余弦定理(任意三角形射影定理)设△ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有:a=b·cosC+c·cosB,b=c·cosA+a·cosC,c=a·cosB+b·cosA。
三角函数定理1.诱导公式sin(-a) = - sin(a)cos(-a) = cos(a)sin(π/2 - a) = cos(a)cos(π/2 - a) = sin(a)sin(π/2 + a) = cos(a)cos(π/2 + a) = - sin(a)sin(π - a) = sin(a)cos(π - a) = - cos(a)sin(π + a) = - sin(a)cos(π + a) = - cos(a)2.两角和与差的三角函数sin(a + b) = sin(a)cos(b) + cos(α)sin(b) cos(a + b) = cos(a)cos(b) - sin(a)sin(b)sin(a - b) = sin(a)cos(b) - cos(a)sin(b)cos(a - b) = cos(a)cos(b) + sin(a)sin(b)tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)] tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)] 3.和差化积公式sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2]sin(a) - sin(b) = 2sin[(a - b)/2]cos[(a + b)/2]cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2]cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2]4.积化和差公式sin(a)sin(b) = - 1/2[cos(a + b) - cos(a - b)]cos(a)cos(b) = 1/2[cos(a + b) + cos(a -b)]sin(a)cos(b) = 1/2[sin(a + b) + sin(a - b)]5.二倍角公式sin(2a) = 2sin(a)cos(a)cos 2a = cos2a - sin2a = 2cos2a - 1= 1 - 2sin2a6.半角公式sin2a = (1 – cos 2a)/ 2cos2a = (1 + cos 2a)/ 2tan a = [1 – cos 2a] /sin 2a = sin 2a / [1 + cos 2a ] 7.万能公式sin(a) = 2tan(a/2) / [1+tan2(a/2)]cos(a) = [1-tan2(a/2)] / [1+tan2(a/2)]tan(a) = 2tan(a/2) / [1-tan2(a/2)]三角函数公式三角函数是数学中属于初等函数中的超越函数的一类函数。
(完整版)初中三角函数公式表一、三角函数的基本定义在初中数学中,三角函数主要涉及正弦函数(sin)、余弦函数(cos)和正切函数(tan)。
这些函数与直角三角形的三边长度有着密切的关系。
1. 正弦函数(sin):正弦函数表示直角三角形中,对应于一个锐角的斜边与斜边与邻边之比。
公式为:sin(θ) = 对边 / 斜边。
2. 余弦函数(cos):余弦函数表示直角三角形中,对应于一个锐角的邻边与斜边之比。
公式为:cos(θ) = 邻边 / 斜边。
3. 正切函数(tan):正切函数表示直角三角形中,对应于一个锐角的斜边与邻边之比。
公式为:tan(θ) = 对边 / 邻边。
二、三角函数的相互关系1. 正弦函数和余弦函数的关系:sin(θ) = cos(90° θ),cos(θ) = sin(90° θ)。
2. 正切函数和余弦函数的关系:tan(θ) = sin(θ) / cos(θ)。
3. 正切函数和正弦函数的关系:tan(θ) = sin(θ) / cos(θ)。
三、三角函数的特殊值1. 0°:sin(0°) = 0,cos(0°) = 1,tan(0°) = 0。
2. 30°:sin(30°) = 1/2,cos(30°) = √3/2,tan(30°) =1/√3。
3. 45°:sin(45°) = √2/2,cos(45°) = √2/2,tan(45°)= 1。
4. 60°:sin(60°) = √3/2,cos(60°) = 1/2,tan(60°) = √3。
5. 90°:sin(90°) = 1,cos(90°) = 0,tan(90°) 无定义。
四、三角函数的周期性三角函数具有周期性,即函数值在一定的周期内会重复出现。
三角函数及解三角形公式一览三角函数和解三角形是数学中重要的概念和工具。
三角函数主要涉及角的度量和三角关系,解三角形则是通过给定的一些已知信息来求解三角形的边长和角度。
本文将详细介绍常见的三角函数和解三角形的公式,其中包括正弦、余弦、正切、余切、正割和余割的定义和性质,以及利用这些函数求解三角形的几何关系和应用。
一、三角函数的定义和性质1. 正弦函数(sin)正弦函数是一个周期函数,其定义域是所有实数,值域是[-1,1]。
它的定义公式为:sinθ = 对边 / 斜边sin(θ + 2πk) =sinθsin(π/2 - θ) = cosθ2. 余弦函数(cos)余弦函数也是一个周期函数,定义域是所有实数,值域是[-1,1]。
它的定义公式为:cosθ = 邻边 / 斜边cos(θ + 2πk) = cosθcos(π/2 - θ) = sinθ3. 正切函数(tan)正切函数是无界函数,其定义域是所有实数,值域是整个实数轴。
它的定义公式为:tanθ = 正弦 / 余弦 = 对边 / 邻边tan(θ + πk) = tanθtan(π/2 - θ) = 1 / tanθ4. 余切函数(cot)余切函数也是无界函数,定义域是所有实数,值域是整个实数轴。
它的定义公式为:cotθ = 余弦 / 正弦 = 邻边 / 对边cot(θ + πk) = cotθcot(π/2 - θ) = 1 / cotθ5. 正割函数(sec)正割函数是无界函数,其定义域是除了90°的倍数的所有实数,值域是(-∞,-1]∪[1,+∞)。
它的定义公式为:secθ = 1 / 余弦 = 斜边 / 邻边sec(θ + 2πk) = secθsec(θ + π) = -secθ6. 余割函数(cosec)余割函数也是无界函数,定义域是除了180°的倍数的所有实数,值域是(-∞,-1]∪[1,+∞)。
它的定义公式为:cosecθ = 1 / 正弦 = 斜边 / 对边cosec(θ + 2πk) = cosecθcosec(θ + π) = -cosecθ二、解三角形的公式解三角形是指通过给定的一些已知信息(如边长或角度)来求解三角形的未知信息。
初一数学三角形公式总结数学三角公式看似很多、很复杂,但只要掌控了三角函数的本质及内部规律,就会发觉三角函数各个公式之间有强大的联系。
下面是作者为大家整理的关于初一数学三角形公式,期望对您有所帮助!常见三角引诱公式公式一:终边相同的角的同一三角函数的值相等设α为任意锐角,弧度制下的角的表示:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:π+α的三角函数值与α的三角函数值之间的关系设α为任意角,弧度制下的角的表示:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα初中数学三角函数公式大全两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积公式2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB倍角公式Sin2A=2SinA.CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2是sinA的平方sin2(A))半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 积化和差公式sinαsinβ=[cos(α-β)-cos(α+β)]/2cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2万能公式sinα=2tan(α/2)/[1+tan^(α/2)]cosα=[1-tan^(α/2)]/1+tan^(α/2)]tanα=2tan(α/2)/[1-tan^(α/2)]三角形的公式定理1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.过一点有且只有一条直线和已知直线垂直6.直线外一点与直线上各点连接的所有线段中,垂线段最短7.平行公理经过直线外一点,有且只有一条直线与这条直线平行8.如果两条直线都和第三条直线平行,这两条直线也相互平行9.同位角相等,两直线平行10.内错角相等,两直线平行11.同旁内角互补,两直线平行12.两直线平行,同位角相等13.两直线平行,内错角相等14.两直线平行,同旁内角互补15.定理三角形两边的和大于第三边16.推论三角形两边的差小于第三边17.三角形内角和定理三角形三个内角的和等于180°18.推论1直角三角形的两个锐角互余19.推论2三角形的一个外角等于和它不相邻的两个内角的和20.推论3三角形的一个外角大于任何一个和它不相邻的内角21.全等三角形的对应边、对应角相等22.边角边公理有两边和它们的夹角对应相等的两个三角形全等23.角边角公理有两角和它们的夹边对应相等的两个三角形全等24.推论有两角和其中一角的对边对应相等的两个三角形全等25边边边公理有三边对应相等的两个三角形全等26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27.定理1:在角的平分线上的点到这个角的两边的距离相等28.定理2:到一个角的两边的距离相同的点,在这个角的平分线上29.角的平分线是到角的两边距离相等的所有点的集合30.等腰三角形的性质定理等腰三角形的两个底角相等31.推论1:等腰三角形顶角的平分线平分底边并且垂直于底边32.等腰三角形的顶角平分线、底边上的中线和高相互重合33.推论3:等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35.推论1:三个角都相等的三角形是等边三角形36.推论2:有一个角等于60°的等腰三角形是等边三角形37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38.直角三角形斜边上的中线等于斜边上的一半39.定理线段垂直平分线上的点和这条线段两个端点的距离相等40.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42.定理1关于某条直线对称的两个图形是全等形43.定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44.定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45.逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47.勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48.定理四边形的内角和等于360°49.四边形的外角和等于360°50.多边形内角和定理n边形的内角的和等于(n-2)×180°51.推论任意多边的外角和等于360°52.平行四边形性质定理1平行四边形的对角相等53.平行四边形性质定理2平行四边形的对边相等54.推论夹在两条平行线间的平行线段相等55.平行四边形性质定理3平行四边形的对角线相互平分56.平行四边形判定定理1两组对角分别相等的四边形是平行四边形57.平行四边形判定定理2两组对边分别相等的四边形是平行四边形58.平行四边形判定定理3对角线相互平分的四边形是平行四边形59.平行四边形判定定理4一组对边平行相等的四边形是平行四边形60.矩形性质定理1矩形的四个角都是直角61.矩形性质定理2矩形的对角线相等62.矩形判定定理1有三个角是直角的四边形是矩形63.矩形判定定理2对角线相等的平行四边形是矩形64.菱形性质定理1菱形的四条边都相等65.菱形性质定理2菱形的对角线相互垂直,并且每一条对角线平分一组对角66.菱形面积=对角线乘积的一半,即S=(a×b)÷267.菱形判定定理1四边都相等的四边形是菱形68.菱形判定定理2对角线相互垂直的平行四边形是菱形69.正方形性质定理1正方形的四个角都是直角,四条边都相等70.正方形性质定理2正方形的两条对角线相等,并且相互垂直平分,每条对角线平分一组对角71.定理1关于中心对称的两个图形是全等的72.定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73.逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74.等腰梯形性质定理等腰梯形在同一底上的两个角相等75.等腰梯形的两条对角线相等76.等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77.对角线相等的梯形是等腰梯形78.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79.推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰80.推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边81.三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82.梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83.(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84.(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85.(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87.推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88.定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90.定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形类似91.类似三角形判定定理1两角对应相等,两三角形类似(ASA)92.直角三角形被斜边上的高分成的两个直角三角形和原三角形类似93.判定定理2两边对应成比例且夹角相等,两三角形类似(SAS)94.判定定理3三边对应成比例,两三角形类似(SSS)95.定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形类似96.性质定理1类似三角形对应高的比,对应中线的比与对应角平分线的比都等于类似比97.性质定理2类似三角形周长的比等于类似比98.性质定理3类似三角形面积的比等于类似比的平方初一数学三角形公式总结到此结束。
三角函数常用公式和定理1.常见三角不等式: ⑴若(0,)2x π∈,则sin tan x x x <<.⑵ 若(0,)2x π∈,则1sin cos x x <+≤⑶ |sin ||cos |1x x +≥.2.同角三角函数的基本关系式:22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 3.正弦、余弦的诱导公式:(奇变偶不变,符号看象限)212(1)sin ,sin()2(1)s ,n n n n co n απαα-⎧-⎪+=⎨⎪-⎩为偶数为奇数 212(1)s ,s()2(1)sin ,n n co n n co n απαα+⎧-⎪+=⎨⎪-⎩为偶数为奇数 4.和角与差角公式:sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±= . 22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式);22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan b aϕ= ). 5.二倍角公式及降幂公式: sin 22sin cos ααα=22tan 1tan αα=+. 2222cos 2cos sin 2cos 112sin ααααα=-=-=-221tan 1tan αα-=+.22tan tan 21tan ααα=-. sin 21cos 2tan 1cos 2sin 2ααααα-==+ 221cos 21cos 2sin ,cos 22αααα-+== 6.三倍角公式:3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+. 3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-. 7.三角函数的周期公式:函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A≠0,ω>0)的周期T πω=. 三角函数的图像:8.正弦定理:2sin sin sin a b c R A B C===.(R 为△ABC 外接圆的半径), 2sin ,2sin ,2sin :::sin :sin a R A b R B C R C a b c sinA B C ===→=。
三角函数定义及三角函数公式大全编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(三角函数定义及三角函数公式大全)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为三角函数定义及三角函数公式大全的全部内容。
三角函数定义及三角函数公式大全一:初中三角函数公式及其定理1、勾股定理:直角三角形两直角边、的平方和等于斜边的平方.2、如下图,在Rt△ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B ):3的正弦值。
4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
5、0°、30°、45°、60°、90°特殊角的三角函数值(重要) a b c 222c b a =+)90cos(sin A A -︒=)90sin(cos A A -︒=B A cot tan =B A tan cot = )90cot(tan A A -︒=)90tan(cot A A -︒= BA cos sin =B A sin cos =6当0°≤≤90°时,sin随的增大而增大,cos随的增大而减小。
7、正切、余切的增减性:当0°<〈90°时,tan随的增大而增大,cot随的增大而减小。
1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
依据:①边的关系:;②角的关系:A+B=90°;③边角关系:三角函数的定义。
(注意:尽量避免使用中间数据和除法)2、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
三角函数定理1.诱导公式sin(-a) = - sin(a)cos(-a) = cos(a)sin(π/2 - a) = cos(a)cos(π/2 - a) = sin(a)sin(π/2 + a) = cos(a)cos(π/2 + a) = - sin(a)sin(π - a) = sin(a)cos(π - a) = - cos(a)sin(π + a) = - sin(a)cos(π + a) = - cos(a)2.两角和与差的三角函数sin(a + b) = sin(a)cos(b) + cos(α)sin(b) cos(a + b) = cos(a)cos(b) - sin(a)sin(b)sin(a - b) = sin(a)cos(b) - cos(a)sin(b)cos(a - b) = cos(a)cos(b) + sin(a)sin(b)tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)] tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)] 3.和差化积公式sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2]sin(a) - sin(b) = 2sin[(a - b)/2]cos[(a + b)/2]cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2]cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2]4.积化和差公式sin(a)sin(b) = - 1/2[cos(a + b) - cos(a - b)]cos(a)cos(b) = 1/2[cos(a + b) + cos(a -b)]sin(a)cos(b) = 1/2[sin(a + b) + sin(a - b)]5.二倍角公式sin(2a) = 2sin(a)cos(a)cos 2a = cos2a - sin2a = 2cos2a - 1= 1 - 2sin2a6.半角公式sin2a = (1 – cos 2a)/ 2cos2a = (1 + cos 2a)/ 2tan a = [1 – cos 2a] /sin 2a = sin 2a / [1 + cos 2a ] 7.万能公式sin(a) = 2tan(a/2) / [1+tan2(a/2)]cos(a) = [1-tan2(a/2)] / [1+tan2(a/2)]tan(a) = 2tan(a/2) / [1-tan2(a/2)]三角函数公式三角函数是数学中属于初等函数中的超越函数的一类函数。
初一数学三角形公式总结归纳常见三角诱导公式公式一:终边相同的角的同一三角函数的值相等设α为任意锐角,弧度制下的角的表示:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:π+α的三角函数值与α的三角函数值之间的关系设α为任意角,弧度制下的角的表示:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα初中数学三角函数公式大全两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积公式2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB倍角公式Sin2A=2SinA.CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2)(注:SinA^2是sinA的平方sin2(A))tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))积化和差公式sinαsinβ=[cos(α-β)-cos(α+β)]/2cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2万能公式sinα=2tan(α/2)/[1+tan^(α/2)]cosα=[1-tan^(α/2)]/1+tan^(α/2)]tanα=2tan(α/2)/[1-tan^(α/2)]三角形的公式定理1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.过一点有且只有一条直线和已知直线垂直6.直线外一点与直线上各点连接的所有线段中,垂线段最短7.平行公理经过直线外一点,有且只有一条直线与这条直线平行8.如果两条直线都和第三条直线平行,这两条直线也互相平行9.同位角相等,两直线平行10.内错角相等,两直线平行11.同旁内角互补,两直线平行12.两直线平行,同位角相等13.两直线平行,内错角相等14.两直线平行,同旁内角互补15.定理三角形两边的和大于第三边16.推论三角形两边的差小于第三边17.三角形内角和定理三角形三个内角的和等于180°18.推论1直角三角形的两个锐角互余19.推论2三角形的一个外角等于和它不相邻的两个内角的和20.推论3三角形的一个外角大于任何一个和它不相邻的内角21.全等三角形的对应边、对应角相等22.边角边公理有两边和它们的夹角对应相等的两个三角形全等23.角边角公理有两角和它们的夹边对应相等的两个三角形全等24.推论有两角和其中一角的对边对应相等的两个三角形全等25边边边公理有三边对应相等的两个三角形全等26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27.定理1:在角的平分线上的点到这个角的两边的距离相等28.定理2:到一个角的两边的距离相同的点,在这个角的平分线上29.角的平分线是到角的两边距离相等的所有点的集合30.等腰三角形的性质定理等腰三角形的两个底角相等31.推论1:等腰三角形顶角的平分线平分底边并且垂直于底边32.等腰三角形的顶角平分线、底边上的中线和高互相重合33.推论3:等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35.推论1:三个角都相等的三角形是等边三角形36.推论2:有一个角等于60°的等腰三角形是等边三角形37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38.直角三角形斜边上的中线等于斜边上的一半39.定理线段垂直平分线上的点和这条线段两个端点的距离相等40.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42.定理1关于某条直线对称的两个图形是全等形43.定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44.定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45.逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47.勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48.定理四边形的内角和等于360°49.四边形的外角和等于360°50.多边形内角和定理n边形的内角的和等于(n-2)×180°51.推论任意多边的外角和等于360°52.平行四边形性质定理1平行四边形的对角相等53.平行四边形性质定理2平行四边形的对边相等54.推论夹在两条平行线间的平行线段相等55.平行四边形性质定理3平行四边形的对角线互相平分56.平行四边形判定定理1两组对角分别相等的四边形是平行四边形57.平行四边形判定定理2两组对边分别相等的四边形是平行四边形58.平行四边形判定定理3对角线互相平分的四边形是平行四边形59.平行四边形判定定理4一组对边平行相等的四边形是平行四边形60.矩形性质定理1矩形的四个角都是直角61.矩形性质定理2矩形的对角线相等62.矩形判定定理1有三个角是直角的四边形是矩形63.矩形判定定理2对角线相等的平行四边形是矩形64.菱形性质定理1菱形的四条边都相等65.菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66.菱形面积=对角线乘积的一半,即S=(a×b)÷267.菱形判定定理1四边都相等的四边形是菱形68.菱形判定定理2对角线互相垂直的平行四边形是菱形69.正方形性质定理1正方形的四个角都是直角,四条边都相等70.正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71.定理1关于中心对称的两个图形是全等的72.定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73.逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74.等腰梯形性质定理等腰梯形在同一底上的两个角相等75.等腰梯形的两条对角线相等76.等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77.对角线相等的梯形是等腰梯形78.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79.推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰80.推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边81.三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82.梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83.(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84.(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85.(3)等比性质如果a/b=c/d=。