九年级数学,一元二次方程测试题
- 格式:doc
- 大小:165.05 KB
- 文档页数:7
解一元二次方程专项练习题(带答案)1、用配方法解下列方程:(1) 025122=++x x (2) 1042=+x x(3) 1162=-x x (4)0422=--x x2、用配方法解下列方程:(1) 01762=+-x x (2) x x 91852=-(3) 52342=-x x (4)x x 2452-=3、用公式法解下列方程:(1) 08922=+-x x (2) 01692=++x x(3) 38162=+x x (4)01422=--x x4、运用公式法解下列方程:(1) 01252=-+x x (2) 7962=++x x(3) 2325x x =+ (4) 1)53)(2(=--x x5、用分解因式法解下列方程:(1)01692=++x x (2) x x x 22)1(3-=-(3))32(4)32(2+=+x x (4)9)3(222-=-x x6、用适当方法解下列方程:(1) 22(3)5x x -+= (2) 230x ++=(3) 2)2)(113(=--x x ; (4) 4)2)(1(13)1(+-=-+x x x x7、 解下列关于x 的方程:(1) x 2+2x -2=0 (2) 3x 2+4x -7=(3) (x +3)(x -1)=5 (4) (x -2)2+42x =08、解下列方程(12分)(1)用开平方法解方程:4)1(2=-x (2)用配方法解方程:x 2 —4x +1=0(3)用公式法解方程:3x 2+5(2x+1)=0 (4)用因式分解法解方程:3(x -5)2=2(5-x )9、用适当方法解下列方程:(1)0)14(=-x x (2)027122=++x x(3)562+=x x (4)45)45(+=+x x x(5)x x 314542=- (6)0242232=-+-x x(7)12)1)(8(=-++x x (8)14)3)(23(+=++x x x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x 5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x 。
九年级数学一元二次方程测试题及参考答案九年级数学一元二次方程测试题及参考答案学习是一个边学新知识边巩固的过程,对学过的知识一定要多加练习,这样才能进步。
因此,小编精心为大家整理了这篇九年级数学一元二次方程测试题及参考答案,供大家参考。
一、选择题(每小题3分,共30分)1、已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2可以配方成下列的( )A、(x-p)2=5B、(x-p)2=9C、(x-p+2)2=9D、(x-p+2)2=52、已知m是方程x2-x-1=0的一个根,则代数式m2-m的值等于( )A、-1B、0C、1D、23、若、是方程x2+2x-2019=0的两个实数根,则2+3+的值为( )A、2019B、2019C、-2019D、40104、关于x的方程kx2+3x-1=0有实数根,则k的取值范围是( )A、k-B、k- 且k0C、k-D、k- 且k05、关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是( )二、填空题(每小题3分,共30分)11、若关于x的方程2x2-3x+c=0的一个根是1,则另一个根是 .12、一元二次方程x2-3x-2=0的解是 .13、如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值是 .14、等腰△ABC中,BC=8,AB、AC的长是关于x的方程x2-10x+m=0的两根,则m的值是 .15、2019年某市人均GDP约为2019年的1.2倍,如果该市每年的人均GDP增长率相同,那么增长率为 .16、科学研究表明,当人的下肢长与身高之比为0.618时,看起来最美,某成年女士身高为153cm,下肢长为92cm,该女士穿的高根鞋鞋根的最佳高度约为 cm.(精确到0.1cm) 17、一口井直径为2m,用一根竹竿直深入井底,竹竿高出井口0.5m,如果把竹竿斜深入井口,竹竿刚好与井口平,则井深为 m,竹竿长为 m.18、直角三角形的周长为2+ ,斜边上的中线为1,则此直角三角形的面积为 .19、如果方程3x2-ax+a-3=0只有一个正根,则的值是 .20、已知方程x2+3x+1=0的两个根为、,则 + 的值为 .三、解答题(共60分)21、解方程(每小题3分,共12分)(1)(x-5)2=16 (2)x2-4x+1=0(3)x3-2x2-3x=0 (4)x2+5x+3=022、(8分)已知:x1、x2是关于x的方程x2+(2a-1)x+a2=0的两个实数根,且(x1+2)(x2+2)=11,求a的值.23、(8分)已知:关于x的方程x2-2(m+1)x+m2=0(1) 当m取何值时,方程有两个实数根?(2) 为m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.24、(8分)已知一元二次方程x2-4x+k=0有两个不相等的实数根(1) 求k的取值范围(2) 如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.25、(8分)已知a、b、c分别是△ABC中A、B、C所对的边,且关于x的方程(c-b)x2+2(b-a)x+(a-b)=0有两个相等的实数根,试判断△ABC的形状.26、(8分)某工程队在我市实施棚户区改造过程中承包了一项拆迁工程,原计划每天拆迁1250m2,因为准备工作不足,第一天少拆迁了20%,从第二天开始,该工程队加快了拆迁速度,第三天拆迁了1440m2求:(1)该工程队第二天第三天每天的拆迁面积比前一天增长的百分数相同,求这个百分数.27、(分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克(1) 现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2) 若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?小编再次提醒大家,一定要多练习哦!希望这篇九年级数学一元二次方程测试题及参考答案,能够帮助你巩固学过的相关知识。
九年级上册数学一元二次方程测试题一、选择题(每题3分,共15分)1. 一元二次方程x^2-2x = 0的根是()- A. x = 0- B. x = 2- C. x = 0或x=-2- D. x = 0或x = 2解析:对于方程x^2-2x = 0,提取公因式x得x(x - 2)=0,则x = 0或者x-2 = 0,解得x = 0或x = 2,所以答案是D。
2. 方程(x + 1)^2=4的解是()- A. x_1=1,x_2=-3- B. x = 1- C. x=-3- D. x_1=2,x_2=-2解析:对于方程(x + 1)^2=4,开平方得x + 1=±2。
当x + 1 = 2时,x=1;当x + 1=-2时,x=-3。
所以x_1=1,x_2=-3,答案是A。
3. 一元二次方程x^2-3x - 1 = 0与x^2-x + 3 = 0的所有实数根的和等于()- A. 2.- B. -4.- C. 4.- D. 3.解析:对于一元二次方程ax^2+bx + c = 0(a≠0),其根的判别式Δ=b^2-4ac。
在方程x^2-3x - 1 = 0中,Δ=(-3)^2-4×1×(-1)=9 + 4 = 13>0,方程有两个实数根,根据韦达定理,两根之和为x_1+x_2=-(b)/(a)=3。
在方程x^2-x + 3 = 0中,Δ=(-1)^2-4×1×3=1 - 12=- 11<0,方程没有实数根。
所以这两个方程的所有实数根的和等于3,答案是D。
4. 若关于x的一元二次方程kx^2-2x - 1 = 0有两个不相等的实数根,则k的取值范围是()- A. k>-1- B. k>-1且k≠0- C. k<1- D. k<1且k≠0解析:因为方程kx^2-2x - 1 = 0是一元二次方程,所以k≠0。
又因为方程有两个不相等的实数根,所以Δ =(-2)^2-4k×(-1)>0,即4 + 4k>0,4k>-4,解得k>-1。
九年级数学一元二次方程测试题(含答案)一、选择题(每题3分)1.用配方法解方程x-2x-5=时,原方程应变形为()B.(x-1)²=62.若关于x的一元二次方程kx-2x-1=有两个不相等的实数根,则k的取值范围是()A.k>-13.关于x的方程(a-6)x-8x+6=有实数根,则整数a的最大值是()D.94.方程x-9x+18=的两个根是等腰三角形的底和腰,则这个三角形的周长为()C.155.设a,b是方程x²+x-2009=的两个实数根,则a+2a+b的值为()B.20076.为了让江西的山更绿、水更清,2008年省委、省政府提出了确保到2010年实现全省森林覆盖率达到63%的目标,已知2008年我省森林覆盖率为60.05%,设从2008年起我省森林覆盖率的年平均增长率为x,则可列方程()B.60.05(1+x)=63%7.如图5,在△ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x²+2x-3=的根,则ABCD的周长为()C.2+228.在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm²,设金色纸边的宽为xcm,那么CB+CE满足的方程是()B.x²+65x-350=0二、填空题:(每题3分)9.一元二次方程x²=16的解是±4.10.若关于x的一元二次方程x+(k+3)x+k=的一个根是-2,则另一个根是-1.2022年3月23日,第1页共5页1.(2009年包头)解:根据韦达定理,x1+x2=m,x1x2=2m-1,所以(x1-x2)²=(x1+x2)²-4x1x2=(m²-8m+4)-4(2m-1)=m²-8m+8.答案:m²-8m+8.2.(2009年甘肃白银)解:根据定义,43=4²-3²=7,所以7x=24,x=5.答案:5.3.(2009年包头)解:设两段铁丝长度分别为x和20-x,则两个正方形的边长分别为x/4和(20-x)/4,根据均值不等式,两个正方形面积之和的最小值为2(x/4)(20-x)/4=5(x-5)²,当x=10时取得最小值,即最小值为125.答案:125.4.(2009年兰州)解:根据韦达定理,x1+x2=-6,x1x2=3,所以bc=x1x2=3,x1·x2=3/a=3/1=3.答案:3.5.(2009年甘肃白银)解:根据定义,43=1,所以1x=24,x=25.答案:25.6.(2009年广东省)解:设2x-3=t,则原方程转化为t=0,新方程为2t=3,解得t=3/2,所以x=3/4.答案:3/4.7.解方程:x-3x-1=0,移项得x=1/3.答案:1/3.8.(2009年鄂州)解:根据韦达定理,k+2±√(k²-4k)≠0,所以k²-4k>0,解得k4.又因为当k=0或k=4时,方程的两根相等,所以k∈(0,4)的范围内,方程有两个不相等的实数根。
九年级数学上册第二十一章《一元二次方程》测试题-人教版(含答案)一.选择题1.一元二次方程2x2﹣5x+1=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定2.若关于x的一元二次方程(k﹣2)x2+x+k2﹣4=0有一个根是0,则k的值是()A.﹣2B.2C.0D.﹣2或23.关于x的一元二次方程x2﹣2x﹣5=0有()A.两个相等的实数根B.两个不相等的正数根C.两个不相等的负数根D.一个正数根和一个负数根4.已知关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,则m的取值范围是()A.m≥B.m<C.m>且m≠1D.m≥且m≠1 5.关于x的多项式N=x﹣1,M=2x2﹣ax﹣2,a为任意实数,则下列结论中正确的有()个.①若M•N中不含x2项,则a=﹣2;②不论x取何值,总有M≥N;③若关于x的方程M=0的两个解分别为x1=t2,x2=2t﹣3,则实数a的最小值为﹣8;④不论a取何值,关于x的方程(M+N)2﹣(M+N)=6始终有4个不相同的实数解.A.1B.2C.3D.46.下列配方中,变形正确的是()A.x2+2x=(x+1)2B.x2﹣4x﹣3=(x﹣2)2+1C.2x2+4x+3=2(x+1)2+1D.﹣x2+2x=﹣(x+1)2﹣17.某公司今年10月的营业额为2500万元,按计划第四季度的总营业额要达到9100万元,求该公司11、12两个月营业额的月均增长率,设该公司11、12两个月营业额的月均增长率为x,则根据题意可列的方程为()A.2500(1+x)2=9100B.2500[1+(1+x)+(1+x)2]=9100C.2500[(1+x)+(1+x)2]=9100D.9100(1+x)2=25008.已知A=x2+6x+n2,B=2x2+4x+2n2+3,下列结论正确的个数为()①若A=x2+6x+n2是完全平方式,则n=±3;②B﹣A的最小值是2;③若n是A+B=0的一个根,则4n2+=;④若(2022﹣A)(A﹣2019)=2,则(2022﹣A)2+(A﹣2019)2=4.A.1个B.2个C.3个D.4个9.已知关于x的方程x2+(k+3)x+k+2=0,则下列说法正确的是()A.不存在k的值,使得方程有两个相等的实数解B.至少存在一个k的值,使得方程没有实数解C.无论k为何值,方程总有一个固定不变的实数根D.无论k为何值,方程有两个不相等的实数根10.满足(x﹣3)2+(y﹣3)2=6的所有实数对(x,y),使取最小值,此最小值为()A.B.C.D.二.填空题11.对于实数m,n,先定义一种运算“⊗”如下:,若x⊗(﹣2)=10,则实数x的值为.12.德尔塔(Delta)是一种全球流行的新冠病毒变异毒株,其传染性极强.某地有1人感染了德尔塔,因为没有及时隔离治疗,经过两轮传染后,一共有144人感染了德尔塔病毒,如果不及时控制,照这样的传染速度,经过三轮传染后,一共有人感染德尔塔病毒.13.已知m,n是方程x2﹣3x=2的两个根,则式子的值是.14.如图,某生物兴趣小组要在长40米、宽30米的矩形园地种植蔬菜,为便于管理,要在中间开辟一横两纵共三条等宽小路,若蔬菜种植面积为1008平方米,则小路的宽为米.15.欧几里得在《几何原本》中,记载了用图解法解方程x2+ax=b2的方法,类似地我们可以用折纸的方法求方程x2+x﹣1=0的一个正根.如图,一张边长为1的正方形的纸片ABCD,先折出AD,BC的中点E,F,再沿过点A的直线折叠使AD落在线段AF上,点D 的对应点为点H,折痕为AG,点G在边CD上,连接GH,GF,线段BF、DG、CG和GF 中,长度恰好是方程x2+x﹣1=0的一个正根的线段为.三.解答题16.已知a是方程x2﹣2020x+1=0的一个根.求:(1)2a2﹣4040a﹣3的值;(2)代数式a2﹣2019a+的值.17.解方程:(1)2x2﹣4x﹣1=0;(2)3x(x﹣1)=2﹣2x.18.在理解例题的基础上,完成下列两个问题:例题:若m2+2mn+2n2﹣4n+4=0,求m和n的值;解:由题意得:(m2+2mn+n2)+(n2﹣4n+4)=0,∴(m+n)2+(n﹣2)2=0∴,解得.请解决以下问题:(1)若x2+4xy+5y2﹣4y+4=0,求y x的值;(2)若a,b,c是△ABC的边长,满足a2+b2=12a+8b﹣52,c是△ABC的最长边,且c为偶数,则c可能是哪几个数?19.【阅读材料】“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”.如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式中出现完全平方式,再减去这个项,使整个式的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法.例如:求当a取何值,代数式a2+6a+8有最小值?最小值是多少?解:a2+6a+8=a2+6a+32﹣32+8=(a+3)2﹣1因为(a+3)2≥0,所以a2+6a+8≥﹣1,因此,当a=﹣3时,代数式a2+6a+8有最小值,最小值是﹣1.【问题解决】利用配方法解决下列问题:(1)当x取何值时,代数式x2﹣2x﹣1有最小值?最小值是多少?(2)当x=时,代数式2x2+8x+12有最小值,最小值为.20.近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A,B两种型号的空气净化器,两种净化器的销售相关信息如表:A型销售数量(台)B型销售数量(台)总利润(元)51025001052750(1)每台A型空气净化器的销售利润是元;每台B型空气净化器的销售利润是元;(2)该商场计划一次购进两种型号的空气净化器共80台,其中B型空气净化器的进货量不少于A型空气净化器的2倍,为使该商场销售完这80台空气净化器后的总利润最大,那么应该购进A型空气净化器台;B型空气净化器台.(3)已知A型空气净化器的净化能力为300m3/小时,B型空气净化器的净化能力为200m3/小时.某长方体室内活动场地的总面积为300m2,室内墙高3m.该场地负责人计划购买7台空气净化器,每天花费30分钟将室内空气净化一新,如不考虑空气对流等因素,他至少要购买A型空气净化器多少台?参考答案一.选择题1.【解答】解:∵Δ=(﹣5)2﹣4×2×1=25﹣8=17>0,∴一元二次方程2x2﹣5x+1=0有两个不相等的实数根,故选:C.2.【解答】解:把x=0代入(k﹣2)x2+x+k2﹣4=0得:k2﹣4=0,解得k1=2,k2=﹣2,而k﹣2≠0,所以k=﹣2.故选:A.3.【解答】解:x2﹣2x﹣5=0,Δ=b2﹣4ac=(﹣2)2﹣4×1×(﹣5)=24>0,所以方程有两个不相等的实数根,设方程x2﹣2x﹣5=0的两个根为e、f,则ef=﹣5<0,则e和f异号,即方程有一个正数根和一个负数根,故选:D.4.【解答】解:∵关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,∴,解得:m≥且m≠1.故选:D.5.【解答】解:M•N=(x﹣1)(2x2﹣ax﹣2)=2x3﹣(a+2)x2+(a﹣2)x+2,若M•N中不含x2项,则a+2=0,∴a=﹣2,故①正确;当x=0时,N=﹣1,M=﹣2,此时M<N,故②错误;若关于x的方程2x2﹣ax﹣2=0的两个解分别为x1=t2,x2=2t﹣3,则t2+2t﹣3=,∴a=2(t+1)2﹣8,∴当t=﹣1时,a的最小值是﹣8,故③正确;由(M+N)2﹣(M+N)=6得(M+N﹣3)(M+N+2)=0,∴M+N﹣3=0或M+N+2=0,由M+N﹣3=0得2x2+(1﹣a)x﹣6=0,Δ=(1﹣a)2+48>0,∴M+N﹣3=0有两个不相同的实数根,由M+N+2=0得2x2+(1﹣a)x﹣1=0,Δ=(1﹣a)2+8>0,∴M+N+2=0有两个不同的实数根,∴(M+N)2﹣(M+N)=6始终有4个不相同的实数解,故④正确,∴正确的有①③④,共3个,故选:C.6.【解答】解:x2+2x=x2+2x+1﹣1=(x+1)2﹣1,A错误.x2﹣4x﹣3=x2﹣4x+4﹣4﹣3=(x2﹣4x+4)+(﹣4﹣3)=(x﹣2)2﹣7.B错误.2x2+4x+3=2(x2+2x)+3=2(x2+2x+1﹣1)+3=2(x2+2x+1)﹣2×1+3=2(x+1)2﹣2+3=2(x+1)2+1.C正确.﹣x2+2x=﹣(x2﹣2x+1﹣1)=﹣(x2﹣2x+1)+1=﹣(x+1)2+1D错误.故选:C.7.【解答】解:设该公司11、12两个月营业额的月均增长率为x,则可列方程为2500[1+(1+x)+(1+x)2]=9100,故选:B.8.【解答】解:①∵A=x2+6x+n2是完全平方式,∴n=±3,故结论正确;②∵B﹣A=2x2+4x+2n2+3﹣(x2+6x+n2)=x2﹣2x+n2+3=(x﹣1)2+n2+2,而(x﹣1)2+n2≥0,∴B﹣A≥2,∴B﹣A的最小值是2,故结论正确;③∵A+B=x2+6x+n2+2x2+4x+2n2+3=3x2+10x+3n2+3,把x=n代入3x2+10x+3n2+3=0,得3n2+10n+3n2+3=0,即6n2+10n+3=0,解得n=,当n=时,2n+=+=﹣,∴4n2+=(2n+)2﹣4=﹣4=;当n=时,2n+=+=﹣,∴4n2+=(2n+)2﹣4=﹣4=;故结论错误;④∵(2022﹣A+A﹣2019)2=(2022﹣2019)2=(2022﹣A)2+(A﹣2019)2+2(2022﹣A)(A﹣2019)=(2022﹣A)2+(A﹣2019)2+2×2=9,∴(2022﹣A)2+(A﹣2018)2=5;故结论错误;故选B.9.【解答】解:关于x的方程x2+(k+3)x+k+2=0,Δ=(k+3)2﹣4×1×(k+2)=k2+2k+1=(k+1)2≥0,A、当k=﹣1时,Δ=0,此时方程有两个相等的实数解,故此选项错误;B、因为Δ≥0,所以不存在k的值,使得方程没有实数解.故此选项错误;C、解方程得:x1=﹣1,x2=﹣k﹣2,所以无论k为何值,方程总有一个固定不变的实数根﹣1,故此选项正确;D、当k≠﹣1时,方程有两个不相等的实数解,故此选项错误;故选:C.10.【解答】解:令=t,则(x﹣3)2+(y﹣3)2=6可变形为:(x﹣3)2+(tx﹣3)2=6,整理得:(t2+1)x2﹣6(t+1)x+12=0,则Δ=[﹣6(t+1)]2﹣4×(t2+1)×12=36(t+1)2﹣48(t2+1)≥0,t2﹣6t+1≤0,由t2﹣6t+1=[t﹣(3﹣2)][t﹣(3+2)]知t2﹣6t+1≤0的解集为3﹣2≤t≤3+2,故取最小值,此最小值为3﹣2;故选:A.二.填空题11.【解答】解:分两种情况:当x≥﹣2时,∵x⊗(﹣2)=10,∴x2+x﹣2=10,x2+x﹣12=0,(x+4)(x﹣3)=0,x+4=0或x﹣3=0,x1=﹣4(舍去),x2=3,当x<﹣2时,∵x⊗(﹣2)=10,∴(﹣2)2+x﹣2=10,x=8(舍去),综上所述:x=3,故答案为:3.12.【解答】解:设每轮传染中平均一个人传染了x个人,依题意得:1+x+x(1+x)=144,整理得:x2+2x﹣143=0,解得:x1=11,x2=﹣13(不合题意,舍去).144+11×144=1728(人).答:经过三轮传染后,一共有1728人感染德尔塔病毒.故答案为:1728.13.【解答】解:∵m,n是方程x2﹣3x=2的两个根,∴m2=3m+2,n2﹣2=3n,m+n=3,∴m3﹣10m+n=m(3m+2)﹣10m+n=3m2﹣8m+n=3(3m+2)﹣8m+n=m+n+6=3+6=9,n﹣===3,原式=9×3=27.故答案为:27.14.【解答】解:小路的宽为x米.由题意可得:(40﹣2x)(30﹣x)=1008,解得:x1=2,x2=48(不合题意,舍去),答:小路的宽为2米,故答案为:2.15.【解答】解:设DG=m,则GC=1﹣m.由题意可知:△ADG≌△AHG,F是BC的中点,∴DG=GH=m,FC=0.5,根据勾股定理得AF=.∵S正方形=S△ABF+S△ADG+S△CGF+S△AGF,∴1×1=×1×+×1×m+××(1﹣m)+××m,∴m=.∵x2+x﹣1=0的解为:x=,∴取正值为x=.∴这条线段是线段DG.故答案为:DG.三.解答题16.【解答】解:(1)∵a是方程x2﹣2020x+1=0的一个根,∴a2=2020a﹣1,∴a2=2020a﹣1,∴2a2﹣4040a﹣3=2(2020a﹣1)﹣4040a﹣3=4040a﹣2﹣4040a﹣3=﹣5;(2)原式=2020a﹣1﹣2019a+=a+﹣1=﹣1=﹣1=2020﹣1=2019.17.【解答】解:(1)2x2﹣4x﹣1=0,x2﹣2x﹣=0,x2﹣2x=,x2﹣2x+1=,(x﹣1)2=,x﹣1=,∴x1=1+,x2=1﹣;(2)3x(x﹣1)=2﹣2x,3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,∴x﹣1=0或3x+2=0,∴x1=1,x2=﹣.18.【解答】解:(1)∵x2+4xy+5y2﹣4y+4=0,∴x2+4xy+4y2+y2﹣4y+4=0,∴(x+2y)2+(y﹣2)2=0,∴x+2y=0,y﹣2=0,解得x=﹣4,y=2,∴y x=2﹣4=;(2)已知等式整理得:(a﹣6)2+(b﹣4)2=0,解得:a=6,b=4,由△ABC中最长的边是c,∴6≤c<10,∵c为偶数,∴c可能是6或8.19.【解答】解:(1)x2﹣2x﹣1=x2﹣2x+1﹣1﹣1=(x﹣1)2﹣2,因为(x﹣1)2≥0,所以x2﹣2x﹣1≥﹣2,因此,当x=1时,代数式x2﹣2x﹣1有最小值,最小值是﹣2;(2)2x2+8x+12=2(x2+4x)+12=2(x2+4x+4﹣4)+12=2[(x+2)2﹣4]+12=2(x+2)2﹣8+12=2(x+2)2+4,因为(x+2)2≥0,所以2x2+8x+12≥4,因此,当x=﹣2时,代数式2x2+8x+12有最小值,最小值是4;故答案为:﹣2;4.20.【解答】解:(1)设每台A型空气净化器的销售利润是x元,每台B型空气净化器的销售利润是y元,根据题意得:,解得:故答案为:200,150;(2)设购进a台A型空气净化器,总利润为w元,则:w=200a+150(80﹣a)=50a+12000,∵80﹣a≥2a,∴a≤26,∴a的最大值为:26,∵w随a的增大而增大,∴当a=26时,w有最大值,此时.80﹣a=54,故答案为:26,54;(3)设要购买A型空气净化器a台,由题意得:150a+100(7﹣a)≥300×3,解得:a≥4,所以a的最小值为:4,答:至少要购买A型空气净化器4台.。
试卷第1页,总3页 第二十一章《一元二次方程》 测试题一、单选题(共12小题,每小题3分,共36分)1.下列方程为一元二次方程的是 ( )A .ax 2+bx+c=0B .x 2-2x -3C .2x 2=0D .xy +1=02.把方程x (3-2x )+5=1化成一般式后二次项系数与常数项的积是( )A .3B .-8C .-10D .153.若关于x 的一元二次方程(a +1)x 2+x +a 2-1=0的一个解是x =0,则a 的值为( )A .1B .-1C .±1D .04.若a-b+c=0,则方程ax 2+bx+c=0(a 0≠)必有一个根是( )A .0 B .1C .-1 D .b a -5.用配方法解一元二次方程2x 2﹣4x+1=0,变形正确的是( )A .(x ﹣12)2=0 B .(x ﹣12)2=12 C .(x ﹣1)2=12 D .(x ﹣1)2=06.已知直角三角形的两边长是方程x 2﹣7x+12=0的两根,则第三边长为( ) A .7 B .5C 7D .577.若关于 x 的一元二次方程x 2﹣x ﹣3m =0有两个不相等的实数根,则 m 的取值范围是()A .m 12>B .m 112<C .m >﹣112D .m 112< 8.若方程x 2-3x -1=0的两根为x 1、x 2,则11x +21x 的值为( ) A .3 B .-3 C .13 D .-139.已知关于x 的一元二次方程(2a -1)x 2+(a +1)x +1=0的两个根相等,则a 的值等于( )A .-1或-5B .-1或5C .1或-5D .1或510.如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为( )A .1米B .2米C .3米D .4米11.是下列哪个一元二次方程的根( ) A .3x 2+5x+1=0、 B .3x 2﹣5x+1=0、 C .3x 2﹣5x ﹣1=0、 D .3x 2+5x ﹣1=012.已知m ,n 是方程x 2﹣2018x +2019=0的两个根,则(m 2﹣2019m +2018)(n 2﹣2019n +2018)的值是( )A .1B .2C .4037D .4038二、填空题(共4小题,每小题5分,共20分)13.一元二次方程4x 2= 3x 的解是_____________.14.圣诞节时,某班一个小组有x 人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为_____.15.关于a 的方程2420a a ++=的两个解为1a 、2a ,则2212a a +=_____. 16.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.三、解答题(共6小题,第17题8分,第18题12分,第19题6分,第20题6分,第21题8分,第22题12分,共52分)17、解下列方程 (1) x 2-2x-5=0 (用配方法) (2)2x 2+3x=4(公式法)18、已知关于x 的方程||(2)210m m x x ++-=.(1)当m 为何值时是一元一次方程?(2)当m 为何值时是一元二次方程?19、 已知两个方程20x px q ++=和20x qx p ++=仅有一个相同的根,求p q +的值.20、小刚在做作业时,不小心将方程2350x bx --=的一次项系数用墨水覆盖住了,但从题目的答案中,他知道方程的一个解为5x =,请你帮助小刚求出被覆盖住的数试卷第3页,总3页 21、已知关于x 的一元二次方程22(51)40x m x m m -+++=. 求证:无论m 取任何实数时,原方程总有两个实数根;22、现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?参考答案1.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C2..考点:一元二次方程的一般形式试题解析:解析:x (3-2x )+5=1 -2x 2+3x+4=0 -2×4=-8 故选B .答案:B3.考点:一元二次方程的解试题解析:解析:将x =0代入原方程得a 2-1=0且a +1≠0所以a=1故选A .答案:A4.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C5.考点:配方法答案第4页,总3页试题解析:解析x 2﹣2x+12=0 x 2﹣2x+1=12(x ﹣1)2=12故选C .答案:C6.考点:解一元二次方程和勾股定理试题解析:解析:解方程得x 1 =3, x 2=4.当3和4为直角边时,第三边为5,当4为斜边故选D .答案:D7.考点:一元二次方程根的判别式和一元一次不等式的解法试题解析:解析:∆= b ²-4ac >0即1+12m >0 m >﹣112故选C . 答案:C8.考点:一元二次方程根与系数的关系 试题解析:解析:11x +21x =(x ₁+x ₂)/(x ₁x ₂)=﹣3 故选B . 答案:B9.考点:一元二次方程根的判别式和解一元二次方程试题解析:解析:(a +1)²- 4(2a -1)=0解得a ₁=1a ₂=5故选D .答案:D10.考点:一元二次方程的应用试题解析:解析:设路宽为x,依题可得:(20-x )(33-x)=510解得x 1 =3, x 2=50(舍去)故选C .答案:C11.考点:一元二次方程求根公式试题解析:解析:由一元二次方程求根公式与方程给出的根可找出a=3 b=5 c = - 1 故选D .答案:D12.考点:一元二次方程的解和根与系数的关系试题解析:解析:将m 和n 分别代入方程变形得m 2﹣2018m =-2019n 2﹣2018n =-2019将原式变形后整体代入(-2019-m+2018(-2019-n+2018)=(-1-m)(-1-n)=1+m+n+mn∵m+n=2018 mn=2019∴原式=1+2018+2019=4038故选D .答案:D13.考点:解一元二次方程(因式分解法)试题解析:解析:4x 2 -3x= 0 x(4x-3)=0 x 1 =0, x 2=34答案:x 1 =0, x 2=3414.考点:一元二次方程的应用试题解析:答案:x (x ﹣1)=11015.考点:一元二次方程根与系数的关系和完全平方公式试题解析:解析:2212a a +=(a ₁+a ₂)²-2a ₁a ₂答案:1216.考点:一元二次方程解法和根与系数的关系试题解析:解析:∵ x₁x₂=12 x₁²+x₂²=25∴x ₁+x ₂=7或-7答案:x 2-7x+12=0或x 2+7x+12=017.考点:一元二次方程解法答案:(1)11x =21x =;(2)134x -=,234x -= 18.考点:一元一次方程和一元二次方程的概念试题解析:解析:(1)注意分三种情况讨论(2)注意指数和系数答案:(1)-2或±1或0 (2)2 19.考点:一元二次方程根和方程组试题解析:解析:x ²+px+q= x ²+qx+p (p-q)x=p-q x=1代入原方程1+p+q=0 ∴p+q=-1答案:-1;.20.考点:一元二次方程解试题解析:解析:答案:1421.考点:一元二次方程根的判别式和完全平方公式试题解析:解析:答案:∵∆= b ²-4ac =(5m+1)²-4(4m ²+m )=9m ²+6m+1=(3m+1)²≥0∴不论m 取任何实数,原方程总有两个实数根22.考点:一元二次方程的应用和一元一次不等式试题解析:解析:(1)设增长率为x ,依题可得10(1+x )²=12.1解得x 1 =0.1, x 2=-2.1(舍去)故增长率为10%;(2)6月总数12.1×(1+10%)=13.31>21×0.6所以不能完成任务。
一、选择题1.一元二次方程x 2﹣2x +5=0的根的情况为( ) A .有两个不相等的实数根 B .有两个相等实数根 C .只有一个实数根 D .没有实数根 2.若x m =是方程210x x +-=的根,则22020m m ++的值为( )A .2022B .2021C .2019D .2018 3.一个菱形两条对角线的长是方程28120x x -+=的两个根,则该菱形的面积为( ) A .12 B .6或12C .8D .64.已知关于x 的一元二次方程240x x k +-=,当40k -<<时,该方程解的情况是( )A .有两个不相等的实数根B .没实数根C .有两个相等的实数根D .不能确定5.如图①,在矩形ABCD 中,AB >AD ,对角线AC ,BD 相交于点O ,动点P 由点A 出发,沿A→B→C 运动.设点P 的运动路程为x ,△AOP 的面积为y ,y 与x 的函数关系图象如图②所示,则AB 边的长为( )A .3B .4C .5D .66.一元二次方程22410x x ++=的两根为1x 、2x ,则12x x +的值是( ) A .4B .4-C .2-D .27.在“文博会”期间,某公司展销如图所示的长方形工艺品,该工艺品长60cm ,宽40cm .中间镶有宽度相同的三条丝绸花边.若丝绸花边的面积为650cm ,设丝绸花边的宽为xcm ,根据题意,可列方程为( )A .()()60240650x x -⋅-=B .()()60402650x x -⋅-=C .2402650x x x ⋅+⋅=D .()240602650x x x ⋅+⋅-=8.关于x 的方程()()223x x a -+=(a 为常数)的根的情况,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根一个负根D .无实数根9.关于x 的一元二次方程2x 2x m 0-+=无实数根,则实数m 的取值范围是( ) A .1m <B .m 1≥C .1mD .1m10.已知a 是方程2210x x --=的一个根,则代数式224a a -+的值应在( ) A .4和5之间B .3和4之间C .2和3之间D .1和2之间11.★在Rt △ABC 中,∠C =90°,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,a ,b 是关于x 的方程x 2-7x +c +7=0的两根,那么AB 边上的中线长是( ) A .32B .52C .5D .212.一元二次方程2x =﹣3x 的根是( ) A .x =﹣3B .x =0C .1x =0,2x =﹣3D .1x =0,2x =3二、填空题13.将一元二次方程2850x x --=化成2()x a b +=(a 、b 为常数)的形式,则a 、b 的值分别是_______.14.一元二次方程260x x --=的两根分别是1x ,2x ,则1212x x x x +-的值为__________.15.如果菱形的两对角线的长分别是关于x 的一元二次方程2240x mx ++=的两实数根,那么该菱形的面积是____.16.已知方程2560x kx ++=的一个根是2,则它的另一个根是________. 17.一元二次方程2310x x -++=的根的判别式的值是______.18.α是一元二次方程2240x x --=的一个根,2αβ+=,则22ββ-的值是________.19.将一元二次方程2310x x -+=变形为()2x h k +=的形式为________. 20.一元二次方程2320x x -+=的两根为1x ,2x ,则12x x +=________.三、解答题21.关于x 的一元二次方程(a ﹣6)x 2﹣8x +9=0有实数根. (1)求a 的最大整数值;(2)当a 取最大整数值时,求出该方程两根. 22.按要求解下列方程: 用配方法解:(1)x 2﹣4x +1=0.用公式法解:(2)2104x -=. 23.龙岩市某村2017年的人均收入为7500元,落实精准扶贫工作后,2019年人均收入为14700元.求人均收入的年平均增长率. 24.已知一元二次方程(a ﹣3)x 2﹣4x+3=0. (1)若方程的一个根为x =﹣1,求a 的值;(2)若方程有实数根,求满足条件的正整数a 的值.25.关于x 的方程()22210x x m ---=有实数根,且m 为非正整数.求m 的值及此时方程的根.26.已知关于x 的一元二次方程22210x kx k k -+++=有两个实数根. (1)试求k 的取值范围;(2)若此方程的两个实数根12x x 、,是否存在实数k ,满足12112x x +=-,若存在,求出k 的值;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据根的判别式判断 . 【详解】解:∵△=4﹣20=﹣16<0, ∴方程没有实数根. 故选:D . 【点睛】本题考查一元二次方程的根的情况,熟练掌握根判别式的计算方法及应用是解题关键.2.B解析:B 【分析】利用一元二次方程根的定义,代入变形计算即可. 【详解】∵x m =是方程210x x +-=的根, ∴210m m +-=, ∴21m m +=, ∴22020m m ++=2021, 故选B . 【点睛】本题考查了一元二次方程根的定义,熟练把方程的根转化为所含字母的一元二次方程是解题的关键.3.D【分析】利用因式分解法求得方程的两根,进而根据菱形面积=12对角线的积求解即可. 【详解】解:28120x x -+=, (x-6)(x-2)=0, ∴x 1=6,x 2=2,∵菱形的两条对角线长分别为6,2, ∴菱形面积为162=62⨯⨯, 故选:D . 【点睛】综合考查了菱形的性质及解一元二次方程;得到菱形的对角线长是解决本题的突破点;用到的知识点为:因式分解法解一元二次方程;菱形面积=12对角线的积. 4.A解析:A 【分析】计算根的判别式,根据k 的范围,判断判别式的属性,根据性质求解即可. 【详解】解:∵一元二次方程240x x k +-=, ∴△= 22444b ac k -=+=16+4k , ∵40k -<<, ∴1640k -<<, ∴16+4k >0, ∴△>0,∴原方程有两个不相等的实数根, 故选A . 【点睛】本题考查了一元二次方程根的判别式,熟记公式,并根据字母范围确定判别式的属性是解题的关键.5.D解析:D 【分析】当P 点在AB 上运动时,△AOP 面积逐渐增大,当P 点到达B 点时,结合图象可得△AOP 面积最大为6,得到AB 与BC 的积为24;当P 点在BC 上运动时,△AOP 面积逐渐减小,当P 点到达C 点时,△AOP 面积为0,此时结合图象可知P 点运动路径长为10,得到AB 与BC 的和为10,构造关于AB 的一元二方程可求解.解:当P 点在AB 上运动时,△AOP 面积逐渐增大,当P 点到达B 点时,△AOP 面积最大为6. ∴12AB·12BC=6,即AB•BC=24. 当P 点在BC 上运动时,△AOP 面积逐渐减小,当P 点到达C 点时,△AOP 面积为0,此时结合图象可知P 点运动路径长为10, ∴AB+BC=10.则BC=10-AB ,代入AB•BC=24,得AB 2-10AB+24=0,解得AB=4或6, 因为AB >BC ,所以AB=6. 故选:D . 【点睛】本题主要考查动点问题的函数图象,解一元二次方程,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.6.C解析:C 【分析】根据一元二次方程根与系数的关系求解即可. 【详解】解:由一元二次方程根与系数的关系得:12x x +=-ba =4-2=-2.故选:C .【点睛】本题考查了一元二次方程根与系数的关系,解题的关键是熟记12x x +=-ba ,12c x x a⋅=.7.D解析:D 【分析】找出丝绸花边的总面积与丝绸花边的宽之间的关系式即可列出方程. 【详解】解:由题意知:三条丝绸花边的面积和-两个重叠部分的面积=丝绸花边的总面积, ∴设丝绸花边的宽为 xcm ,根据题意,可列方程为: 2×40x+60x-2x×x=650,即2x ⋅40+x ⋅(60−2x)=650, 故选D . 【点睛】本题考查方程的列法,仔细分析题中含有未知数所表示的量之间的数量关系并把各数量正确地表示出来是解题关键.8.C【分析】先将方程整理为一般形式,计算0∆>,得到方程有两个不相等的实数根,再根据两根之积为负数即可求解. 【详解】解:整理关于x 的方程()()223x x a -+=得2260x x a +--=,∴()22214162540aa ∆=-⨯⨯--=+>,∴方程有两个不相等的实数根,∴212601a x x --=<,∴方程了两个根一正一负. 故选:C 【点睛】本题考查了一元二次方程根的判别式和根与系数的关系,熟知两个知识点是解题关键,注意在讨论一元二次方程根与系数的关系时首先要注意确保方程有实根.9.D解析:D 【分析】根据判别式的意义得到△=(-2)2-4m<0,然后解不等式即可. 【详解】解:∵关于x 的一元二次方程2x 2x m 0-+=无实数根, ∴△=(-2)2-4m<0, 解得m>1. 故选:D . 【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.10.A解析:A 【分析】先依据一元二次方程的定义得到a 式的取值范围. 【详解】解:∵a 是方程2210x x --=的一个根, ∴2210a a --=,即221a a -=,∴原式=22(2)2a a -=+ ∵459,∴23<<,∴425<+<,即224a a -+的值在4和5之间, 故选:A . 【点睛】本题考查一元二次方程的解得定义,估算.掌握整体代入法是解题关键.11.B解析:B 【分析】由于a 、b 是关于x 的方程x2−7x +c +7=0的两根,由根与系数的关系可知:a +b =7,ab =c +7;由勾股定理可知:222+=a b c ,则()222a b ab c +-=,即49−2(c +7)=2c ,由此求出c ,再根据直角三角形斜边中线定理即可得中线长. 【详解】解:∵a 、b 是关于x 的方程2x −7x +c +7=0的两根, ∴根与系数的关系可知:a +b =7,ab =c +7; 由直角三角形的三边关系可知:222+=a b c , 则()222a b ab c +-=, 即49−2(c +7)=2c , 解得:c =5或−7(舍去),再根据直角三角形斜边中线定理得:中线长为52. 故选:B . 【点睛】本题考查三角形斜边中线长定理及一元二次方程根与系数的关系运用,勾股定理的运用,一元二次方程的解法的运用,解答时运用一元二次方程的根与系数的关系建立方程是关键.12.C解析:C 【分析】移项,利用因式分解求解即可. 【详解】 解:∵2x =﹣3x , 移项,得2x +3x =0,分解因式,得 x (x+3)=0,∴x =0,或x+3=0, 解得1x =0,2x =﹣3,故选:C . 【点睛】本题考查了一元二次方程的解法,根据方程的特点,选择因式分解法求解是解题的关键.二、填空题13.-421【分析】将常数项移到方程的右边两边都加上一次项系数一半的平方配成完全平方式后即可得出答案【详解】解:∵x2-8x-5=0∴x2-8x=5则x2-8x+16=5+16即(x-4)2=21∴a=解析:-4,21 【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得出答案. 【详解】 解:∵x 2-8x-5=0, ∴x 2-8x=5,则x 2-8x+16=5+16,即(x-4)2=21, ∴a=-4,b=21, 故答案为:-4,21. 【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.14.【分析】根据一元二次方程根与系数关系即可求解【详解】解:一元二次方程的两根分别是则故答案为:7【点睛】本题考查了一元二次方程根与系数关系解题关键是知道:如果一元二次方程的两根分别是则 解析:7【分析】根据一元二次方程根与系数关系即可求解. 【详解】解:一元二次方程260x x --=的两根分别是1x ,2x , 则126x x =-,121x x =+,12121(6)7x x x x +-=--=,故答案为:7. 【点睛】本题考查了一元二次方程根与系数关系,解题关键是知道:如果一元二次方程20ax bx c ++=的两根分别是1x ,2x ,则12bx x a +=-,12c x x a=. 15.12【分析】可根据韦达定理求出一元二次方程的两根之积接着通过菱形面积公式求解即可【详解】解:设的两根为则一元二次方程的两实数根为菱形的两对角线的长菱形的面积===12故答案为:12【点睛】本题主要考解析:12 【分析】可根据韦达定理求出一元二次方程的两根之积,接着通过菱形面积公式求解即可. 【详解】解:设2240x mx ++=的两根为12x x 、, 则1224x x =,一元二次方程的两实数根12x x 、为菱形的两对角线的长,∴菱形的面积=1212x x =1242⨯=12.故答案为:12. 【点睛】本题主要考查一元二次方程的韦达定理,还涉及菱形的面积运算,属于基础题,熟练掌握韦达定理及菱形的面积公式是解决本题的关键.16.【分析】设方程的另一个根为根据根与系数的关系得到然后解一次方程即可【详解】解:设另一个根为∴∴∴另一个根为故答案为:【点睛】本题考查了根与系数的关系:若是一元二次方程ax2+bx+c =0(a≠0)的解析:35【分析】设方程的另一个根为1x ,根据根与系数的关系得到1625x =,然后解一次方程即可. 【详解】解:设另一个根为1x , ∴1625x =, ∴135x =, ∴另一个根为35. 故答案为:35.【点睛】本题考查了根与系数的关系:若12x x ,是一元二次方程ax 2+bx +c =0(a ≠0)的两根时1212b a cx x x x a-+=,=.17.13【分析】根据△=b2-4ac 计算可得答案【详解】解:∵a=-1b=3c=1∴△=32-4×(-1)×1=13故答案为:13【点睛】本题主要考查根的判别式熟记判别式(△=b2-4ac )是解题关键解析:13 【分析】根据△=b 2-4ac 计算可得答案. 【详解】解:∵a=-1,b=3,c=1, ∴△=32-4×(-1)×1=13, 故答案为:13. 【点睛】本题主要考查根的判别式,熟记判别式(△=b 2-4ac )是解题关键.18.4【分析】利用根与系数的关系确定为原一元二次方程的另一个根即可求出的大小【详解】设原一元二次方程的另一个根为根据根与系数的关系可知根据题意∴为原一元二次方程的另一个根∴即故答案为:4【点睛】本题考查解析:4 【分析】利用根与系数的关系确定β为原一元二次方程的另一个根,即可求出22ββ-的大小.【详解】设原一元二次方程的另一个根为2x , 根据根与系数的关系可知22==21x α-+-, 根据题意=2αβ+, ∴β为原一元二次方程的另一个根,∴ 224=0ββ--,即22=4ββ-. 故答案为:4. 【点睛】本题考查一元二次方程根与系数的关系.掌握一元二次方程根与系数关系的公式并确定β为原一元二次方程的另一个根是解答本题的关键.19.【分析】将方程常数项移到方程右边左右两边都加上左边化为完全平方式右边合并即可得到所求的结果【详解】解:移项得配方得即故答案为:【点睛】本题考查了配方法解一元二次方程利用此方法解方程时首先将二次项系数解析:23524x ⎛⎫-= ⎪⎝⎭ 【分析】 将方程常数项移到方程右边,左右两边都加上232⎛⎫ ⎪⎝⎭,左边化为完全平方式,右边合并即可得到所求的结果.【详解】解:2310x x -+=移项得 231x x -=-, 配方得222333122x x ⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭即 23524x ⎛⎫-= ⎪⎝⎭ 故答案为:23524x ⎛⎫-= ⎪⎝⎭ 【点睛】本题考查了配方法解一元二次方程,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个常数,开方即可求出解. 20.3【分析】根据一元二次方程的根与系数关系两根之和等于代入求值即可【详解】解:∵一元二次方程的两根为∴故答案为:3【点睛】本题考查了一元二次方程根与系数关系知道一元二次方程的两根之和等于两根之积等于是 解析:3【分析】 根据一元二次方程的根与系数关系,两根之和等于b a-,代入求值即可. 【详解】解:∵一元二次方程2320x x -+=的两根为1x ,2x , ∴12331b x x a -+=-=-=, 故答案为:3.【点睛】 本题考查了一元二次方程根与系数关系,知道一元二次方程的两根之和等于b a -,两根之积等于c a是解题关键. 三、解答题21.(1)7;(2)1244x x ==【分析】(1)由关于x 的一元二次方程(a ﹣6)x 2﹣8x +9=0有实数根,则a ﹣6≠0,且△≥0,即△=(﹣8)2﹣4(a ﹣6)×9=280﹣36a ≥0,解不等式得到a 的取值范围,最后确定a 的最大整数值;(2)将a 的最大整数值代入(a ﹣6)x 2﹣8x +9=0,即可求出该方程两根.【详解】解:(1)∵关于x 的一元二次方程(a ﹣6)x 2﹣8x+9=0有实数根,∴a ﹣6≠0,且△≥0,即△=(﹣8)2﹣4(a ﹣6)×9=280﹣36a≥0, 解得:779a ≤; ∴a 的取值范围为779a ≤且a≠6, 所以a 的最大整数值为7; (2)将a =7代入(a ﹣6)x 2﹣8x +9=0,得x 2﹣8x +9=0,∵△=64﹣36=28,∴x.∴1244x x ==【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0,a ,b ,c 为常数)根的判别式△=b 2-4ac .当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义和解法.22.(1) x 1=x 2=2;(2) x 1=2,x 2=2. 【分析】(1)利用配方法解一元二次方程,即可求出答案;(2)利用公式法解一元二次方程,即可求出答案.【详解】解:(1)2410x x -+=,∵x 2﹣4x =﹣1,∴x 2﹣4x +4=﹣1+4,即(x ﹣2)2=3,则x ﹣2=∴x1=x 2=2(2)2104x --=,∵a =1,b,c =﹣14, ∴△2﹣4×1×(﹣14)=3>0,则x即x 1,x 2. 【点睛】本题考查了解一元二次方程,解题的关键是掌握配方法和公式法解一元二次方程. 23.40%【分析】设人均收入的年平均增长率为x ,结合题意,通过列一元二次方程并求解,即可得到答案.【详解】解:设人均收入的年平均增长率为x根据题意得:()275001+14700x =解得:0.4x =或 2.4x =-(舍去)∴人均收入的年平均增长率为40% .【点睛】本题考查了一元二次方程的知识,解题的关键是熟练掌握一元二次方程的性质,从而完成求解.24.(1)a=-4.(2)a=1或2或4.【分析】(1)把x=-1代入方程求出a 即可.(2)利用判别式根据不等式即可解决问题.【详解】解:(1)∵方程的一个根为x=-1,∴a-3+4+3=0,∴a=-4.(2)∵方程有实数根,∴△≥0且a≠3,∴16-12(a-3)≥0, 解得a≤133,a≠3, ∵a 是正整数,∴a=1或2或4.【点睛】本题属于根的判别式,一元二次方程的解等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.0m =,121x x ==.【分析】根据一元二次方程有实数根可以判断△≥0,又根据m 为非正整数,可以判断0m =,进而求解即可;【详解】解:∵方程有实数根,∴()()224210m =-+-≥△. 解得:0m ≥.又∵ m 为非正整数,∴ 0m =.当0m =时,方程为2210x x -+=.此时方程的解为121x x ==.【点睛】本题考查了一元二次方程有实数根的情况,正确掌握解一元二次方程的方法是解题的关键;26.(1)1k ≤-;(2)存在,1k =-.【分析】(1)由根的判别式0∆≥,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围;(2)由根与系数的关系,得到122x x k +=,2121x x k k =++,然后解关于k 的一元二次方程,即可求出答案.【详解】解:(1)∵此方程有两个实数根,∴0∆≥即222411k k k ∆=--⨯⨯++()()440k =--≥,∴1k ≤-;(2)存在.根据题意,∵一元二次方程22210x kx k k -+++=,∴122x x k +=,2121x x k k =++, ∴122121211221x x k x x x x k k ++===-++, ∴121k k ==-符合题意,即1k =-;【点睛】本题考查了根与系数的关系、一元二次方程的定义以及根的判别式,解题的关键是:(1)根据根的判别式△>0,列出关于k的一元一次不等式;(2)根据根与系数的关系求出k 值.。
人教版九年级上册数学《一元二次方程》测试卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题).1.若2(3)330n m x nx ---+=是关于x 的一元二次方程,则m 、n 的取值范围是( )A.0m ≠、3n =B.3m ≠、4n =C.0m ≠,4n =D.3m ≠、0n ≠【答案解析】B;关于一元二次方程的定义考查点有两个:①二次项系数不为0,②最高次项的次数为22.关于x 的方程22(1)260a x ax ++-=是一元二次方程,则a 的取值范围是( )A.1a ≠±B.0a ≠C.a 为任何实数D.不存在【答案解析】C;21a +恒大于03.如果关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,那么k 的取值范围是( )A .1k <B .0k ≠C .10k k <≠且D .1k >【答案解析】C ;由题可得363600k k ∆=->⎧⎨≠⎩,所以 10k k <≠且4.不解方程判定下列方程根的情况:⑴2210x ax a ++-=220-+=;⑶4(1)30x x +-=;⑷2(1)(2)x x m --=【答案解析】⑴两个不等的实数根;⑵无实数根;⑶两个不相等的实数根;⑷两个不相等的实数根5.已知2是关于x 的方程23202x a -=的一个根,则21a -的值是( )A.3B.4C.5D.6【答案解析】C6.小明要在一幅长90厘米、宽40厘米的水彩画得外围镶上一条宽度相等的金色彩条,要求使水彩画的面积是整幅画面积的54%,设金色彩条的宽为x 厘米,根据题意列方程为( )A.(90)(40)54%9040x x ++⨯=⨯B.(902)(402)54%9040x x ++⨯=⨯C.(90)(402)54%9040x x ++⨯=⨯D.(902)(40)54%9040x x ++⨯=⨯【答案解析】B7.不解方程,判别一元二次方程2261x x -=的根的情况是( )A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .无法确定【答案解析】A ;由方程可得3680∆=+>,所以方程有两个不相等的实数根.8.对于方程2()ax b c +=下列叙述正确的是( )A.不论c 为何值,方程均有实数根B.方程根是c b x a-=C.当0c ≥时,方程可化为:ax b +=ax b +=当0c =时,bx a =【答案解析】C9.已知a ,b ,c 为正数,若二次方程20ax bx c ++=有两个实数根,那么方程22220a x b x c ++=的根的情况是( )A .有两个不相等的正实数根B .有两个异号的实数根C .有两个不相等的负实数根D .不一定有实数根【答案解析】C;22220a x b x c ++=的422224(2)(2)b a c b ac b ac ∆=-=+-,∵二次方程20ax bx c ++=有两个实数根,∴240b ac ->,∴220b ac ->,∴422224(2)(2)0b a c b ac b ac ∆=-=+->∴方程有两个不相等的实数根,而两根之和为负,两根之积为正.故有两个负根.故选C .10.若方程20ax bx c ++=(0)a ≠的一个根是另一个根的3倍,则a 、b 、c 的关系是()A.2316b ac =B.2316b ac =-C.2163b ac =D.2163b ac =-【答案解析】A;不妨设方程20ax bx c ++=的两个根为1x 、2x ,且123x x = ∴1224x x x +=,则24b x a=- ∴24b x a =-,将24b x a =-代入方程20ax bx c ++=整理,即可得A 【解析】韦达定理二、填空题(本大题共5小题).11.方程222(4)20k x x k --+-=没有实数根,那么k 的最小正整数值是【答案解析】解得92k >,∴最小正整数值是5 12.以3-和2为根,二次项系数为1的一元二次方程为____________【答案解析】(3)(2)0x x +-=,(最好让学生整理出一般形式260x x +-=)13.关于x 的方程2210x bx +-=的一个根为2-,则另一个根是 ,______b =【答案解析】设另一个根是2x ,根据题意得,22(2)2(2)1x b x +-=-⎧⎨⋅-=-⎩,解得212x =,34b =14.若方程210x px ++=的一个根为1,则它的另一根等于 ,p 等于【答案解析】设方程的另一根为2x ,根据题意得22(1(11x p x ⎧+-=-⎪⎨⋅=⎪⎩,解得21x =,p =【解析】部分学生喜欢将1x =p 的数值,然后再求方程另外一个根,此方法较慢。
一元二次方程计算题训练(含解析)1.解方程:2.解方程:.3.解方程:(x-1)(2x+3)=(2x+3).4.解方程:x2-4x+2=05.解方程:.6.解方程:x2﹣x﹣1=0.7.解方程:2x2﹣5x+1=0 8.用配方法解方程:. .9.解下列方程:(1)x2﹣6x﹣3=0;(2)3x(x﹣1)=2(1﹣x).10.解方程:11.解方程:.12.解方程:(1)(2)(3)(4)(x+1)(x+8)=-1213.解方程:.14.用配方法解方程:.15.解方程:(1);(2).16.解方程:2x2+x﹣6=0.17.解方程:.18.解方程19.解下列一元二次方程:(1);(2). 20.解方程:(1);(2)21.解方程(1)(x-1)2=4(2)x2﹣6x﹣7=0;22.用适当方法解方程:. .23.用适当的方法解下列一元二次方程:(1)(2).24.解方程:25.解方程:.26.解方程:x2+4x﹣21=0.27.解方程:(1)2x2-8=0 (2)x2-3x+1=028.解方程:29.用适当的方法解方程:(1);(2).一元二次方程计算题训练(含解析)1.解方程:【答案】解:由原方程,得:(x+1)(x﹣2)=0,解得:x1=2,x2=﹣12.解方程:.【答案】解:∵,∴,∴,∴,.3.解方程:(x-1)(2x+3)=(2x+3).【答案】解:2x²-x-6=0(x-2)(2x+3)=0x1=2 ;x2=4.解方程:x2-4x+2=0【答案】解:由方程可得:a=1,b=-4,c=2 x===2±∴x1=2+ ,x2=2-5.解方程:.【答案】解:,,,或,解得:,6.解方程:x2﹣x﹣1=0.【答案】解:∵x2﹣x﹣1=0,∴x2﹣2x﹣2=0,∴x2﹣2x+1=3,∴(x﹣1)2=3,∴x=1± ;7.解方程:2x2﹣5x+1=0【答案】解:∵2x2-5x=-1,∴,∴,即,则,∴x=8.用配方法解方程:. 【答案】解:,解得,.9.解下列方程:(1)x2﹣6x﹣3=0;(2)3x(x﹣1)=2(1﹣x).【答案】(1)解:∴∴(2)解:∴或,解得:10.解方程:【答案】解:∴,11.解方程:.【答案】解:移项得:,提公因式x-1得:,∴或,解得:,. 12.解方程:(1)(2)(3)(4)(x+1)(x+8)=-12 【答案】(1)解:∴∴;(2)解:∴;(3)解:∴,∴;(4)解:∴.13.解方程:.【答案】解:,14.用配方法解方程:.【答案】解:,移项得:,配方得:,即,开方得:,解得:,.15.解方程:(1);(2).【答案】(1)解:由原方程,移项,得,开平方,得,∴x1=3,x2=-1;(2)解:由原方程,移项,得,变形得:,∴x-1=0,x+1=0,∴x1=1,x2=-1.16.解方程:2x2+x﹣6=0.【答案】解:(2x﹣3)(x+2)=02x﹣3=0 或x+2=0∴x1=1.5x2=-217.解方程:.【答案】解:,∴,或,∴,. 18.解方程【答案】解:,19.解下列一元二次方程:(1);(2).【答案】(1)解:,∴或,解得,;(2)解:,,,∴或,解得,,20.解方程:(1);(2)【答案】(1)解:∵,∴,∴,;(2)解:原方程可变形为:,∴,即,∴x+2=0或x-1=0,∴,.21.解方程(1)(x-1)2=4(2)x2﹣6x﹣7=0;【答案】(1)解:,;(2)解:,,22.用适当方法解方程:. 【答案】解:,,,,,.23.用适当的方法解下列一元二次方程:(1)(2).【答案】(1)解:∴x1=1+ ,x2=1﹣;(2)解:∴x1=﹣3,x2=﹣1 24.解方程:【答案】解:解得:25.解方程:. 【答案】解:∵x2-4x-3=0,∴x2-4x=3,∴x2-4x+4=3+4,即(x-2)2=7,∴x-2=±,∴x1=2+,x2=2-.26.解方程:x2+4x﹣21=0.【答案】解:(x+7)(x-3)=0 ∴x+7=0或x-3=0解之:x1=-7,x2=3.27.解方程:(1)2x2-8=0(2)x2-3x+1=0【答案】(1)解:2x2=8x2=4解之:x1=2,x2=-2.(2)解:∵a=1,b=-3,c=1∴b2-4ac=9-4=5.∴∴.28.解方程:【答案】解:或,29.用适当的方法解方程:(1);(2).【答案】(1)解:∵,∴,∴,∴,∴或,∴.(2)解:∵.∴,∴,∴或.∴。
一元二次方程(基础)一、单选题(共10道,每道10分)1.下列方程中是关于x的一元二次方程的是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:一元二次方程的定义2.方程是关于x的一元二次方程,则( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:一元二次方程的定义3.方程(x+1)(x-2)=6的二次项系数、一次项系数、常数项分别为( )A.1,1,8B.1,-1,8C.1,-1,-8D.-1,1,-8答案:C解题思路:试题难度:三颗星知识点:一元二次方程的定义4.把方程(2x+1)(x-2)=5-3x整理成一般式后,得到( )A.2x2-3x-2=0B.2x2-6x+3=0C.2x2-7=0D.2x2+3=0答案:C解题思路:试题难度:三颗星知识点:一元二次方程的定义5.若一元二次方程没有一次项,则a的值为( )A.2B.-2C.8D.±2答案:B解题思路:试题难度:三颗星知识点:一元二次方程的定义6.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=( )A.2B.-4C.4D.-2答案:D解题思路:试题难度:三颗星知识点:一元二次方程的解7.某企业2018年初获利润300万元,到2020年初计划利润达到507万元,设这两年的年利润平均增长率为x,应列方程是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:实际问题与一元二次方程——增长率型8.《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何.”大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?若设长方形门的宽为x,则应列方程为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:实际问题与一元二次方程9.2017-2018赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场,若设参赛队伍有x支,则可列方程为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:实际问题与一元二次方程——循环制10.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形边长.设剪去的小正方形边长为xcm,根据题意可列方程为( )A.10×6-4×6x=32B.(10-2x)(6-2x)=32C.(10-x)(6-x)=32D.10×6-4x2=32答案:B解题思路:试题难度:三颗星知识点:实际问题与一元二次方程——面积型。
一元二次方程计算题训练一:分别用下列方法解方程(1)(2x -1)2 = 9(直接开平方法)(2)4x2–8x+1=0(配方法)(3)3x2+5(2x+1)=0(公式法)(4)7x (5x + 2)= 6(5x + 2)(因式分解法)二:用配方法解方程:(1)2x2 +1 =3x(2)x 2-2x -2 =0.(3)x2 + 3x +1 = 0三:用适当的方法解方程(1)x2 - 2x = 0(2)x2 - 6x - 2=(3)x2 + 4x = 22 2(4)x2 -6x -16 = 0(5)6x2 -x -12 = 0(6)x2=9- =(7)2(x -2)2=50,(8) 4x 2 -12x + 5 = 0(9) (x - 5)(x + 4) = 10(10) 3x 2+4x =0(11)x (x +2)=5(x -2) (12)4x 2-0.3(13) x (x + 3) = x + 3(14) 1 x 2-x -4=0(15)(x -1 )(3x +1 ) = 03(16)(5x -1)2=3(5x -1) (17) (x +1)2=(2x -1)2 (18)(x +3)(x -1)=5(19)(y -1)(y -2)=(2-y ); (20)(x 2 -1 )2 - 5(x 2 -1 ) + 4 = 0x 2 - 2 722(21)x +2x =2-4x -x 。
(22)(x –1)(2x +1)=2(23)4 2x(24)(t -3)2+t=3 (25)2x (2x +1)-(x +1)(2x -11)=0。
2 4 4 3九年级数学第 22 章 (一元二次方程)班级姓名学号题号 一二三总分1415161718得分学生对测验结果的自评 教师激励性评价和建议一、选择题 (共 8 题,每题有四个选项,其中只有一项符合题意。
每题 3 分,共 24 分): 1.下列方程中不一定是一元二次方程的是( ) A.(a-3)x 2=8 (a≠3) B.ax 2+bx+c=0C.(x+3)(x-2)=x+5D.2 下列方程中,常数项为零的是( )3x 2+ 3 57 x - 2 = 0 A.x 2+x=1B.2x 2-x-12=12;C.2(x 2-1)=3(x-1)D.2(x 2+1)=x+23. 一元二次方程 2x 2-3x+1=0 化为(x+a)2=b 的形式,正确的是()⎛ 3 ⎫2⎛ 3 ⎫21 ⎛ 3 ⎫21 A . x - ⎪ ⎝ ⎭ = 16 ; B.2 x - ⎪ ⎝ ⎭ = ; C. 16 x - ⎪ ⎝ ⎭ = ; D.以上都不对16 4. 关于x 的一元二次方程(a -1) x 2 + x + a 2 -1 = 0 的一个根是 0,则a 值为( )A 、1B 、-1C 、1或-1D 、 125. 已知三角形两边长分别为 2 和 9,第三边的长为二次方程 x 2-14x+48=0 的一根,则这个三角形的周长为( )A.11B.17C.17 或 19D.196. 已知一个直角三角形的两条直角边的长恰好是方程 2x 2 - 8x + 7 = 0 的两个根,则这个直角三角形的斜边长是( ) A 、 B 、3C 、6D 、97. 使分式x 2 - 5x - 6x +1的值等于零的x 是( )A.6B.-1 或 6C.-1D.-68. 若关于 y 的一元二次方程 ky 2-4y-3=3y+4 有实根,则 k 的取值范围是()2A . k>- 74B . k≥- 74且 k≠0C.k≥-74D.k> 74且 k≠09. 已知方程 x 2 + x = 2 ,则下列说中,正确的是()(A )方程两根和是 1 (B )方程两根积是 2(C ) 方程两根和是-1 (D ) 方程两根积比两根和大 210. 某超市一月份的营业额为 200 万元,已知第一季度的总营业额共 1000 万元,如果平均每月增长率为 x,则由题意列方程应为()A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000 二、填空题:(每小题 4 分,共 20 分) 11.用 法解方程 3(x-2)2=2x-4 比较简便. 12.如果 2x 2+1 与 4x 2-2x-5 互为相反数,则 x 的值为 .13. x 2 - 3x + = (x - )214.若一元二次方程 ax 2+bx+c=0(a≠0)有一个根为-1,则 a 、b 、c 的关系是 .15. 已知方程 3ax 2-bx-1=0 和 ax 2+2bx-5=0, 有共同的根-1, 则 a= ,b= .16. 一元二次方程 x 2-3x-1=0 与 x 2-x+3=0 的所有实数根的和等于 .17. 已知 3- 是方程 x 2+mx+7=0 的一个根,则 m=,另一根为 .18. 已知两数的积是 12,这两数的平方和是 25, 以这两数为根的一元二次方程是.1 + 1 19. 已知 x 1,x 2 是方程 x 2 - 2x - 1 = 0 的两个根,则 x 1 x 2等于 .20. 关于 x 的二次方程 x 2 + mx + n = 0 有两个相等实根,则符合条件的一组 m , n 的实数值可以是m = , n = . 三、用适当方法解方程:(每小题 5 分,共 10 分) 21. (3 - x )2 + x 2 = 522.x 2 + 2 3x + 3 = 0四、列方程解应用题:(每小题 7 分,共 21 分)23. 某电视机厂计划用两年的时间把某种型号的电视机的成本降低 36%, 若每年下降的百分数相同,求这个百分数.24.如图所示,在宽为 20m,长为 32m 的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为 570m2,道路应为多宽?25.某商场销售一批名牌衬衫,平均每天可售出 20 件,每件赢利 40 元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价 1 元,商场平均每天可多售出 2 件。
中考数学复习专题一元二次方程一、选择题:1、若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0的常数项为0,则m的值等于()A.﹣2 B.2 C.﹣2或2 D.02、方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14 B.(x﹣3)2=14 C.(x+3)2=4 D.(x﹣3)2=43、关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0,常数项为0,则m值等于()A.1 B.2 C.1或2 D.04、某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=1965、若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围()A.k<1且k≠0 B.k≠0 C.k<1 D.k>16、关于x的一元二次方程x2+2x﹣m=0有两个实数根,则m的取值范围是( )A.m≥﹣1 B.m>﹣1 C.m≤﹣1且m≠0 D.m≥﹣1且m≠07、已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为() A.﹣10 B.4 C.﹣4 D.108、若m、n是一元二次方程x2﹣5x﹣2=0的两个实数根,则m+n﹣mn的值是()A.﹣7 B.7 C.3 D.﹣39、有一人患了流感,经过两轮穿然后共有49人患了流感,设每轮传染中平均一个人传染了x人,则x值为() A.5 B.6 C.7 D.810、毕业之际,某校九年级数学兴趣小组的同学相约到同一家礼品店购买纪念品,每两个同学都相互赠送一件礼品,礼品店共售出礼品30件,则该兴趣小组的人数为()A.5人 B.6人 C.7人 D.8人11、某市2013年生产总值(GDP)比2012年增长了12%,由于受到国际金融危机的影响,预计今年比2013年增长7%.若这两年GDP年平均增长率为x%,则x%满足的关系是()A.12%+7%=x%B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2•x%D.(1+12%)(1+7%)=(1+x%)212、设x1、x2是方程x2+3x﹣3=0的两个实数根,则的值为()二、填空题:13、方程2x2﹣1=的二次项系数是,一次项系数是,常数项是.14、若关于x的方程(a+3)x|a|-1-3x+2=0是一元二次方程,则a的值为________________.15、把方程(2x+1)(x—2)=5-3x整理成一般形式后,得,其中二次项系数是,一次项系数是,常数项是。
一、选择题1.要组织一次足球联赛,赛制为双循环形式(每两队之间都进行两场比赛),共要比赛90场.设共有x 个队参加比赛,则x 满足的关系式为( )A .12x (x +1)=90B .12x (x ﹣1)=90 C .x (x +1)=90 D .x (x ﹣1)=902.下列方程是关于x 的一元二次方程的是( )A .ax 2+bx +c =0B .211x x +=C .x 2+2x =y 2-1D .3(x +1)2=2(x +1) 3.下列一元二次方程中无实数根的是( )A .22x x =B .(1)(3)0x x ++=C .2(2)5x -=D .210x x -+= 4.一元二次方程x 2﹣3x +1=0的两个根为x 1,x 2,则x 12+3x 2+x 1x 2+1的值为( ) A .10 B .9 C .8 D .7 5.某餐厅主营盒饭业务,每份盒饭的成本为12元.若每份盒饭的售价为16元,每天可卖出360份.市场调查反映:如调整价格,每涨价1元,每天要少卖出40份.若该餐厅想让每天盒饭业务的利润达到1680元,设每份盒饭涨价x 元,则符合题意的方程是( ) A .(1612)(36040)1680x x +--=B .(12)(36040)1680x x --=C .(12)[36040(16)]1680x x ---=D .(1612)[36040(16)]1680x x +---= 6.若关于x 的方程2210mx x +-=有两个不相等的实数根,则m 的取值范围是( )A .1m <-B .1m >-且0m ≠C .1m >-D .1m ≥-且0m ≠ 7.关于x 的一元二次方程()22120x m x m +--=的根的情况是( )A .无法确定B .有两个不相等的实数根C .有两个相等的实数根D .无实数根 8.一人携带变异新冠状病毒,经过两轮传染后共有121人感染,设每轮传染中平均一个人传染了x 个人,则可列方程( ) A .()1121x x x ++= B .()11121x x ++= C .()21121x += D .()1121x x += 9.某小区附近新建一个游泳馆,馆内矩形游泳池的面积为2300m ,且游泳池的宽比长短10m .设游泳池的长为xm ,则可列方程为( )A .()10300x x -=B .()10300x x +=C .()2210300x x -= D .()2210300x x +=10.受非洲猪瘟及其他因素影响,2020年9月份猪肉价格两次大幅度上涨,瘦肉价格由原来23元/千克,连续两次上涨x%后,售价上升到60元/千克,则下列方程中正确的是( )A .23(1﹣x%)2=60B .23(1+x%)2=60C .23(1+x 2%)=60D .23(1+2x%)=60 11.下列一元二次方程没有实数根的是( )A .2-20x =B .2-20x x =C .210x x ++=D .()()-1-30x x = 12.一元二次方程2x =﹣3x 的根是( )A .x =﹣3B .x =0C .1x =0,2x =﹣3D .1x =0,2x =3二、填空题13.已知a ,b 是方程230x x --=的两个实数根,则2+1a b +的值为__________. 14.一个等腰三角形的腰和底边长分别是方程28120x x -+=的两根,则该等腰三角形的周长是________.15.所示,某小区规划在一个长为40m 、宽为26m 的矩形场地ABCD 上修建三条同样宽的甬路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草.若使每一块草坪的面积为144m 2,求甬路的宽度.16.等腰三角形一边长是3,另两边长是关于x 的方程240x x k -+=的两个根,则k 的值为_______.17.若关于x 的一元二次方程()22367120m x x m m -++-+=有一个根是0,那么m 的值为______.18.如图,某小区规划在一个长30m 、宽20m 的长方形ABCD 上修建三条同样宽的通道,使其中两条与AB 平行,另一条与AD 平行,其余部分种花草.要使每一块花草的面积都为78m 2,那么通道的宽应设计成多少m ?设通道的宽为xm ,由题意列得方程__________________________.19.已知m 为一元二次方程x²-3x-2020=0的一个根,则代数式2m²-6m+2的值为___________20.如图,在一个长为40 m ,宽为26m 的矩形花园中修建小道(图中阴影部分),其中m AB CD EF GH x ====,每段小道的两边缘平行,剩余的地方种植花草,要使种植花草的面积为2864m ,那么x =______m .三、解答题21.快手、抖音等各大娱乐APP 软件深受人们的喜爱,但随着电商时代的热潮,曾经以直播、娱乐为主的主播也开始转型为带货主播.某快手主播,从今年九月份开始直播带货,并深受粉丝的喜爱,并从十月份该主播就开始盈利36000元,十二月的盈利达到43560元,且从十月到十二月,每月的盈利的平均增长率都相同.(1)求每月盈利的平均增长率;(2)按照这个平均增长率,预计下个月(即元月份)该主播的盈利将达到多少元? 22.定义:若两个一元二次方程有且只有一个相同的实数根,我们就称这两个方程为“同伴方程”.例如x 2=4和(x-2)(x+3)=0有且只有一个相同的实数根x=2,所以这两个方程为“同伴方程”.(1)根据所学定义,下列方程属于“同伴方程”的是________;(只填写序号即可) ①()219x -=; ②2440x x ++=; ③()()420x x +-=; (2)若关于x 的一元二次方程x 2-2x=0与x 2+3x+m-1=0为“同伴方程”,求m 的值. 23.如图,某小区有一块长为45米,宽为36米的矩形空地,计划在其中修建两块相同的矩形草地,它们的面积之和为1080平方米,两块草地之间及周围都是宽度相同的人行通道,求人行通道的宽度为多少米?24.解下列方程:(1)24830x x --=; (2)2(3)5(3)x x +=+.25.(1)解方程:2650x x +-=;(2)阅读下解方程的过程,并解决问题:解:方程右边分解因式,得3(5)2(5)-=-x x x …………………(第一步)方程变形为3(5)2(5)x x x -=--……………………………(第二步)方程两边都除以5x -,得32x =-…………………………………(第三步) 解,得23x =-.………………………………………………………(第四步) ①上述解方程的过程从第______步开始出错,具体的错误是______.②请直接写出方程的根______.26.文文以0.2元/支的价格购进一批铅笔,以0.4元/支的价格售出,每天销售量为400支,销售了两天后他决定降价,尽早销售完毕经调查得知铅笔单价每降0.01元,每天的销售量增加20支.(1)为了使笔每天的利润达到原利润的75%,文文应把铅笔定价多少元合适? (2)如果这批铅笔恰好一共在五天内全部销售完毕,请问这批铅笔有多少支?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】设有x 个队参赛,根据参加一次足球联赛的每两队之间都进行两场场比赛,共要比赛90场,可列出方程.【详解】解:设有x 个队参赛,则x (x ﹣1)=90.故选:D .【点睛】本题考查由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解.2.D解析:D【分析】根据一元二次方程的定义解答,一元二次方程必须满足四个条件:未知数的最高次数是2,二次项系数不为0,是整式方程,含有一个未知数;【详解】A 、20ax bx c ++=当a=0时,不是一元二次方程,故A 错误;B 、2112x x+= ,不是整式方程,故B 错误; C 、2221x x y +=- ,含有两个未知数,故C 错误; D 、()()23121x x +=+ 是一元二次方程,故D 正确;故选:D .【点睛】本题考查了一元二次方程的概念,正确理解一元二次方程的概念是解题的关键. 3.D解析:D【分析】由因式分解法、偶次方的非负性和根的判别式依次判断即可;【详解】解:A.由22x x =可得(2)0x x -=,由因式分解法可知有两个实数根,故不符合题意;B.(1)(3)0x x ++=,由因式分解法可知有两个实数根,故不符合题意;C. 2(2)5x -=,50>,有两个实数根,故不符合题意;D. 224(1)41130b ac ∆=-=--⨯⨯=-<,没有实数根,符合题意.故选:D .【点睛】本题主要考查了根的判别式Δ=b 2−4ac 以及配方法和因式分解法解一元二次方程,牢记Δ<0时,方程有两个相等的实根是解题的关键.4.A解析:A【分析】根据方程的根及根与系数的关系得到x 12﹣3x 1+1=0,x 1+x 2=3,x 1x 2=1,将其代入代数式计算即可.【详解】解:由题意得x 12﹣3x 1+1=0,x 1+x 2=3,x 1x 2=1,∴x 12+1=3x 1,∴x 12+3x 2+x 1x 2+1=3x 1+3x 2+x 1x 2=3(x 1+x 2)+ x 1x 2=331⨯+=10,故选:A .【点睛】此题考查一元二次方程的解,根与系数的关系式,求代数式的值,正确掌握根与系数的关系是解题的关键.5.A解析:A【分析】根据总利润=每盒的利润×销售量,而每盒的利润=售价-进价,再结合“每份盒饭的成本为12元.若每份盒饭的售价为16元,每天可卖出360份.市场调查反映:如调整价格,每涨价1元,每天要少卖出40份”即可得出答案.【详解】解:每份盒饭涨价x 元后,利润为(16+x-12)元,销售量为(360-40x)盒,∴可得方程为(1612)(36040)1680x x +--=,故选A .【点睛】本题考查了一元二次方程的实际应用.正确理解题意,根据题意找到等量关系是解题的关键.6.B解析:B【分析】利用判别式大于零和二次项系数不为零求解即可.【详解】∵方程2210mx x +-=有两个不相等的实数根,∴m≠0,且△>0,∴m≠0,且224m +>0,∴1m >-且0m ≠,故选B .【点睛】本题考查了一元二次方程根的判别式,熟练运用判别式并保证二次项系数不能为零是解题的关键.7.B解析:B【分析】判断上述方程的根的情况,只要看根的判别式△=b 2-4ac 的值的符号就可以了.【详解】解:∵关于x 的一元二次方程()22120x m x m +--=的二次项系数a=1,一次项系数b=2m-2,常数项c=-2m ,∴△=(2m-2)2-4(-2m )=4m 2+1>0,∴原方程有两个不相等的实数根;故选:B .【点睛】本题考查了根的判别式,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8.C解析:C【分析】患变异新冠状病毒的人把病毒传染给别人,自己仍然患病,包括在总数中.设每轮传染中平均一个人传染了x 个人,则第一轮传染了x 个人,第二轮作为传染源的是(x+1)人,则传染x(x+1)人,根据共有121人感染列方程即可.【详解】解:设每轮传染中平均一个人传染了x 个人,依题意得1+x+x(1+x)=121,即(1+x)2=121,故选:C.【点睛】本题考查了一元二次方程的应用-传播问题,要注意的是患变异新冠状病毒的人把病毒传染给别人,自己仍然是患者,人数应该累加.9.A解析:A【分析】因为游泳池的长为xm,那么宽可表示为(x-10)m,根据面积为300,即可列出方程.【详解】解:因为游泳池的长为xm,那么宽可表示为(x-10)m;则根据矩形的面积公式:x(x-10)=300;故选:A.【点睛】本题考查了一元二次方程的应用,掌握“矩形面积=长×宽”是关键.10.B解析:B【分析】可先用x%表示第一次提价后商品的售价,再根据题意表示第二次提价后的售价,然后根据已知条件得到关于x%的方程.【详解】解:当猪肉第一次提价x%时,其售价为23+23x%=23(1+x%);当猪肉第二次提价x%后,其售价为23(1+x%)+23(1+x%)x%=23(1+x%)2.∴23(1+x%)2=60.故选:B.【点睛】本题考查了一元二次方程的应用,要根据题意列出第一次提价后商品的售价,再根据题意列出第二次提价后售价的方程,令其等于60即可.11.C解析:C【分析】直接利用根的判别式△=b2−4ac判断即可.【详解】解:A、△ =8>0,方程有两个不相等的实数根;B、△=4>0,,方程有两个不相等的实数根;C、△=−3<0,方程没有实数根;D、2430-+=,△=4>0,方程有两个不相等的实数根;x x故选:C.【点睛】本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与△=b 2﹣4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.12.C解析:C【分析】移项,利用因式分解求解即可.【详解】解:∵2x =﹣3x ,移项,得2x +3x =0,分解因式,得x (x+3)=0,∴x =0,或x+3=0,解得1x =0,2x =﹣3,故选:C .【点睛】本题考查了一元二次方程的解法,根据方程的特点,选择因式分解法求解是解题的关键.二、填空题13.5【分析】先根据根与系数的关系写出两根的和与积代入所求代数式计算即可【详解】解:∵是方程的两个实数根∴∴∴;故答案为:5【点睛】本题考查了一元二次方程的根与系数的关系掌握根与系数的关系是解决本题的关 解析:5【分析】先根据根与系数的关系,写出两根的和与积,代入所求代数式计算即可.【详解】解:∵a ,b 是方程230x x --=的两个实数根,∴230a a --=,111a b -+=-=, ∴23a a =+,∴2131()4145a b a b a b ++=+++=++=+=;故答案为:5.【点睛】本题考查了一元二次方程的根与系数的关系.掌握根与系数的关系是解决本题的关键.一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系为:x 1+x 2=b a -,x 1•x 2=c a. 14.14【分析】运用因式分解法解一元二次方程求出两根因为三角形是等腰三角形分情况讨论:腰为2时和腰为6时再利用三角形三边关系验证是否符合题意即可求出周长;【详解】解:(x-2)(x-6)=0x1=2x2解析:14【分析】运用因式分解法解一元二次方程,求出两根,因为三角形是等腰三角形,分情况讨论:腰为2时和腰为6时,再利用三角形三边关系验证是否符合题意,即可求出周长;【详解】解:28120x x -+=,(x-2)(x-6)=0,x 1=2,x 2=6,当腰长为2时,三角形的三边为2,2,6,不符合三角形的三角关系,舍去;当腰长为6时,三角形的三边关系为6,6,2,符合三角形的三角关系,则周长为:6+6+2=14,故答案为:14.【点睛】本题考查因式分解解一元二次方程和三角形的三边关系,求解后验三角形的三边关系是解题的关键.15.2米【分析】设甬路的宽为xm 六块草坪的面积为根据面积之间的关系列方程解方程求解并根据实际意义进行值的取舍即可确定甬路的宽【详解】解:设甬路的宽为xm 根据题意得整理得解得当x=44时不符合题意故舍去所 解析:2米.【分析】设甬路的宽为xm ,六块草坪的面积为()()40226x x --,根据面积之间的关系列方程,解方程求解,并根据实际意义进行值的取舍即可确定甬路的宽.【详解】解:设甬路的宽为xm ,根据题意得()()402261446x x --=⨯,整理得246880x x ,-+= 解得1244,2x x ==,当x =44时不符合题意,故舍去,所以x =2.答:甬路的宽为2米.【点睛】本题考查一元二次方程的应用,掌握列一元二次方程解应用题的方法与步骤,把甬路进行平移,表示出草坪的长与宽是解题的关键.16.3或4【分析】分等腰三角形的腰长为3和底边为3两种情形求解即可【详解】当等腰三角形的腰长为3时则另一边长为3∵另两边长是关于x的方程的两个根∴x=3是方程的根∴∴k=3∴∴x=3或x=1∴等腰三角形解析:3或4.【分析】分等腰三角形的腰长为3和底边为3两种情形求解即可.【详解】当等腰三角形的腰长为3时,则另一边长为3,∵另两边长是关于x的方程240x x k-+=的两个根,∴x=3是方程240x x k-+=的根,∴23430k-⨯+=,∴k=3,∴2430x x-+=,∴x=3或x=1,∴等腰三角形的三边为3,3,1,存在,当等腰三角形的底边为3时,则两腰为方程的根,∵另两边长是关于x的方程240x x k-+=的两个根,∴2(4)40k--=,∴k=4,∴2440x x-+=,∴122x x==,∴等腰三角形的三边为2,2,3,存在,综上所述,k=3或k=4,故答案为:3或4.【点睛】本题考查了一元二次方程的根与等腰三角形的边长之间的关系,灵活运用分类思想,根的定义,根的判别式是解题的关键.17.4【分析】先把x=0代入(m-3)x2+6x+m2-7m+12=0得m2-7m+12=0再解关于m的方程然后根据一元二次方程的定义确定满足条件的m的值【详解】解:把x=0代入(m-3)x2+6x+m解析:4【分析】先把x=0代入(m-3)x2+6x+m2-7m+12=0得m2-7m+12=0,再解关于m的方程,然后根据一元二次方程的定义确定满足条件的m的值.【详解】解:把x=0代入(m-3)x2+6x+m2-7m+12=0得m2-7m+12=0,解得m1=4,m2=3,∵m-3≠0,即:m≠3∴m 的值为4.故答案为:4.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了一元二次方程的定义.18.【分析】设道路的宽为将6块草地平移为一个长方形长为宽为根据长方形面积公式即可列方程【详解】设道路的宽为由题意得:故答案为:【点睛】本题主要考查了一元二次方程的应用掌握长方形的面积公式求得6块草地平移 解析:(302)(20)786x x --=⨯【分析】设道路的宽为xm ,将6块草地平移为一个长方形,长为()302-x m ,宽为()20x m -.根据长方形面积公式即可列方程(302)(20)786x x --=⨯.【详解】设道路的宽为xm ,由题意得:(302)(20)786x x --=⨯,故答案为:(302)(20)786x x --=⨯.【点睛】本题主要考查了一元二次方程的应用,掌握长方形的面积公式,求得6块草地平移为一个长方形的长和宽是解决本题的关键.19.4042【分析】由题意可得m2-3m=2020进而可得2m2-6m=4040然后整体代入所求式子计算即可【详解】解:∵m 为一元二次方程x2-3x -2020=0的一个根∴m2-3m -2020=0∴m2解析:4042【分析】由题意可得m 2-3m=2020,进而可得2m 2-6m=4040,然后整体代入所求式子计算即可.【详解】解:∵m 为一元二次方程x 2-3x -2020=0的一个根,∴m 2-3m -2020=0,∴m 2-3m=2020,∴2m 2-6m=4040,∴2m 2-6m+2=4040+2=4042.故答案为:4042.【点睛】本题考查了一元二次方程的解和代数式求值,熟练掌握基本知识、灵活应用整体思想是解题的关键.20.2【分析】设小道进出口的宽度为x 米然后利用其种植花草的面积为864m2列出方程求解即可【详解】解:设小道进出口的宽度为x 米依题意得(402x )(26x )=864整理得x246x+88=0解得x1=2解析:2【分析】设小道进出口的宽度为x 米,然后利用其种植花草的面积为864m 2列出方程求解即可.【详解】解:设小道进出口的宽度为x 米,依题意得(40-2x )(26-x )=864,整理,得x 2-46x+88=0.解得,x 1=2,x 2=44.∵44>40(不合题意,舍去),∴x=2.答:小道进出口的宽度应为2米.故答案为:2.【点睛】本题考查了一元二次方程的应用,解题的关键是根据种植花草的面积为864m2找到正确的等量关系并列出方程.三、解答题21.(1)10%;(2)47916元.【分析】(1)设设每月的平均增长率为x ,根据等量关系:十月份盈利额×(1+增长率)2=十二月份的盈利额列出方程求解即可.(2)元月份的盈利=十二月份盈利×增长率.【详解】解:(1)设每月的平均增长率为x .根据题意可知:()236000143560x +=.解得10.1x =,2 2.1x =-(舍去).答:每月的平均增长率为10%.(2)由(1)知:元月份的盈利将达到:()4356011047916⨯+=%元.【点睛】此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x )2=后来的量,其中增长用+,减少用-,难度一般.22.(1)①②;(2)1或9-【分析】(1)结合题意,通过求解一元二次方程,即可得到答案;(2)首先求解220x x -=,得10x =,22x =;结合题意,将10x =,22x =分别代入x 2+3x+m-1=0,从而计算得m 的值;再经检验符合m 的值是否符合题意,从而完成求解.【详解】(1)①()219x -=的解为:14x =,22x =-;②2440x x ++=的解为:2x =-③()()420x x +-=的解为:14x =-,22x = ∴属于“同伴方程”的是①②故答案为:①②;(2)220x x -=的解为:10x =,22x = 当相同的实数根是0x =时,则m-1=0, ∴m=1将m=1代入原方程,得:230x x +=∴10x =,23x =-∴两个方程有且仅有一个相同的实数根,符合题意;当相同的实数根是x=2时,则4+6+m-1=0,∴m=-9,将m=-9代入原方程,得:23100x x +-=∴15x =-,22x =∴两个方程有且仅有一个相同的实数根,符合题意;∴m 的值为1或-9.【点睛】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程的解法,从而完成求解.23.人行通道的宽为3米.【分析】设人行通道的宽度为x 米,将两块矩形绿地合在一起长为(45﹣3x )m ,宽为(36﹣2x )m ,根据矩形绿地的面积为1080m 2,即可列出关于x 的一元二次方程,解方程即可得出x 的值,经检验后得出x =30不符合题意即可.【详解】解:解:设人行通道的宽为x 米,,将两块矩形绿地合在一起长为(45﹣3x )m ,宽为(36﹣2x )m ,则(453)(362)1080x x --=,整理得:x 2﹣33x +90=0,解得13x =,230x =(舍去),答:人行通道的宽为 3 米.【点睛】本题考查了一元二次方程的应用,根据数量关系列出关于x 的一元二次方程是解题的关键.24.(1)121,122x x =-+=+;(2)123,2x x =-= 【分析】 (1)根据配方法,可得答案;(2)根据因式分解法,可得答案.【详解】解:(1)移项,得2483x x -=.方程两边都除以4,得2324x x -=. 方程两边都加1,得232114x x -+=+. 配方,得27(1)4x -=.开平方,得1x -=.12x ∴=±+,121,122x x ∴=-+=+. (2)移项,得(2(3)5(3)0x x +-+=.(3)(35)0x x ∴++-=,(3)(2)0x x ∴+-=,123,2x x ∴=-=.【点睛】本题考查了解一元二次方程,熟练掌握解方程的方法是解题关键.25.(1)13x =-23x =-;(2)①三,方程两边都除以不能确定其值是否为零的代数式()5x -;②15=x ,223x =-. 【分析】(1)用公式法求解即可;(2)根据一元二次方程的解法逐步分析即可;【详解】解:(1)这里1a =,6b =,5c =-,∴224641(5)560-=-⨯⨯-=>b ac ,663212--±∴===-±⨯x13∴=-x 23x =-(2)①三,方程两边都除以不能确定其值是否为零的代数式()5x -,②方程右边分解因式,得3(5)2(5)-=-x x x ,移项,得3(5)2(5)0x x x ---=,分解因式,得()(5)320x x -+=,∴x-5=0,3x+2=0,∴15=x ,223x =-. 【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,熟练掌握各种方法是解答本题的关键.26.(1)0.3元;(2)2600支【分析】(1)首先求出原利润,再由现在利润=销量×(销售单价-批发价),进而得出等式方程即可解答.(2)利用(1)中所求得出单价,进而求出销量,即可得出总销量.【详解】解:(1)设铅笔的单价降了x 元,则 ()()0.40.2400200.40.240075%0.01x x ⎛⎫--+⨯=-⨯⨯ ⎪⎝⎭ 解之,得:1110x =,2110x =-(舍去), ∴定价:0.40.10.3-=(元);(2)0.14002400203800180026000.01⎛⎫⨯++⨯⨯=+= ⎪⎝⎭(支). 答:这批铅笔有2600支.【点睛】此题主要考查了一元二次方程的应用,利用利润=销量×(销售单价-批发价)得出是解题关键.。
第二十一章一元二次方程一、单选题(共10题)1.下列方程是一元二次方程的是()A. ax2+bx+c=0B.C. 2x2-x+2=0D. 4x-1=0【答案】C2.下列方程中,属于一元二次方程的是( )A. 2x+1=0B. y²+x=1C. x²+1=0D. x²+ =1【答案】C3.如果2是方程x²-3x+c=0的一个根,那么c的值是( )A. 4B. -4C. 2D. -2【答案】C4.一元二次方程x²-4x+5=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根【答案】 D5.方程x2=4的解是( )A. x1=4,x2=-4B. x1=x2=2C. x1=2,x2=-2D. x1=1,x2=4【答案】C6.如果关于x的一元二次方程x2-6x+2k=0有两个不相等的实数根,那么实数k的取值范围是( )A. k≤B. k<C. k≥D. k>【答案】B7.下列方程是关于x的一元二次方程的是()A. ax2+bx+c=0B. x2+ =0C. 2x+c2=0D. (x﹣2)(3x+1)=x【答案】 D8.将一元二次方程2(x﹣3)=x2+x﹣1化成一般形式后,一次项系数和常数项分别为()A. 1,﹣4B. ﹣1,5C. ﹣1,﹣5D. 1,﹣6【答案】B9.一元二次方程x2-2x-3=0配方后可变形为()A. (x-1)2=2B. (x-1)2=4C. (x-1)2=1D. (x-1)2=7【答案】B10.如图,在长100m,宽80m的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644m2.设道路的宽为xm,则x满足的方程是()A. 100×80-100x-80x=7644B. (100-x)(80-x)=7644C. 100x+80x=1008×80-7644D. (100-x)(80-x)+x2=7644【答案】B二、填空题(共6题)11.一元二次方程x²=x的解为________.【答案】x1=0,x2=112.请你写出一个有一根为1的一元二次方程:________.【答案】x2=1(答案不唯一)13.若x1,x2是方程x2﹣90x+2015=0的两个根,则x1•x2=________.【答案】201514.若x2+x+m=(x-3)(x+n)对x恒成立,则n=________.【答案】415.若关于x的方程x2+(k-2)x+k2=0的两根互为倒数,则k=________【答案】-116.若关于x的一元二次方程(m﹣1)x2﹣2mx+(m+2)=0有实数根,则m取值范围是________.【答案】m≤2且m≠1三、解答题(共3题)17.已知2是方程x2-3x+c=0的一个根,求方程的另一个根及c的值.【答案】解:设原方程的另一个根为x2,由根与系数的关系得:2+x2=3, 2x2=c,∴x2=1,c=2,即方程另一个根为1,c的值为2。
九年级数学一元二次方程测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列方程中,属于一元二次方程的是:A. 2x + 3 = 5B. x^2 4x + 4 = 0C. 3x + 2y = 6D. x^3 8 = 02. 一元二次方程ax^2 + bx + c = 0(a ≠ 0)的判别式是:A. b^2 4acB. a^2 4bC. a^2 + b^2D. b^2 ac3. 方程x^2 5x + 6 = 0的解是:A. x = 2 或 x = 3B. x = -2 或 x = -3C. x = 1 或 x = 6D. x = -1 或 x = -64. 若一元二次方程有两个相等的实数根,则判别式的值是:A. 大于0B. 等于0C. 小于0D. 无法确定5. 下列方程中,解为x = 4的是:A. x^2 8x + 16 = 0B. x^2 6x + 8 = 0C. x^2 + 8x + 16 = 0D. x^2 + 6x + 8 = 0二、判断题(每题1分,共5分)6. 任何一元二次方程都有两个解。
()7. 一元二次方程的解可能是两个实数,也可能是两个虚数。
()8. 若一元二次方程的判别式小于0,则方程无实数解。
()9. 一元二次方程的解可以通过因式分解法求得。
()10. 一元二次方程的解可以通过配方法求得。
()三、填空题(每题1分,共5分)11. 一元二次方程的标准形式是______。
12. 一元二次方程的解可以通过______求得。
13. 若一元二次方程的判别式大于0,则方程有两个______实数解。
14. 若一元二次方程的判别式等于0,则方程有两个______实数解。
15. 一元二次方程的解可以通过______求得。
四、简答题(每题2分,共10分)16. 请简述一元二次方程的定义。
17. 请说明一元二次方程的解的意义。
18. 请解释一元二次方程的判别式的意义。
19. 请列举一元二次方程的解法。
初三数学《一元二次方程》单元测试题(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2《一元二次方程》单元测试题(时间:100分钟 满分:120分)班级:_______________姓名:___________ 成绩:____________一、选择题:(本题包括12小题,每小题3分,共36分,每小题只有一个正确答案) 1、当m ( )时,关于x 的方程2(1)210m x mx ---=是一元二次方程. A .m >1 B .m <1 C .1m ≠- D .1m ≠ 2、方程2100x ax --=的一个根是2-,那么a =( ) A .-5 B .5 C .-3 D .3 3、方程22()x a b -=的根是( )A .b a ±B .a b ±C .a b -±D .a b + 4、下列没有实数根的方程是( )A .23420x x -+=B .25310x x +-=C .22(21)4x += D230x -= 5、关于x 的方程222(1)2(4)0m x mx m +-++=一定( )A .有两个正实根B .有两个负实根C .有一正一负两根D .没有实根 6、二次方程2202kx x -+=没有实根,那么k 的最小正整数值是( ) A .1 B .2 C .3 D .4 7、如果1x ,2x 是22410x x -+=的两根,那么2112x x x x +=( )3A .32B .3C .4D .6 8、方程210x kx --=的一根是2k 的值是( )A.2,4x k ==- B.2,4x k == C.2,4x k ==- D.2,4x k == 9、方程220x px q ++=两根是-4和2,则,p q 的值是( )A .4,16p q =-=-B .4,16p q ==-C .2,8p q ==-D .2,8p q =-=-10、若,,a b c 是一个三角形的三边,且关于x 的方程22(1)2(1)0b x ax c x --++=有两个相等实根,则这个三角形是( )A .正三角形B .锐角三角形C .直角三角形D .钝角三角形 11、若,a b 是方程2220060x x +-=的两根,则23a a b ++=( ) A .2006 B .2005 C .2004 D .2002 12、对于二次方程220x bx +-=,下面观点正确的是( )A .方程有无实根,要根据b 的取值而定;B .无论b 取何值,方程都有一正根、一负根C .当b >0时,两根为正,当b <0时,两根为负;D .因为2-<0,所以两根肯定为负选择题答题栏:4二、填空题:(每小题4分,共24分)1、如果二次方程20x mx n ++=的两根是0和-2,那么m = ,n = 。
人教版九年级数学上册第二十一章《一元二次方程》测试卷(含答案)题号 一 二 三总分 19 20 21 22 23 24分数一.选择题(共10小题,每题3分,共30分) 1.下列式子是一元二次方程的是( )A .3x 2-6x +2B .x 2-y +1=0 C .x 2=0D.1x 2+x =22.若方程2x 2+mx =4x +2不含x 的一次项,则m =( )A .1B .2C .3D .43.一元二次方程x 2-2x =0的根是( )A .x 1=0,x 2=-2B .x 1=1,x 2=2C .x 1=1,x 2=-2D .x 1=0,x 2=24.用配方法解方程x 2-6x -8=0时,配方结果正确的是( )A .(x -3)2=17B .(x -3)2=14C .(x -6)2=44D .(x -3)2=1 5.若方程x 2﹣5x ﹣1=0的两根为x 1、x 2,则+的值为( )A .5B .C .﹣5D .6. 已知(m 2+n 2)(m 2+n 2+2)-8=0,则m 2+n 2的值为( )A. -4或2 B .-2或4 C. 4 D. 2 7、某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长率为( )A .10%B .15%C .20%D .25%8、已知实数x 满足()()2224120x x x x ----=,则代数式21x x -+的值是( )A .7B .-1C .7或-1D .-5或39、上海世博会的某纪念品原价168元,连续两次降价a %后售价为128元,下面所列方程中正确的是( )A.168(1+a%)2=128 B.168(1-a%)2=128C.168(1-2a%)=128 D.168(1-a2%)=12810、《代数学》中记载,形如21039x x+=的方程,求正数解的几何方法是:“如图1,先构造一个面积为2x的正方形,再以正方形的边长为一边向外构造四个面积为52x的矩形,得到大正方形的面积为392564+=,则该方程的正数解为853-=.”小聪按此方法解关于x的方程260x x m++=时,构造出如图2所示的图形,已知阴影部分的面积为36,则该方程的正数解为()A.6 B.353 C.352 D.3 352二、填空题(每题3分,共24分)11.关于x的方程3x m﹣3﹣2x+4=0是一元二次方程,则m的值为.12.把方程x2+x+3=0变形为(x+h)2=k的形式,其中h,k为常数,则k =.13.若关于x的一元二次方程ax2+2x﹣1=0无解,则a的取值范围是.14.若一元二次方程mx+x2+2=0有两个相等的实数根,则m =.15.菱形的两条对角线的长分别是方程x2﹣mx+56=0的两个根,则菱形的面积是.16.长汀县体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请支球队参加比赛.17.若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=.18.已知关于x的二次方程ax2+bx+c=0没有实数根,一位老师改动了方程的二次项系数后,得到的新方程有两个根为12和4;另一位老师改动原来方程的某一个系数的符号,所得到的新方程的两个根为﹣2和6,那么=.三.解答题(共46分,19题6分,20 ---24题8分)19.解方程:(1)x2+2x﹣3=0;(2)2(5x﹣1)2=5(5x﹣1);(3)(x+3)2﹣(2x﹣3)2=0;(4)3x2﹣4x﹣1=0.20.已知关于x的方程x2+mx﹣6=0的一个根为2,求方程的另一个根.21.已知关于x的一元二次方程x2﹣(2k﹣2)x+k2=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若方程的两实数根x1,x2满足|x1+x2|=x1x2﹣22,求k的值.22.已知等腰三角形的三边长分别为a,b,4,且a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,求m的值.23.如图,要利用一面墙(墙长为55m),用100m的围栏建羊圈,基本结构为三个大小相同的矩形.(1)如果围成的总面积为400m2,求羊圈的边AB,BC的长各为多少;(2) 保持羊圈的基本结构,羊圈总面积是否可以达到800m2?请说明理由.24.为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2018年该市投入基础教育经费5000万元,2020年投入基础教育经费7200万元.(1)求该市投入基础教育经费的年平均增长率.(2) 如果按(1) 中投入基础教育经费的年平均增长率计算,该市计划2021年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台调配给农村学校,若购买一台电脑需3500元,购买一台实物投影仪需2000元,则最多可购买电脑多少台?参考答案一.选择题(共10小题)题号 1 2 3 4 5 6 7 8 9 10 答案 C D D A C B B C D A二.填空题(共8小题)11.解:∵关于x的方程3x m﹣3﹣2x+4=0是一元二次方程,∴m﹣3=2,解得:m=5,故答案为:5.12.解;移项,得x2+x=﹣3,配方,得x2+x+=﹣3+,∴(x+)2=﹣.∴h=,k=﹣.故答案为:﹣.13.解:∵关于x的一元二次方程ax2+2x﹣1=0无解,∴a≠0且Δ=22﹣4×a×(﹣1)<0,解得a<﹣1,∴a的取值范围是a<﹣1.故答案为:a<﹣1.14.解:∵mx+x2+2=0,∴x2+mx+2=0,a=1,b=m,c=2,∵方程有两个相等的实数根,∴b2﹣4ac=0,∴m2﹣4×1×2=0,即m2=8,∴m=.故答案为:.15.解:设菱形的两条对角线的长为m、n,根据题意得mn=56,所以菱形的面积=mn=×56=28.故答案为28.16.解:设要邀请x支球队参加比赛,由题意,得x(x﹣1)=28解得:x1=8,x2=﹣7(舍去).答:应邀请8支球队参加比赛.故答案为:8.17.解:∵α、β是一元二次方程x2+2x﹣6=0的两根,∴α+β=﹣2,αβ=﹣6,∴α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=4+12=16,故答案为:16.18.解:利用新方程有两个根为12和4构造1个一元二次方程为:x2﹣(12+4)x+12×4=0 即x2﹣16x+48=0,与ax2+bx+c=0对应.于是得到:b=﹣16k,c=48k.(其中k是不为0的整数.)从而原方程为:kx2﹣16kx+48k=0(方程从无根变有根,只能是改变系数a或c).同样再由另一个新方程的两个根﹣2和6,构造一个方程:x2﹣(﹣2+6)x+(﹣2)×6=0,即x2﹣4x﹣12=0.此方程两边同乘以4k,得 4kx2﹣16kx﹣48k=0,它与ax2﹣16kx+48k=0对应,得a=4k,从而原方程就是:4kx2﹣16kx+48k =0,所以==8.故答案为8.三.解答题(共7小题)19.解:(1)分解因式得:(x+3)(x﹣1)=0,可得x+3=0或x﹣1=0,解得:x1=﹣3,x2=1;(2)方程整理得:2(5x﹣1)2﹣5(5x﹣1)=0,分解因式得:(5x﹣1)[2(5x﹣1)﹣5]=0,可得5x﹣1=0或10x﹣7=0,解得:x1=0.2,x2=0.7;(3)分解因式得:(x+3+2x﹣3)(x+3﹣2x+3)=0,可得3x=0或﹣x+6=0,解得:x1=0,x2=6;(4)这里a=3,b=﹣4,c=﹣1,∵△=16+12=28>0,∴x==,解得:x1=,x2=.20.解:设方程另一个根为x1,根据题意得2x1=﹣6,解得x1=﹣3,即方程的另一个根是﹣3.21.解:(1)∵方程有两个实数根x1,x2,∴△=(2k﹣2)2﹣4k2≥0,解得k≤;(2)由根与系数关系知:x1+x2=2k﹣2,x1x2=k2,∵k≤,∴2k﹣2<0,又|x1+x2|=x1x2﹣1,代入得,|2k﹣2|=k2﹣22,可化简为:k2+2k﹣24=0.解得k=4(不合题意,舍去)或k=﹣6,∴k=﹣6.22.解:当a=4时,∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴4+b=12,∴b=8,而4+4≠0,不符合题意;当b=4时,∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴4+a=12,而4+4=8,不符合题意;当a=b时,∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴12=a+b,解得a=b=6,∴m+2=36,∴m=34.23.【答案】(1)设AB=xm,则BC=(100-4x)m,100-4x55,x11.25.由题意知,x(100-4x)=400,即x2-25x+100=0,解得x1=20,x2=5(舍),AB=20m,BC=100-420=20m.答:羊圈的边AB长为20m,BC长为20m.(2)不能.理由:设AB=ym时,羊圈总面积可以达到800m2,由题意,得y(100-4y)=800,即y2-25y+200=0,a=1,b=-25,c=200,-4ac=(−25)2-41200=-175<0,方程无实数根,羊圈总面积不可能达到800m2.24.解:(1)设该市投入基础教育经费的年平均增长率为x,根据题意,得5000(1+x)2=7200,解得x1=0.2=20%,x2=-2.2(舍去).答:该市投入基础教育经费的年平均增长率为20%.(2)2021年投入基础教育经费为7200(1+20%)=8640(万元), 设购买电脑m台,则购买实物投影仪(1500-m)台,根据题意,得3500m+2000(1500-m)864000005%,解得m880. 答:最多可购买电脑880台.。
一元二次方程章末检测
一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)
1.下列方程是一元二次方程的一般形式的是
A.(x﹣1)2=16 B.3(x﹣2)2=27
C.5x2﹣3x=0 D.2x2+2x=8
2.若关于x的方程x2+3x+a=0有一个根为-1,则a的值为
A.-4 B.-2
C.2 D.4
3.方程(x-2)(x+3)=0的解是
A.x=2 B.x=-3
C.x1=-2,x2=3 D.x1=2,x2=-3
4.关于x的一元二次方程x2+4x+k=0有两个相等的实根,则k的值为
A.k=﹣4 B.k=4
C.k≥﹣4 D.k≥4
5.用配方法解一元二次方程x2-2x-3=0时,方程变形正确的是
A.(x-1)2=2 B.(x-1)2=4
C.(x-1)2=1 D.(x-1)2=7
6.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是
A.B.﹣
C.4 D.﹣1
7.定义运算:a⋆b=a(1-b),若a,b是方程x2-x+m=0(m<0)的两根,则b⋆b-a⋆a的值为A.0 B.1
C.2 D.与m有关
8.某超市1月份营业额为90万元,1月、2月、3月总营业额为144万元,设平均每月营业额增长率为x,则下面所列方程正确的是
A.90(1+x)2=144 B.90(1-x)2=144
C.90(1+2x)=144 D.90(1+x)+90(1+x)2=144-90
9.如图,在▱ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x-3=0的根,则▱ABCD 的周长为
A.4+2B.12+6
C.2+2D.2+或12+6
10.如图,在△ABC中,AC=50 cm,BC=40 cm,∠C=90°,点P从点A开始沿AC边向点C以2 cm/s 的速度匀速运动,同时另一点Q由点C开始以3 cm/s的速度沿着CB向点B匀速运动,当其中一点到达终点时,另一点也随之停止运动,则当△PCQ的面积等于300 cm2时,运动时间为
A.5 s B.20 s
C.5 s或20 s D.不确定
二、填空题(本大题共2小题,每小题3分,共12分)
11.已知(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,则m=__________.
12.设m,n是一元二次方程x2+2x-7=0的两个根,则m2+3m+n=__________.
13.方程2x–4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为__________.
14.用一条长40 cm的绳子围成一个面积为64 cm2的矩形.设矩形的一边长为x cm,则可列方程为__________.
15.已知关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则实数k的取值范围是__________.16.如图是一个邻边不等的矩形花圃ABCD,它的一边AD利用已有的围墙,另外三边所围的栅栏的总长度是6 m.若矩形的面积为4 m2,则AB的长度是__________m.(可利用的围墙长度超过6 m)
三、解答题(本大题共9小题,共68分.解答应写出文字说明、证明过程或演算步骤)
17.(8分)解方程:
(1)(x -5)2=16;(直接开平方法) (2)x 2+5x =0;(因式分解法)
(3)x 2-4x +1=0;(配方法) (4)x 2+3x -4=0.(公式法)
18.(6分)如果关于x 的方程()22250mx m x m -+++=没有实数根,试判断关于x 的方程
()()25210m x m x m ---+=的根的情况.
19.(6分)在实数范围内定义一种新运算“△”,其规则为:a △b =a 2﹣b 2,根据这个规则:
(1)求4△3的值;
(2)求(x +2)△5=0中x 的值.
20.(6分)已知关于x的方程3x2–(a–3)x–a=0(a>0).
(1)求证:方程总有两个不相等的实数根;
(2)若方程有一个根大于2,求a的取值范围.
21.(8分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.
(1)求每张门票的原定票价;
(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠政策,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.
22.(8分)如图,在宽为40 m,长为64 m的矩形地面上,修筑三条同样宽的道路,每条道路均与矩形地面的一条边平行,余下的部分作为耕地,要使得耕地的面积为2418 m2,则道路的宽应为多少?
23.(8分)阅读下面的例题: 解方程2
20x x --=.
解:(1)当x ≥0时,
原方程化为x 2 – x –2=0,
解得:x 1=2,x 2= - 1(不合题意,舍去)
(2)当x <0时,
原方程化为x 2 + x –2=0,
解得:x 1=1,(不合题意,舍去)x 2= -2
∴原方程的根是x 1=2, x 2= −2.
(3)请参照例题解方程2110x x ---=.
24.(8分)某基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长54米的不锈钢栅栏围成,与墙平行的一边留一个宽为2米的出入口,如图所示,如何设计才能使园地的面积最大?
下面是两位学生争议的情境:请根据上面的信息,解决问题:
(1)设AB=x米(x>0),试用含x的代数式表示BC的长;
(2)请你判断谁的说法正确,为什么?
25.(10分)如图,A、B、C、D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向D移动.(1)P、Q两点从出发开始到几秒?四边形PBCQ的面积为33 cm2;
(2)P、Q两点从出发开始到几秒时?点P和点Q的距离是10 cm.
参考答案
1. C
2. C
3. D
4. B
5. B
6. A
7. A
8. D
9. A
10.A
11.-1
12.5
13.-3
14.x(20﹣x)=64
15.k<2且k≠1
16.1
17.(1) x1=9,x2=1;(2)x1=0,x2=-5;(3)x1=2+,x2=2;(4)x1=-4 ,x2=1.
18.当m=5时,方程有一个实数根;当≠5时,方程有两个不等的实数根。
19.(1)4△3=42-32 =16-9=7;(2)(x+2)△5=0,(x+2)2-52=0,(x+2)2=52,x+2=±5,x1=3,x2=-7 .
20.(1)方程总有两个不相等的实数根.(2)a>6.
21.10%
22.1 m
23.x1=﹣2,x2=1.
24.小娟说法正确
25.(1)5.(2)1.6秒或4.8秒,。