循环流化床锅炉炉膛及配风装置改造设计
- 格式:doc
- 大小:12.00 KB
- 文档页数:2
摘要:循环流化床锅炉又被称为CFB锅炉,循环流化床锅炉技术是近十几年发展迅速的燃烧技术,由于锅炉是采用燃油燃气进行燃烧,而循环流化床锅炉技术具有污染小、安全可靠、适应性广等明显优点,其作为一种高效的清洁燃煤技术,其效用受到人们广泛的关注,在燃煤技术当中占据了有力地位。
随着循环流化床锅炉商业化的快速发展,人们提出了循环流化床锅炉技术自动化运行概念。
本文通过对循环流化床锅炉控制系统的分析与研究,实现对循环流化床锅炉技术自动化的设计,有利于提高循环流化床锅炉的监控管理功能。
关键词:循环流化床锅炉自动控制技术优点1循环流化床锅炉燃烧技术的概念循环流化床锅炉技术具有污染小、安全可靠、燃烧适应性广等特点,其根据自身优势活跃在工业锅炉及废弃物处理等领域,循环流化床锅炉技术拥有很大的商业发展空间。
循环流化床燃烧技术作为一种新型的燃烧技术,其燃烧系统较为复杂,燃料燃烧形成飞灰始终流动在锅炉燃烧系统当中,流动状态的燃烧飞灰浓度较大容易影响其他控制技术的发挥,所以在循环流化床锅炉工作的过程中还需要人工进行操作调节。
如何调节各个参数之间的影响,使其控制系统操作变得稍微简单一些,对循环流化床锅炉控制系统进行研究与分析,设计合理有效的循环流化床锅炉控制系统是目前需要解决的问题。
2循环流化床锅炉控制系统的分析2.1燃烧控制系统循环流化床锅炉燃烧控制系统要保证燃烧过程中热量与负荷相适应,减少燃料不必要的损耗,从而实现锅炉燃烧控制系统的安全及高效运行。
锅炉燃烧控制系统具体可表现为对稳定的蒸汽压力及料床温度、锅炉燃烧的经济与环保、控制炉膛压力及床高范围等方面的控制。
循环流化床锅炉燃烧机理比较复杂,各参数之间耦合关系难以控制,被调参数容易同时受到多个调节参数的影响,给操控和受控变量配对造成了困难,所以循环流化床锅炉自动化控制难于一般锅炉的控制。
目前设计的燃烧控制系统比较简单,在燃烧自动控制系统运作的过程中,容易受到各个环节的影响,导致燃烧自动控制系统无法发挥出自动化控制的效用,最后还是依靠人工手动操作控制系统完成。
循环流化床锅炉主再热汽温低的原因及改造措施摘要:中国燃煤电站锅炉正常运转时,锅炉再热蒸汽温度小于设计值是一个普遍现象。
锅炉再热蒸汽温度下降的真真正正原因是什么,应当怎样改善?关键词:锅炉、循环流化床锅炉、措施引言:本文选用了东锅所生产的DG-1177/175-II3型为例,该加热炉关键由一组膜式水冷壁炉膛出口、三个汽冷旋风分离器,以及一组尾部竖并三部分所构成。
炉内设有屏式受热面:12块膜式过热器管屏、6块膜式再热器管屏和二块水冷式风扇散热蒸发屏;并采用了三个由膜管屏覆盖着的水汽冷高效率旋风分离器,每一个旋风分离器下边设置一个回料器。
激波吹灰机,是由北京楚能科技开发公司所生产的激波吹灰器.采用了树状管路的分布式系统,系统中设有六十四个点。
过温器蒸汽温度调节由二级喷嘴控制,再热蒸汽调节通过尾端双烟道挡板做为正常运行的控制技术手段。
为了调节蒸汽温度的准确性,低压环境下再加压装置在屏式再加压装置的软管上,而超低温下再加压装置进口的配有调整洒水减温减压装置采用了预留设计,再增压装置事故洒水时不能作为系统正常工作的控制手段。
发电机组历经了一年多的运转,但二台发电机组再热器出口汽温度却始终较差,当二台发电机组在满负载下,再热器出水温一般为510℃以下,当机组负荷在250MW以下时,再热汽温度最多只能在520℃以下,而且始终无法满足额定值参数541℃运行,严重损害了二台发电机组的可靠性和经济效益。
一、循环流化床锅炉再加热时汽温降低的情况问题1.排烟温度偏高。
起动初期,锅炉的排烟温度基本接近于设定值,在运转一周后温度逐步上升。
但通过传热学的对流换热理论研究表明:对于水电站锅炉的主要热阻,都在排烟侧和灰垢边缘热阻上。
在锅炉机组设计条件规定的条件下,直接影响对流换热效果的就只是灰垢边缘热阻。
这也表明了各层受热面积灰较多,致使高温、低过加热器时吸收的热量明显减少。
而停炉后再检也证明了这些。
可见,最初使用的声波式吹灰装置吹灰时效率较差。
浅谈循环流化床锅炉返料器风帽和风室优化改进作者:张中奇丛斌来源:《科学与财富》2017年第25期关键词:循环流化床返料器风帽风室优化前言:山东丰源通达电力有限公司安装的无锡华光锅炉厂生产的240t/h循环流化床锅炉的返料装置为:返料区域的风帽为71个、风帽的出风孔为6孔、出风孔的直径Φ=3mm。
松动区域的风帽为79个、风帽的出风孔为3孔、出风孔的直径也是Φ=3mm。
单侧为150个,双侧共计300个。
根据世界各国的循环流化床锅炉返料器结构、风帽布局、风帽孔的大小和多少情况看,这种结构和形式的风帽不算太好。
根据循环流化床锅炉旋风分离器的分离原理和返料器内的风帽分工原则看也不算合适,总而言之应该改进一下。
优化改进方案分析:我们都非常清楚的知道,循环流化床锅炉与沸腾炉、鼓泡床锅炉最大的区别就是物料的分离与循环系统。
沸腾炉和鼓泡床就是由于没有物料的分离与物料的循环系统已被淘汰。
可见物料的分离和循环系统重要性有多大。
循环流化床锅炉虽然是在沸腾炉的基础上发展起来的,可是由于它增加了物料的分离与循环系统,发展的速度越来越快。
在我国仅仅经过二十多年的时间,目前就有许多台300MW高温、高压机组投入商业运行,可见循环流化床锅炉的发展速度是非常快的。
循环流化床锅炉的循环系统,主要是将旋风分离器分离下来的物料送回到流化床的密相区。
我们又知道,流动的高温烟气和烟气中携带的不同直径的物料,在离开炉膛出口时该处的压力基本是在0 ~ -10Pa左右,当沿着切线方向进入到旋风分离器内时,在旋风分离器内的高温烟气和携带的物料进行了有效的分离,分离后的烟气和少量的较细的灰沿中心筒进入到了尾部烟道。
而被旋风分离器分离出来的物料就会沿着分离器的内壁向下滑。
根据工艺流程分析可知,在旋风分离器内烟气和物料分离的整个过程中都是在负压区里完成的。
在负压区分离出来的物料,再送入到具有一定微正压力的流化床密相区是一个较难的技术问题。
在目前各国诸多的循环流化床流派中,比较适用和优秀的而且被广泛认可的,就是美国福斯特惠乐公司生产的外置式高温旋风分离带“U”型返料器的炉型,其他国家的许多流派都基本被淘汰,或者都靠拢到了这种流派上,我们国家生产的循环流化床锅炉也是如此。
循环流化床锅炉优化调整与控制0 引言循环流化床锅炉技术因卓越的环保特性、良好的燃料适应性和运行性能,在世界范围得以迅速发展。
我国自20世纪80年代开始从事循环流化床锅炉技术开发工作,经过二十多年与国外拥有成熟技术的锅炉设计制造商合作(美国PPC、ALSTOM公司、奥地利AE公司)、引进(ALSTOM(原德国EVT)公司220t/h-410t/h 级(包括中间再热)循环流化床锅炉技术,美国燃烧动力公司(CPC)的细粒子循环流化床锅炉技术)、消化吸收和自主研究,中国已经完成了从高压、超高压、亚临界到超临界的跨越,在大型循环流化床锅炉技术领域已处于世界领先水平[2]。
哈尔滨锅炉厂是我国较早期从事研究、开发循环流化床锅炉厂家之一,现以哈炉2002年设计制造的220t循环流化床锅炉为例,结合运行经验和专业知识,对循环流化床锅炉主要参数的调整与控制作一些浅显的分析论述。
1 设备简介[1]制造厂家:哈尔滨锅炉厂;锅炉型号:HG220/9.8-L.YM27高温高压循环流化床锅炉;锅炉型式:单汽包自然循环、单炉膛、平衡通风、高温旋风分离器、自平衡U型密封返料阀、紧身封闭布置、全钢炉架悬吊方式、固态排渣、水冷滚筒冷渣器。
锅炉容量和参数:过热蒸汽最大连续蒸发量:220t/h;过热蒸汽出口蒸汽压力:9.81MPa;过热器出口蒸汽温度:540℃;给水温度:215℃;空气预热器型式:卧式管式空气预热器;进风温度:35℃;一次风热风温度:190℃;二次风热风温度:190℃;排烟温度:146℃;锅炉效率:90.5%;脱硫效率:>80%;钙硫比(Ca/S):2。
2 主要参数调整与控制2.1 床温调控床温是锅炉控制的主要参数之一,本文所述锅炉额定负荷设计床温873℃,最佳温度控制在850℃~900℃之间,最高不能超过950℃,最低不能低于800℃[1]。
床温过高容易造成锅炉结焦,温度过低容易发生锅炉灭火,因此,锅炉运行过程中必须严格控制床温。
300MW循环流化床锅炉配风系统
配风系统
锅炉采用并联配风系统,共设有两台一次风机,两台二次风机,五台高压风机,两台石灰石输送风机和两台引风机。
一次风由两台风机供给,一次冷风一部分直接送到两侧墙给煤管线上,作为给煤密封风,其余进入回转式空气预热器内加热后,通过一次热风道,经床下启动燃烧器,分别进入两个裤衩腿下部的水冷风室内,再由布风板进入炉内,保证炉内物料的流化,并将部分小颗粒物料提升起来;另外,从热一次风道上分别引出四股风,其中两股作为两侧墙给煤的播煤风,以保证给煤在炉内的均匀扩散和分布,从而有利于保证床温的均匀性。
另外两股作为外置换热器的吹扫风,以保证锅炉能安全运行。
二次风由两台二次风机供给,一部分二次冷风直接送到回料腿的给煤管线上,作为给煤密封风;其余均进入空气预热器内加热,然后由二次热风道送到炉前,再由多只二次风管分两层不同高度进入炉内,起到补充燃烧和输送床料的作用,并实现分级送风,降低NOx排放。
另外从二次热风道引出一部分送到石灰石管线上,作为石灰石密封风和冷却风。
五台高压流化风机(四运一备)分别为冷渣器、外置式换热器、回料阀提供流化风、床枪和启动燃烧器冷却风。
石灰石风机为石灰石输送提供介质,减少石灰石仓堵塞的可能性。
上述风机实现锅炉的配风,考虑到本工程煤质的特点,锅炉的过量空气系数为17%。
另外,锅炉还配有两台引风机。
锅炉采用平衡通风方式,压力平衡点设在炉膛出口。
循环流化床锅炉低氮燃烧的技术改造实践发布时间:2022-08-31T03:18:58.308Z 来源:《当代电力文化》2022年第8期作者:刘鑫东[导读] 循环流化床锅炉是一种高效、低污染的节能炉型。
自问世以来,在国内外得到了迅速的推广与发展刘鑫东国家电投集团内蒙古能源有限公司赤峰热电厂内蒙古赤峰市 024000摘要:循环流化床锅炉是一种高效、低污染的节能炉型。
自问世以来,在国内外得到了迅速的推广与发展,也是作为我国推广的洁净煤燃烧技术发展方向之一。
为了改善人们的生活环境,我国对环境保护提出了更高的强制性要求,要求企业的各项污染物排放必须达到环境质量标准和污染物排放标准。
为了符合可持续发展的要求,减少环境污染,有必要对锅炉烟气净化系统进行改造,减少锅炉烟气排放。
其中低氮燃烧技术在减低循环流化床锅炉烟气的方面表现突出,研究其技术应用的途径可以实现减少烟气排放的目标。
针对流化床锅炉的燃烧特点,低氮燃烧技术被开发出来,并得到很好的实际运用。
关键词:超低排放;燃煤锅炉;节能环保随着经济的快速发展,对能源和环境的压力逐渐增大。
因此,中国提出了可持续发展的战略目标。
社会和经济发展的同时,我们还必须注意环境的保护,为了适应时代发展的新要求工业企业污染物排放要求严格按照有关标准,并继续研究新型燃烧技术从根本上减少污染物的产生。
在研究过程中,通过实验得出氮氧化物是工业排放污染物的主要物质之一,必须采取措施减少氮氧化物的排放,才能有效实现工业生产节能减排的目标。
循环流化床是一种高效、洁净的燃烧技术。
已广泛应用于多家发电企业,并采用SNCR 脱硝系统与低氮燃烧技术相结合,有效地达到了减少污染物排放的目的。
一、锅炉低氮燃烧技术改造方案根据该公司的锅炉运行特点,制定了锅炉的低氮燃烧技术改造方案。
方案主体:锅炉烟气脱硝以SNCR 为主,低氮改造为辅,方案的优点就是锅炉的改造工程量不会很大,主要包含部分:1、二次风系统改造。
辛集市澳森钢铁有限公司3号锅炉综合改造技术协议合同编号:甲方:辛集市澳森钢铁有限公司乙方:中国华能集团清洁能源技术研究院有限公司协议签订日期:2016年1月5日3号锅炉综合改造技术协议辛集市澳森钢铁有限公司(以下简称甲方), 中国华能集团清洁能源技术研究院有限公司(以下简称乙方)就甲方3号锅炉防磨改造总承包项目事宜,进行了友好的协商,达成如下协议。
本协议涉及防磨装置改造、防侧磨改造、分离器入口烟道、靶区、锥段、给煤口及喷涂改造等项目由乙方总承包实施,包括设计、制造、供货、施工、安装、调试、培训等。
本协议未列举所有改造材料及施工,如确实为本次防磨改造所必须的,乙方负责此部分材料的供货和施工。
本协议未对一切技术细节做出规定,也并未充分引述有关的标准和规范条文,乙方保证提供符合本规范书和现行有效标准的优质产品。
本协议提出的是最低限度的技术要求,鼓励乙方采用最新改造技术的优质设备,并保证提供设备为全新的、先进的、成熟的、完整的和安全可靠的。
在签订合同之后,甲方保留对本协议提出补充要求和修改的权力,乙方应承诺予以配合。
本协议所使用的标准如与乙方所执行的标准发生矛盾时,按较严格现行标准执行。
乙方派驻现场施工人员需要有防磨改造经验的,了解施工过程中危险点。
因乙方自身原因(包括人员素质或施工器具)导致人员安全责任,由乙方负责。
乙方服从甲方现场施工总体安排,接受甲方现行的安全管理制度的相关规定。
一、锅炉规范及燃料额定蒸发量 240 t/h额定蒸汽温度 540 ℃额定蒸汽压力(表压) 9.81 MPa给水温度 215 ℃甲方3号锅炉由太原锅炉厂生产。
根据目前运行参数判断,3号锅炉布风板阻力偏低,低床压下存在床压波动现象。
并且炉内受热面磨损速率偏高,拟通过改造提高锅炉运行稳定性及降低受热面磨损速率,延长锅炉连续运行周期。
目前,3号锅炉实际燃料煤质参数见下表所示;目前,炉内每小时投入石灰石量约6吨,锅炉防磨改造后仍然采用炉内脱硫,石灰石耗量不低于目前用量。
黄磷尾气循环流化床锅炉设计摘要:联合黄磷尾气的燃烧特性,优化设计循环流化床锅炉,以锅炉布置、核心部件为设计重点,分析锅炉运行的磨损、腐蚀问题,提出科学的处理对策。
关键词:黄磷尾气;循环流化床;锅炉设计我国的黄磷产量非常高,出口量达到世界第一。
黄磷尾气是黄磷生产的副产品,由于含有残磷,具备自燃特点,腐蚀性和毒害性强。
多数生产厂家未充分利用黄磷,导致剩余黄磷被排入到大气环境中,严重污染环境。
黄磷尾气综合利用的途径如下:其一,使用纯净一氧化碳作为原料,合成多种化工产品;其二,利用尾气热值作为燃料。
但是在使用黄磷尾气合成化工品时,很难实现规模化推广应用。
所以使用黄磷尾气燃烧锅炉之后会产生蒸汽发电和供热,成为黄磷尾气综合利用的研究方向。
1、锅炉整体布置为了全面提升黄磷尾气的利用率,首先要处理好锅炉选型问题。
以气体作为燃料的锅炉型式,以室燃炉为主。
室燃燃气锅炉的设备简单,结构紧凑,能够实现自动化操作,也不会污染大气环境。
然而我国多数企业因用电形势等多种原因很难稳定生产黄磷,黄磷尾气生产工艺也不太稳定,对室燃炉的运行安全性影响明显,同时很难提升锅炉的参数、效率。
循环流化床锅炉,燃料适应性非常强,能够高效处理黄磷尾气锅炉粘覆和腐蚀等不良问题。
锅炉流化原理是将气体以一定速率通过布风装置,使得经过布风装置的物质或粒子接触气体,并由此而产生热流态。
流化床的性质,会受床内气体的截面速率影响。
在气流速率不断增加后,床内物质从稳定床态,逐渐转变为快速的流体床态。
为了保证流化床的流动工况,收集随气流逸出的颗粒后,遵照比例送回至流化床内循环使用。
此次设计的锅炉为循环流化床锅炉,采用自然循环、单汽包、循环流化床的燃烧方式。
锅炉为全钢焊接结构,采用露天布置法。
锅炉由膜式水冷壁炉膛、尾部竖井、旋风分离器组成。
锅炉设置给料装置共计2台,布置在炉膛前端。
同时设置气体燃烧器,设置在炉膛下部水冷壁。
在炉膛内部,设置屏式过热器。
在煤仓下面,由水冷壁管组成的水冷风室,还连接着其他风道点火器。
1绪论1.1课题背景能源与环境是当今社会发展的两大问题。
我国是产煤大国,也是用煤大国,目前一次能源消耗种煤炭占76%左右,在可见的今后若干年内还有上升的趋势,而这些煤炭中又有84%是直接用于燃烧的,其效率还不够高,燃烧所产生的大气污染物还没得到有效的控制,以致于我国每年排入大气的87%的SO2和67%NO X均来源于煤的直接燃烧,可见发展高效、低污染的清洁燃煤技术是当前正待解决的问题。
循环流化床锅炉是近十几年发展起来的一项高效、低污染清洁燃烧技术,其主要特点在于燃料及脱硫剂经多次循环,反复地进行低温燃烧和脱硫反应,炉内湍流运动强烈,不但能达到低NO X的排放、90%脱硫效率与煤粉炉相近的燃烧效率,而且具有燃料适应性广、负荷调节性能好、灰渣易于综合利用等优点,因此在国际上得到迅速的商业推广。
本课题是150t/h循环流化床锅炉,对其锅炉本体进行设计计算。
1.2主要研究内容(1)针对设计要求选择合理的炉型,绘制锅炉总图和主要部件结构图;(2)完成150t/h循环流化床锅炉本体的热力计算和锅筒的强度计算;(3)研究150t/h循环流化床锅炉的运行特点。
1.3 研究的目的及意义我国是世界上最大的煤生产与消耗国,煤在我国一次能源结构中占据着绝对主要的地位。
并且,由于自然条件的限制和历史发展的原因,这种状况在相当长的时期内不会有实质性的改变。
煤炭与其他一次能源,如石油、天然气相比,是一种比较“脏”的燃料,它在燃烧过程中将产生大量的灰渣、粉尘、废水、SO2、NO X等废弃物,如果这些废弃物未能妥善处理,将会严重干扰生态环境,甚至造成永久性破坏。
煤炭燃烧等带来的环境污染问题有酸雨污染、粉尘污染和温室效应气体引起的全球气温变暖问题。
而且,在我国很大部分燃煤锅炉都存在着热效率偏低的问题,并且由于成本考虑,很多锅炉没有配备相应的脱硫脱销装置,这给环境带来了相当的负担。
随着经济的快速发展,由于能源的过度开发和消费累计的效应,产生了制约经济发展和影响人类生存的环境污染问题。
35t/h循环流化床锅炉燃烧系统及辅助设备的设计洪波长沙锅炉厂摘要:本文从设计、结构、运行等几个方面着重介绍了新型循环流化床锅炉的三回程、三级分离回送、碟型布风独特燃烧系统和几个辅助设备。
关键词:新型循环流化床锅炉;三回程;三级分离回送;碟型布风;鼓、引风机;燃料粒径;给煤设备1 前言长沙锅炉厂多年来致力于循环流化床锅炉的开发与设计制造工作,自1997年第一台稀相区采用三回程及一级分离回送35t/h循环流化床锅炉投入运行以来,不断对这项技术进行追踪调查与完善,取得了许多经验,并在此基础上开发出稀相区采用三回程及三级分离回送35t/h循环流化床锅炉,本文将简要介绍该产品的燃烧系统及辅助设备设计特点。
2 锅炉设计基本条件2.1 锅炉设计规范额定蒸发量35 t/h额定蒸汽压力 3.82 MPa额定蒸汽温度249 ℃给水温度104 ℃2.2燃用煤种造气炉渣、劣质烟煤、无烟煤末、焦碳末。
3 锅炉及辅助设备结构介绍从国内已投运锅炉来看,由于多种原因,均不同程度地存在着一般难达到满负荷,运行周期短,事故频繁,分离效率低,埋管与尾部等受热面磨损快,分离器及炉墙磨损、变形、密封性能不好,漏灰严重等,严重影响锅炉的连速稳定运行,不适用化肥行业生产连续性和用汽量大要求。
造成这种状况的原因有设计问题,也有制造、安装、运行等方面的问题,有锅炉本体的问题,也有辅助设备方面的问题。
稀相区采用三回程及三级分离回送35t/h循环流化床锅炉是我厂结合中小型化肥行业实际,为大力提高锅炉运行可靠性,而研制的新型循环流化床锅炉。
该锅炉设计为双锅筒、自然循环、分散下降管,适用于室内和半露天布置。
3.1 锅炉的基本尺寸上锅筒中心标高18,100 mm锅炉运转层标高7,500 mm锅炉点火平台标高4,200 mm3.2 锅炉燃烧系统该锅炉稀相区采用三回程及三级分离回送以及碟型布风板低倍率循环流化床燃烧系统。
提高燃烧效率的关键在于提高那些一次通过炉膛时没有燃尽,而循环次数又不多的颗粒的燃尽度,因此稀相区设计成三回程,烟气经过三回程后,停留时间达到5.8秒,从而使烟气中循环次数又不多的颗粒有足够停留时间燃烧尽,提高炉膛出口温度(达到900~950度),降低飞灰含碳量(为6~8%),降低固体不完全燃烧损失,提高锅炉效率,降低锅炉耗煤量,特别是目前,煤的价格上涨幅度比较大,起到节能降耗作用,具有可观的经济效益。
循环流化床锅炉环保改造筑炉实施方案一、主要技术要求及说明1.1 点火装置点火装置在锅炉运行前起着主要的作用,点火装置左右各一个悬挂在水冷风室后墙,在油枪喷油点火时,它的温度逐渐增高,风压力大,所以在材料的使用上材质要求也相对较高。
点火装置的点火段内衬耐火材料采用刚玉莫来石耐磨砖砌筑,保温层采用二层轻质砖砌筑,使其在高温和高压下不会变形,刚玉莫来石耐磨砖在砌筑时,灰缝控制在1mm-2mm 之间,避免砖块同缝,各预留风管口位置正确,整体弧形的接口点设计在点火装置的底部,避免在运行时由于接点的松动,出现点火装置砖的脱落及倒塌现象。
点火装置保温层采用二层轻质保温砖,砌筑保温砖的灰缝控制在2mm-3mm 之间,避免同缝现象,点火装置砌筑过程中应配备相应材质的高温胶泥,砌筑时要表面平整,灰浆饱满,各过渡点要圆整平滑。
点火装置的一次风道段内衬耐火材料采用刚玉可塑料,施工厚度75mm;保温层采用轻质保温浇注料,施工厚度80mm。
施工时,先焊接耐热抓钉,抓钉焊接牢固,间距符合图纸设计要求,接着浇注轻质保温浇注料,待轻质保温浇注料充分干燥硬化,有一定的强度后,再捣打刚玉可塑料,可塑料捣打要均匀结实,表面平整光滑,避免产生蜂窝及空洞现象。
我方建议点火装置安装就位后再进行耐火材料施工,这样相对于在上面完成耐火材料施工后再吊装来说,能避免在吊装过程中对耐火材料产生的二次伤害。
另外,点火喷枪的安装位置必须准确,确保喷枪点火时燃油能够雾化均匀,避免雾化不均对局部耐火材料造成伤害,施工前我方施工人员将对点火喷枪的安装尺寸进行测量。
我方将严格按照无锡华光锅炉股份有限公司设计图纸来施工。
1.2 水冷风室(偏离:原设计为中质保温浇注料;实际施工:耐磨可塑料水冷风室原始设计为中质保温浇注料,由于锅炉运行中有不可预见的因素,产生漏灰或材料本身耐磨脱落现象,所以实际上水冷风室也产生普遍磨损现象,改为采用耐磨可塑料,厚度为100mm。
施工工艺:施工时,在水冷风室四壁及顶部、底部焊接耐磨抓钉,间距200mm ×300mm梅花状,焊接后的抓钉涂上1mm 沥青作为膨胀处理,待沥青充分干燥后,再在施工面捣打中质耐磨可塑料,施工厚度为100mm,可塑料要均匀结实,表面要平整光滑,避免产生蜂窝及空洞现象。
循环流化床锅炉炉膛及配风装置改造设计
作者:杨继远
来源:《数字化用户》2013年第07期
一、基本情况
南桐矿业公司电厂13号炉为CG50型循环流化床锅炉,自然循环,单汽包,锅炉布风板为水冷式布风板,风帽采用传统圆柱式风帽。
炉墙为直筒式,炉内布风板采用水平布置,内置2°倾角,总面积为16㎡,共布置风帽1110个,风帽分以下两种(表1)。
送风机额定风量64300m³/h,其中用作二次风、播煤风的风量约占总风量的25%。
正常运行时风室静压为7~8kPa。
目前电厂煤质变化较大,入炉煤发热量由3500kcal/kg降低到2300kcal/kg,水分含量增加到11%。
煤质变化后,燃煤消耗量增加约5T/h,比重也相应增加,且在输送过程中容易成团。
入炉后,着火时间延长,成团的泥煤即使用最大风量也很难被吹散,导致煤质变化后锅炉立刻出现灰管堵塞造成停炉的情况。
二、布风板存在问题
锅炉启动正常运行2小时不到即出现灰管堵塞情况,压火检查发现炉内已经大量结焦,无法排出,只能停炉清焦。
并且在调整运行工况后,仍然无法稳定运行。
分析是由于布风装置不适应煤质变化造成的。
原布风面积大,风帽数量多,风帽开孔多,但孔径小,风速和风量更适合均匀沸腾,而不足以让目前的燃煤托起并良好流化。
三、炉膛、布风板改造
(一)原锅炉炉膛布风板参数计算表(见表2)。
通过实际测量和计算,发现风帽出口流速为42m/s,相对目前的煤质情况显得略小。
(二)改造方案
1.改造思路:(1)减少炉膛布风板面积;(2)减少风帽数量;(3)减少风帽开孔数量,增大开孔孔径,提高流化风压。
2.理论分析计算(见表3):为降低改造难度,决定保持原风帽芯管直径不变,将风帽开孔数量变为8个,开孔直径调整为8.3mm,计算小孔风速为44.5m/s。
布风面积减小至
12.71m2,炉膛卫燃带前后墙及左右侧墙的变更如图1所示,风帽数量减少为845个。
四、改造后效果
(一)落渣管堵塞情况明显缓解。
通过此次技术改造,燃用同样的煤质很少出现落渣管堵塞的情况,说明改造后气流对粗、大颗粒的冲击力度增大,扰动力度增加,比重大的泥煤也不易落在布风板上成团结焦,改善了炉内物料的流化情况。
(二)炉渣含碳量明显降低。
改造后炉内流化效果得到改善,炉渣含碳量由5%降低到2%,在煤质不变,粒径不变的情况下,提高了锅炉热效率。
五、结语
锅炉炉膛及配风装置对燃烧的稳定性起着至关重要的作用,不同煤质对炉膛布置和配风装置的要求也不尽相同。
因此在长期煤质发生较大变化的时候,应该首先考虑燃烧装置是否能够适应。