高中物理(选修3-1)最基础考点系列:考点1 电势 含解析
- 格式:doc
- 大小:405.50 KB
- 文档页数:6
物理选修3-1第一章知识点归纳物理选修3-1第一章知识点归纳第一章静电场公式集1、最小的电荷量叫“元电荷”e=1.6*10-19C一个电子所带的电荷量为1e2、库仑定律F=kQq/r2k:静电力常量Q:源电荷q:试探电荷3、电场强度(矢量)E=F/q=kQ/r2E的方向与正电荷在该点所受的静电力的方向相同4、电场线1)、电场线上每点的切线方向表示该点场强的方向。
2)、电场线不相交。
3)、电场线的疏密或等势面的间距小和大都表示场强的弱和强。
4)、匀强电场的电场线是间隔相等的平行线。
5)、电场线指向电势降低的方向,即由电势高的等势面指向电势低的等势面。
5、静电力做的功等于电势能的减少量WAB=EPA-EPB=qEdAB=qUABdAB:AB两点沿电场方向的距离电荷在某点的电势能,等于静电力把它从该点移动到零势能位置时所做的功。
6、电势(标量)φ=EP/q电荷在电场中某一点的电势能与它的电荷量的比值,叫做这一点的电势。
电势的大小与场强的大小没有必然的联系。
++++++++------E=0+E≠0E=0E=0E=07、等势面1)、等势面一定与电场线垂直,即与场强方向垂直。
2)、同一等势面上移动电荷时,静电力不做功。
3)、等势面不相交。
4)、同一等势面,场强不一定相同。
8、电压(电势差)UAB=φA-φB9、等势体表面为同一等势面,所有内部场强处处为0,所有内部没有电荷。
拓展:内外表面为两个不同的等势面,环内场强为0,而中间有场强。
10、电势差与场强的关系UAB=Ed⊥E:匀强电场d⊥:AB两点沿场强方向的距离即匀强电场中两点间的电势差等于电场强度与这两点沿电场方向的距离的乘积。
E=UAB/d⊥即电场强度在数值上等于沿电场方向每单位距离上降低的电势。
11、电容C=Q/UQ:单一极板带电量的绝对值电容在数值上等于使两极板间的电势差为(每)1V时,电容器需要带的电荷量C=ε常量r S/(4πkd)εr:电介质的相对介电常数k:静电力12、U=4πkdQ/(ε13、带电粒子的加速r S)E=4πkQ/(εr S)动能定理mV/2=qUAB(静电力做功)14、带电粒子的偏转加速度a=F/m=qE/m=qU/(md)偏移距离y=at2/2运动时间t=l/V0偏转角tanθ=V⊥/V0V⊥=at提问人的追问20__-10-2319:47还能详细点么、整齐一点、看不太清回答人的补充20__-10-2319:521、最小的电荷量叫“元电荷”e=1.6*10-19C一个电子所带的电荷量为1e2、库仑定律F=kQq/r2k:静电力常量Q:源电荷q:试探电荷3、电场强度(矢量)E=F/q=kQ/r2E的方向与正电荷在该点所受的静电力的方向相同4、电场线1)、电场线上每点的切线方向表示该点场强的方向。
物理选修3-1-知识点归纳(全) 第一章电学基础1.电荷、电场与库仑定律•电荷的本质和性质•电场的概念及特征•库仑定律的表述和应用2.电势、电势差和电势能•电势的概念、性质和单位•电势差的概念、性质和计算•电势能的概念、性质和计算3.电容与电容器•电容的概念、性质和计算•平行板电容器、球形电容器、电容的串、并联组合4.电流、电阻和欧姆定律•电流的概念、性质和单位•电阻的概念、性质、计算和分类•欧姆定律的表述和应用5.磁学基础•磁场的概念和特征•磁感应强度的概念和计算•洛伦兹力的概念、表述和应用第二章电磁感应1.电磁感应现象•感生电动势的概念和计算•导体在磁场中的运动规律2.电磁感应定律•法拉第电磁感应定律的表述和应用•楞次定律的表述和应用3.自感和互感•自感系数和互感系数的概念、性质和计算•互感器的应用4.交流电路•交变电压和交变电流的概念和表示方法•交流电路的基本元件和参数•交流电路的基本特性和计算方法第三章光学基础1.光的本质和性质•光的本质和特征•干涉、衍射、反射、折射的现象和解释2.光的传播•光速、光程、光程差的概念和计算•光的直线传播和折射定律•全反射和光的色散现象3.光的成像和光学仪器•光的成像公式和规律•球面镜的成像特点和应用•复合透镜的成像原理和计算方法第四章物质结构和性质1.物质的结构和组成•原子结构和基本粒子•周期表和元素的性质2.固体物质的结构和性质•晶体的结构和性质•固体材料的物理性质3.材料的热学性能•温度、热能和内能的关系•热力学定律和热学过程的基本属性•热传导、热辐射和热对流的计算和应用以上是对物理选修3-1的全面知识点归纳,希望能对大家的学习有所帮助。
(完整版)高中物理必修3-1知识点清单(非常详细)第一章 静电场一、电荷和电荷守恒定律1.点电荷:形状和大小对研究问题的影响可忽略不计的带电体称为点电荷. 2.电荷守恒定律(1)电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量保持不变.(2)起电方式:摩擦起电、接触起电、感应起电. 二、库仑定律1.内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上.2.公式:F =kq 1q 2r,式中的k =9.0×109 N ·m 2/C 2,叫做静电力常量. 3.适用条件:(1)点电荷;(2)真空. 三、电场强度1.意义:描述电场强弱和方向的物理量. 2.公式(1)定义式:E =F q,是矢量,单位:N/C 或V/m.(2)点电荷的场强:E =k Q r 2,Q 为场源电荷,r 为某点到Q 的距离.(3)匀强电场的场强:E =Ud.3.方向:规定为正电荷在电场中某点所受电场力的方向. 四、电场线及特点1.电场线:电场线是画在电场中的一条条有方向的曲线,曲线上每点的切线方向表示该点的电场强度方向.2.电场线的特点(1)电场线从正电荷或无限远处出发,终止于负电荷或无限远处. (2)电场线不相交.(3)在同一电场里,电场线越密的地方场强越大. (4)沿电场线方向电势降低.(5)电场线和等势面在相交处互相垂直. 3.几种典型电场的电场线(如图所示)考点一 对库仑定律的理解和应用 1.对库仑定律的理解(1)F =kq 1q 2r 2,r 指两点电荷间的距离.对可视为点电荷的两个均匀带电球,r 为两球心间距.(2)当两个电荷间的距离r →0时,电荷不能视为点电荷,它们之间的静电力不能认为趋于无限大.2.电荷的分配规律(1)两个带同种电荷的相同金属球接触,则其电荷量平分.(2)两个带异种电荷的相同金属球接触,则其电荷量先中和再平分. 考点二 电场线与带电粒子的运动轨迹分析1.电荷运动的轨迹与电场线一般不重合.若电荷只受电场力的作用,在以下条件均满足的情况下两者重合:(1)电场线是直线.(2)电荷由静止释放或有初速度,且初速度方向与电场线方向平行. 2.由粒子运动轨迹判断粒子运动情况:(1)粒子受力方向指向曲线的内侧,且与电场线相切. (2)由电场线的疏密判断加速度大小.(3)由电场力做功的正负判断粒子动能的变化. 3.求解这类问题的方法: (1)“运动与力两线法”——画出“速度线”(运动轨迹在初始位置的切线)与“力线”(在初始位置电场线的切线方向),从二者的夹角情况来分析曲线运动的情景.(2)“三不知时要假设”——电荷的正负、场强的方向(或等势面电势的高低)、电荷运动的方向,是题意中相互制约的三个方面.若已知其中的任一个,可顺次向下分析判定各待求量;若三个都不知(三不知),则要用“假设法”分别讨论各种情况.第二章 电势能和电势差一、电场力做功和电势能 1.电场力做功(1)特点:静电力做功与实际路径无关,只与初末位置有关. (2)计算方法①W =qEd ,只适用于匀强电场,其中d 为沿电场方向的距离. ②W AB =qU AB ,适用于任何电场. 2.电势能(1)定义:电荷在电场中具有的势能,数值上等于将电荷从该点移到零势能位置时静电力所做的功.(2)静电力做功与电势能变化的关系:静电力做的功等于电势能的减少量,即W AB =E p A-E p B =-ΔE p .(3)电势能具有相对性. 二、电势、等势面 1.电势(1)定义:电荷在电场中某一点的电势能与它的电荷量的比值.(2)定义式:φ=E p q.(3)相对性:电势具有相对性,同一点的电势因零电势点的选取不同而不同. 2.等势面(1)定义:电场中电势相同的各点构成的面. (2)特点①在等势面上移动电荷,电场力不做功.②等势面一定与电场线垂直,即与场强方向垂直. ③电场线总是由电势高的等势面指向电势低的等势面.④等差等势面的疏密表示电场的强弱(等差等势面越密的地方,电场线越密). 三、电势差1.定义:电荷在电场中,由一点A 移到另一点B 时,电场力所做的功W AB 与移动的电荷的电量q 的比值.2.定义式:U AB =W ABq. 3.电势差与电势的关系:U AB =φA -φB ,U AB =-U BA . 4.电势差与电场强度的关系匀强电场中两点间的电势差等于电场强度与这两点沿电场方向的距离的乘积,即U AB =Ed .特别提示:电势和电势差都是由电场本身决定的,与检验电荷无关,但电场中各点的电势与零电势点的选取有关,而电势差与零电势点的选取无关.考点一 电势高低及电势能大小的比较 1.比较电势高低的方法(1)根据电场线方向:沿电场线方向电势越来越低.(2)根据U AB =φA -φB :若U AB >0,则φA >φB ,若U AB <0,则φA <φB .(3)根据场源电荷:取无穷远处电势为零,则正电荷周围电势为正值,负电荷周围电势为负值;靠近正电荷处电势高,靠近负电荷处电势低.2.电势能大小的比较方法 (1)做功判断法电场力做正功,电势能减小;电场力做负功,电势能增加(与其他力做功无关). (2)电荷电势法正电荷在电势高处电势能大,负电荷在电势低处电势能大. 考点二 等势面与粒子运动轨迹的分析 1电场等势面(实线)图样重要描述匀强电场垂直于电场线的一簇平面点电荷的电场以点电荷为球心的一簇球面等量异种点电荷的电场连线的中垂线上的电势为零等量同种正点电荷的电场连线上,中点电势最低,而在中垂线上,中点电势最高2.带电粒子在电场中运动轨迹问题的分析方法(1)从轨迹的弯曲方向判断受力方向(轨迹向合外力方向弯曲),从而分析电场方向或电荷的正负;(2)结合轨迹、速度方向与静电力的方向,确定静电力做功的正负,从而确定电势能、电势和电势差的变化等;(3)根据动能定理或能量守恒定律判断动能的变化情况. 考点三 公式U =Ed 的拓展应用1.在匀强电场中U =Ed ,即在沿电场线方向上,U ∝d .推论如下:(1)如图甲,C 点为线段AB 的中点,则有φC =φA +φB2.(2)如图乙,AB ∥CD ,且AB =CD ,则U AB =U CD .2.在非匀强电场中U =Ed 虽不能直接应用,但可以用作定性判断. 考点四 电场中的功能关系 1.求电场力做功的几种方法(1)由公式W =Fl cos α计算,此公式只适用于匀强电场,可变形为W =Eql cos α. (2)由W AB =qU AB 计算,此公式适用于任何电场. (3)由电势能的变化计算:W AB =E p A -E p B . (4)由动能定理计算:W 电场力+W 其他力=ΔE k . 注意:电荷沿等势面移动电场力不做功. 2.电场中的功能关系(1)若只有电场力做功,电势能与动能之和保持不变.(2)若只有电场力和重力做功,电势能、重力势能、动能之和保持不变. (3)除重力、弹簧弹力之外,其他各力对物体做的功等于物体机械能的变化. (4)所有外力对物体所做的功等于物体动能的变化.3.在解决电场中的能量问题时常用到的基本规律有动能定理、能量守恒定律和功能关系. (1)应用动能定理解决问题需研究合外力的功(或总功).(2)应用能量守恒定律解决问题需注意电势能和其他形式能之间的转化.(3)应用功能关系解决该类问题需明确电场力做功与电势能改变之间的对应关系. (4)有电场力做功的过程机械能不守恒,但机械能与电势能的总和可以守恒.四、电容器、电容 1.电容器(1)组成:由两个彼此绝缘又相互靠近的导体组成. (2)带电量:一个极板所带电量的绝对值. (3)电容器的充、放电充电:使电容器带电的过程,充电后电容器两板带上等量的异种电荷,电容器中储存电场能.放电:使充电后的电容器失去电荷的过程,放电过程中电场能转化为其他形式的能. 2.电容(1)定义式:C =QU.(2)单位:法拉(F),1 F =106μF =1012pF. 3.平行板电容器(1)影响因素:平行板电容器的电容与正对面积成正比,与介质的介电常数成正比,与两极板间距离成反比.(2)决定式:C =εr S4πkd,k 为静电力常量.特别提醒:C =Q U ⎝ ⎛⎭⎪⎫或C =ΔQ ΔU 适用于任何电容器,但C =εr S4πkd仅适用于平行板电容器.五、带电粒子在电场中的运动 1.加速问题(1)在匀强电场中:W =qEd =qU =12mv 2-12mv 20;(2)在非匀强电场中:W =qU =12mv 2-12mv 20.2.偏转问题(1)条件分析:不计重力的带电粒子以速度v 0垂直于电场线方向飞入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:利用运动的合成与分解. ①沿初速度方向:做匀速运动.②沿电场方向:做初速度为零的匀加速运动. 特别提示:带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.六、带电粒子在电场中的偏转 1.基本规律设粒子带电荷量为q ,质量为m ,两平行金属板间的电压为U ,板长为l ,板间距离为d (忽略重力影响),则有(1)加速度:a =F m =qE m =qUmd.(2)在电场中的运动时间:t =l v 0.(3)位移⎩⎪⎨⎪⎧v x t =v 0t =l 12at 2=y ,y =12at 2=qUl22mv 20d. (4)速度⎩⎪⎨⎪⎧v x =v 0v y =at ,v y =qUtmd, v =v 2x +v 2y ,tan θ=v y v x =qUl mv 20d. 2.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时的偏转角度总是相同的.证明:由qU 0=12mv 20及tan θ=qUl mdv 20得tan θ=Ul2U 0d.(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到电场边缘的距离为l2.3.带电粒子在匀强电场中偏转的功能关系:当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =Udy ,指初、末位置间的电势差.第三章 恒定电流 第四章 闭合电路的欧姆定律一、电流、欧姆定律1.电流(1)定义:自由电荷的定向移动形成电流. (2)方向:规定为正电荷定向移动的方向. (3)三个公式①定义式:I =q /t ;②微观式:I =nqvS ;③I =U R.2.欧姆定律(1)内容:导体中的电流I 跟导体两端的电压U 成正比,跟导体的电阻R 成反比. (2)公式:I =U /R .(3)适用条件:适用于金属和电解液导电,适用于纯电阻电路. 二、电阻、电阻率、电阻定律 1.电阻(1)定义式:R =U I.(2)物理意义:导体的电阻反映了导体对电流阻碍作用的大小,R 越大,阻碍作用越大. 2.电阻定律(1)内容:同种材料的导体,其电阻与它的长度成正比,与它的横截面积成反比,导体的电阻还与构成它的材料有关.(2)表达式:R =ρl S . 3.电阻率(1)计算式:ρ=R S l.(2)物理意义:反映导体的导电性能,是导体材料本身的属性. (3)电阻率与温度的关系①金属:电阻率随温度的升高而增大. ②半导体:电阻率随温度的升高而减小. ③超导体:当温度降低到绝对零度附近时,某些材料的电阻率突然减小为零成为超导体. 三、电功、电功率、焦耳定律 1.电功 (1)实质:电流做功的实质是电场力对电荷做正功,电势能转化为其他形式的能的过程. (2)公式:W =qU =UIt ,这是计算电功普遍适用的公式. 2.电功率(1)定义:单位时间内电流做的功叫电功率.(2)公式:P =W t=UI ,这是计算电功率普遍适用的公式.3.焦耳定律电流通过电阻时产生的热量Q =I 2Rt ,这是计算电热普遍适用的公式. 4.热功率(1)定义:单位时间内的发热量. (2)表达式:P =Q t=I 2R .四、串、并联电路的特点 1.特点对比电阻 R =R 1+R 2+…+R n1R =1R 1+1R 2+…+1R n2.几个常用的推论(1)串联电路的总电阻大于其中任一部分电路的总电阻.(2)并联电路的总电阻小于其中任一支路的总电阻,且小于其中最小的电阻.(3)无论电阻怎样连接,每一段电路的总耗电功率P 总是等于各个电阻耗电功率之和. (4)无论电路是串联还是并联,电路中任意一个电阻变大时,电路的总电阻变大. 五、电源的电动势和内阻 1.电动势(1)定义:电动势在数值上等于非静电力把1 C 的正电荷在电源内从负极移送到正极所做的功.(2)表达式:E =W q.(3)物理意义:反映电源把其他形式的能转化成电能的本领大小的物理量. 2.内阻电源内部也是由导体组成的,也有电阻,叫做电源的内阻,它是电源的另一重要参数. 六、闭合电路欧姆定律1.内容:闭合电路的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比.2.公式⎩⎪⎨⎪⎧I =E R +r只适用于纯电阻电路E =U 外+U 内适用于任何电路3.路端电压U 与电流I 的关系(1)关系式:U =E -Ir . (2)U -I 图象如图所示.①当电路断路即I =0时,纵坐标的截距为电源电动势. ②当外电路电压为U =0时,横坐标的截距为短路电流. ③图线的斜率的绝对值为电源的内阻. 七、测量电路的选择对伏安法测电阻,应根据待测电阻的大小选择电流表不同的接法.1.阻值判断法:当R V ≫R x 时,采用电流表“外接法”; 当R x ≫R A 时,采用电流表“内接法”. 2.倍率比较法:(1)当R V R x =R x R A ,即R x =R V ·R A 时,既可选择电流表“内接法”,也可选择“外接法”;(2)当R V R x >R xR A 即R x <R V ·R A 时,采用电流表外接法;(3)当R V R x <R xR A即R x >R V ·R A 时,采用电流表内接法.3.试触法:ΔU U 与ΔII 比较大小:(1)若ΔU U >ΔII ,则选择电压表分流的外接法;(2)若ΔI I>ΔUU,则选择电流表的内接法.八、实验器材的选择 1.安全因素通过电源、电表、电阻的电流不能超过允许的最大电流. 2.误差因素选择电表时,保证电流和电压均不超过其量程.使指针有较大偏转(一般取满偏度的13~23);使用欧姆表选挡时让指针尽可能在中值刻度附近. 3.便于操作选滑动变阻器时,在满足其他要求的前提下,可选阻值较小的. 4.关注实验的实际要求.第五章 磁场一、磁场、磁感应强度 1.磁场(1)基本性质:磁场对处于其中的磁体、电流和运动电荷有磁力的作用. (2)方向:小磁针的N 极所受磁场力的方向. 2.磁感应强度(1)物理意义:描述磁场强弱和方向.(2)定义式:B =F IL(通电导线垂直于磁场).(3)方向:小磁针静止时N 极的指向. (4)单位:特斯拉,符号T. 二、磁感线及特点 1.磁感线在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点的磁感应强度的方向一致. 2.磁感线的特点(1)磁感线上某点的切线方向就是该点的磁场方向.(2)磁感线的疏密定性地表示磁场的强弱,在磁感线较密的地方磁场较强;在磁感线较疏的地方磁场较弱.(3)磁感线是闭合曲线,没有起点和终点.在磁体外部,从N 极指向S 极;在磁体内部,由S 极指向N 极.(4)同一磁场的磁感线不中断、不相交、不相切. (5)磁感线是假想的曲线,客观上不存在. 3.电流周围的磁场非匀强磁场三、安培力的大小和方向1.安培力的大小(1)磁场和电流垂直时,F=BIL.(2)磁场和电流平行时:F=0.2.安培力的方向(1)用左手定则判定:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向.(2)安培力的方向特点:F⊥B,F⊥I,即F垂直于B和I决定的平面.(注意:B和I可以有任意夹角)四、洛伦兹力1.定义:运动电荷在磁场中所受的力.2.大小(1) v∥B时,F=0.(2) v⊥B时,F=qvB.(3) v与B夹角为θ时,F=qvB sin_θ.3.方向(1)判定方法:应用左手定则,注意四指应指向正电荷运动方向或负电荷运动的反方向.(2)方向特点:F⊥B,F⊥v.即F垂直于B、v决定的平面.(注意B和v可以有任意夹角).由于F始终垂直于v的方向,故洛伦兹力永不做功.五、洛伦兹力和电场力的比较1.洛伦兹力方向的特点(1)洛伦兹力的方向总是垂直于运动电荷速度方向和磁场方向确定的平面.(2)当电荷运动方向发生变化时,洛伦兹力的方向也随之变化.(3)左手判断洛伦兹力方向,但一定分正、负电荷.六、带电粒子在匀强磁场中的运动1.圆心的确定(1)已知入射点、出射点、入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨迹的圆心(如图甲所示,图中P 为入射点,M为出射点).(2)已知入射方向、入射点和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨迹的圆心(如图乙所示,P 为入射点,M为出射点).2.半径的确定可利用物理学公式或几何知识(勾股定理、三角函数等)求出半径大小.3.运动时间的确定粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为θ时,其运动时间表示为:t=θ2πT⎝⎛⎭⎪⎫或t=θRv.4.求解粒子在匀强磁场中运动问题的步骤:(1)画轨迹:即确定圆心,画出运动轨迹.(2)找联系:轨迹半径与磁感应强度、运动速度的联系,偏转角度与圆心角、运动时间的联系,在磁场中的运动时间与周期的联系.(3)用规律:即牛顿运动定律和圆周运动的规律,特别是周期公式、半径公式.。
物理选修3一1知识点总结介绍《物理选修3一1》是高中物理选修课程中的一部分,主要涉及到一些物理的基础知识和理论。
本文将对《物理选修3一1》中的知识点进行总结和梳理,以帮助高中物理学习者更好地理解和掌握这些内容。
一、电磁学知识点1. 电流和电荷•电流:电荷在单位时间内通过截面的数量。
•电荷守恒定律:任何一个封闭系统中的电荷的代数和保持不变。
2. 电压和电势能•电压:单位电荷所具有的电势能。
•电势能:电荷在电场中具有的位置能。
•电势差:两点间的电势能差。
3. 电阻和电流•电阻:电流通过时产生的阻碍。
•欧姆定律:电流与电压成正比,与电阻成反比。
•串联电路和并联电路的特点。
4. 磁场和磁感线•磁场:磁力作用的区域。
•磁感线:在磁场中表示磁力作用的线条。
•磁感应强度:单位面积上平行于磁场线方向上的磁感线数目,也成为磁场强度。
5. 固定磁场中的运动带电粒子•等速圆周运动:具有恒定速度和半径的圆周运动。
•洛仑兹力:带电粒子在磁场中受到的力。
•带电粒子在磁场中运动轨迹的确定方法。
二、光学知识点1. 光的反射和折射•光的反射定律:入射角等于反射角。
•光的折射定律:入射角、折射角和折射率之间的关系。
2. 凸透镜和凹透镜•焦距和物距、像距之间的关系。
•公式:1/f = 1/v - 1/u。
•凸透镜成像规律和凹透镜成像规律。
3. 光的干涉和衍射•光的干涉:两个光波相遇叠加,形成明暗相间的干涉条纹。
•光的衍射:光波通过一个孔或者绕过物体的边缘时,产生弯曲或弯折。
4. 光的偏振•光的偏振:根据光波振动方向的变化。
•偏振光的特点和产生方法。
•偏振片和偏光器的原理。
三、电子学知识点1. PN 结和二极管•PN 结的形成和特点。
•二极管的正向工作和反向工作状态。
•二极管的特点和应用。
2. 晶体管和集成电路•晶体管的三个区域:发射区、基区和集结区。
•晶体管的放大作用和开关作用。
•集成电路的构成和种类。
3. 半导体激光和光电子学•半导体激光的原理和结构。
高三物理选修3一1知识点高三物理选修3是高中物理课程的一部分,是学生们在高三阶段选修的内容之一。
本文将对选修3一1的知识点进行探讨和总结,帮助学生们更好地理解和掌握这些知识。
一、电场和电势电场是由电荷产生的力场,在物理学中起到举足轻重的作用。
学生们需要了解电场的概念、性质和计算方法。
同时,电势的概念和单位也是重要的考点。
了解电场和电势的概念有助于学生们理解电场力和电势能的关系,进而掌握相关计算方法。
二、电场中的带电粒子带电粒子在电场中的行为是一个重要的研究内容。
学生们需要了解带电粒子在电场中的运动规律,特别是受力分析和运动轨迹的计算。
包括施加电场力的方向、大小和其对带电粒子的影响等。
三、电容器和电容电容器是存储电荷和电能的重要设备,学生们需要了解电容器的基本结构和工作原理。
同时,对电容的概念和单位有一定的了解也是必要的。
理解电容器的充电和放电过程以及电容和电量之间的关系将有助于学生们理解和应用电容器在电路中的作用。
四、电流和电阻电流是电荷的流动,是电路中的重要物理量。
学生们需要了解电流的概念、计算方法以及守恒定律。
此外,电阻是电流的阻碍作用,对电流的大小和分布有重要影响。
学生们需要了解电阻的概念、计算方法以及与电阻相关的功率和焦耳定律。
五、电磁感应和电磁波电磁感应是电磁学中的重要概念,也是物理选修3一1中考察的重点之一。
学生们需要了解电磁感应的原理和方法,包括法拉第定律等。
另外,电磁波是电磁学的另一个重要内容,学生们需要了解电磁波的特性、产生和传播机制。
六、光的特性和光学仪器光是物理学中的重要研究对象,学生们需要了解光的传播特性、折射和反射规律以及光的色散现象。
同时,了解凸透镜和凹透镜的原理和应用也是必要的。
这些知识可以帮助学生们理解光的传播和成像机制,并且应用于实际问题的解决。
以上所述的知识点是高三物理选修3一1的重点内容。
学生们应该注重理解和掌握这些知识,并能够熟练应用于实际问题的解决。
通过学习这些知识,不仅可以提高学生们的物理素养,还可以为将来的学习和研究奠定坚实的基础。
新课程人教版高中物理选修31电势电势差和电势能的知识点一.电势():A1、定义:电场中某点A的电势,等于A 点与零电势点间的电势差,也等于将单位正电荷从A点移到零电势点过程中电场力做的功。
2、电势是电场本身具有的属性,与试探电荷无关。
3、零电势点可以自由选取,一般选取无穷远或大地为零电势点;电场中某点的电势具有相对性(相对选取的零电势点)。
4、沿着电场线的方向,电势降低(最快);电势降低的方向不一定就是电场线的方向。
5、电势与场强没有直接关系:电势高的地方,场强不一定大;场强大的地方,电势不一定高。
6、电场强度的大小表示电势变化的快慢。
7、电势是标量,正负表示大小。
8、电势的单位:伏特(V)9、等势面:电势相等的点构成的面。
(要了解各种特殊电场中等势面的特点) a 、同一等势面上各点的电势相等 b 、等势面一定垂直于电场线c 、在同一等势面上的两点间移动电荷,电场力做功为零d 、电场线从电势高的等势面指向电势低的等势面e 、任意两等势面不相交f 、等差等势面越密集的地方场强越大(等差等势面:相邻等势面间的电势差不变)二. 电势差(ABU ):1、定义:电场中两点电势的差值。
B A AB U ϕϕ-=A B BA U ϕϕ-=AB AB U U -=2、电势差是标量,正负表示初末点电势的高低。
3、电场中两点间的电势差与零电势点的选取无关。
4、电势差的单位:伏特(V )5、电势差是电场本身具有的属性,与试探电荷无关。
三. 电势能(A P E ):1、定义:电荷处于电场中某点具有的势能。
(电势能是电场和电荷共同具有的)2、q E A PA ϕ=(正电荷在电势越高的地方,电势能越大;负电荷在电势越高的地方,电势能越小)3、电势能是标量,正负表示大小。
4、电势能的单位:焦耳(J )5、电荷处于电场中某点时,具有的电势能有相对性(相对选取的零电势点);电势能的变化量与零电势点的选取无关。
6、电场力做功与电势能变化量的关系: A B A PB PA PA PB P AB q q q E E E E E W -=-=-=--=∆-=()(ϕϕϕϕa 、电场力做功与路径无关,与初末位置的电势差有关。
第一章《静电场》一、电荷、电荷守恒定律1、两种电荷:“+”“-”用毛皮摩擦过的橡胶棒带负电荷,用丝绸摩擦过的玻璃棒带正电荷。
2、元电荷:所带电荷的最小基元,一个元电荷的电量为1.6×10-19C ,是一个电子(或质子)所带的电量。
说明:任何带电体的带电量皆为元电荷电量的整数倍。
荷质比(比荷):电荷量q 与质量m 之比,(q/m)叫电荷的比荷3、起电方式有三种①摩擦起电②接触起电注意:电荷的变化是电子的转移引起的;完全相同的带电金属球相接触,同种电荷总电荷量平均分配,异种电荷先中和后再平分。
③感应起电——切割B ,或磁通量发生变化。
④光电效应——在光的照射下使物体发射出电子4、电荷守恒定律:电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,系统的电荷总数是不变的.二、库仑定律1.内容:真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。
方向由电性决定(同性相斥、异性相吸) 2.公式:221rQ Q kFk =9.0×109N ·m 2/C2极大值问题:在r 和两带电体电量和一定的情况下,当Q 1=Q 2时,有F 最大值。
3.适用条件:(1)真空中;(2)点电荷.点电荷是一个理想化的模型,在实际中,当带电体的形状和大小对相互作用力的影响可以忽略不计时,就可以把带电体视为点电荷.(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r 都等于球心距;而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心距代替r )。
点电荷很相似于我们力学中的质点.注意:①两电荷之间的作用力是相互的,遵守牛顿第三定律②使用库仑定律计算时,电量用绝对值代入,作用力的方向根据“同性相排斥,异性相吸引”的规律定性判定。
计算方法:①带正负计算,为正表示斥力;为负表示引力。
电势能和电势知识集结知识元电场力做功与电势能的关系知识讲解电势能1.定义:电荷在电场中由于受到电场力作用而具有的势能叫做电势能.用字母E P表示,单位是焦耳2.电势能大小:若规定电荷在B点的电势能为零,E PB=0,则E PA=W AB。
即电荷在某点的电势能等于静电力把它从该点移动到零势能位置时所做的功。
与重力势能表达式E P=mgh类似,电势能表达式为E P=φq。
φ是电荷q所在位置处的电势。
电势类似于高度,详见后文。
3.零点的选择:在电场中选取哪点作为电势能的零点,原则上是任意的。
但通常会把离场源电荷无穷远处电势规定为零电势,因此电荷在离场源电荷无穷远处的电势能也为零,或者把电荷在大地表面的电势能规定为零。
4.电势能的相对性:电荷在电场中某点的电势能的大小与零势能点的选取有关,但电荷在两点间的电势能之差和零势能点的选取无关。
5.电势能的标矢性:电势能是标量,但有正负,正负号的意义在于电荷在电场中该点所具有的电势能比在电势能零点的电势能多了还是少了。
因此电势能正值一定比负值大。
6.功能关系:电荷在电场中A点具有的电势能是E PA,它在B点具有的电势能是E PB,电荷从A点到B点静电力做的功就等于电势能的减少量。
即W AB=E PA-E PB,即静电力做正功,电势能减小,静电力做负功,电势能增加。
因此电场力做功是电势能变化的量度,与电荷的正负无关。
电势1.定义:电荷在电场中某点的电势能与它的电荷量的比值,叫做这一点的电势。
有符号φ表示,单位伏特V。
2.公式:3.物理意义:反映电场能的性质,数值越大,表明正电荷在该点具有的电势能越大,4.电势的决定因素:电场中各点的电势由电场本身和零电势位置的选取有关,也就是说与场源电荷有关。
若去无穷远处电势为零,则正场源电荷周围电势处处为正,负场源电荷周围电势处处为负。
5.电势是标量,但有正负。
类比高度,正电势一定比负电势高。
电场中某点电势高低与规定的零电势点的位置有关。
第四节电势能和电势【知识要点】要点一判断电势高低的方法电场具有力的性质和能的性质,描述电场的物理量有电势、电势能、静电力、静电力做功等,为了更好地描述电场,还有电场线、等势面等概念,可以从多个角度判断电势高低.1.在正电荷产生的电场中,离电荷越近电势越高,在负电荷产生的电场中,离电荷越近,电势越低.2.电势的正负.若以无穷远处电势为零,则正点电荷周围各点电势为正,负点电荷周围各点电势为负.3.利用电场线判断电势高低.沿电场线的方向电势越来越低.4.根据只在静电力作用下电荷的移动情况来判断.只在静电力作用下,电荷由静止开始移动,正电荷总是由电势高的点移向电势低的点;负电荷总是由电势低的点移向电势高的点.但它们都是由电势能高的点移向电势能低的点.要点二理解等势面及其与电场线的关系1.电场线总是与等势面垂直的(因为如果电场线与等势面不垂直,电场在等势面上就有分量,在等势面上移动电荷,静电力就会做功),因此,电荷沿电场线移动,静电力必定做功,而电荷沿等势面移动,静电力必定不做功.2.在同一电场中,等差等势面的疏密也反映了电场的强弱,等势面密处,电场线密,电场也强,反之则弱.3.已知等势面,可以画出电场线;已知电场线,也可以画出等势面.4.电场线反映了电场的分布情况,它是一簇带箭头的不闭合的有向曲线,而等势面是一系列的电势相等的点构成的面,可以是封闭的,也可以是不封闭的.要点三等势面的特点和应用1.特点(1)在同一等势面内任意两点间移动电荷时,静电力不做功.(2)在空间没有电荷的地方两等势面不相交.(3)电场线总是和等势面垂直,且从电势较高的等势面指向电势较低的等势面.(4)在电场线密集的地方,等差等势面密集.在电场线稀疏的地方,等差等势面稀疏.(5)等势面是虚拟的,为描述电场的性质而假想的面.2.应用(1)由等势面可以判断电场中各点电势的高低及差别.(2)由等势面可以判断电荷在电场中移动时静电力做功的情况.(3)由于等势面和电场线垂直,已知等势面的形状分布,可以绘制电场线,从而确定电场大体分布.(4)由等差等势面的疏密,可以定性地确定某点场强的大小.【问题探究】1.重力做功和静电力做功的异同点如何?相关因素电场中某一点的电势φ的大小,只跟电场本身有关,跟检验电荷q无关电势能大小是由点电荷q和该点电势φ共同决定的大小正负电势沿电场线逐渐下降,取定零电势点后,某点的电势高于零者,为正值;某点的电势低于零者,为负值正点电荷(+q):电势能的正负跟电势的正负相同.负点电荷(-q):电势能的正负跟电势的正负相反单位伏特V焦耳J联系φ=E pqE p=qφ3.常见电场等势面和电场线的图示应该怎样画?(1)点电荷电场:等势面是以点电荷为球心的一簇球面,越向外越稀疏,如图1-4-5所示.图1-4-5(2)等量异种点电荷的电场:是两簇对称曲面,两点电荷连线的中垂面是一个等势面.如图1-4-6所示.在从正电荷到负电荷的连线上电势逐渐降低,φA>φA′;在中垂线上φB=φB′.图1-4-6(3)等量同种点电荷的电场:是两簇对称曲面,如图1-4-7所示,在AA′线上O点电势最低;在中垂线上O点电势最高,向两侧电势逐渐降低,A、A′和B、B′对称等势.图1-4-7【例题分析】一、电势能【例1】下列关于电荷的电势能的说法正确的是()A.电荷在电场强度大的地方,电势能一定大B.电荷在电场强度为零的地方,电势能一定为零C.只在静电力的作用下,电荷的电势能一定减少D.只在静电力的作用下,电荷的电势能可能增加,也可能减少答案 D解析电荷的电势能与电场强度无直接关系,A、B错误;如果电荷的初速度为零,电荷只在静电力的作用下,做加速运动,电荷的电势能转化为动能,电势能减少,但如果电荷的初速度不为零,电荷可能在静电力的作用下,先做减速运动,这样静电力对电荷做负功,电荷的动能转化为电势能,电势能增加,所以C错误,D正确.二、判断电势的高低【例2】在静电场中,把一个电荷量为q=2.0×10-5C的负电荷由M点移到N点,静电力做功6.0×10-4 J,由N点移到P点,静电力做负功1.0×10-3 J,则M、N、P三点电势高低关系是________.答案φN>φM>φP解析首先画一条电场线,如上图所示.在中间位置附近画一点作为M点.因为由M→N静电力做正功,而负电荷所受静电力与场强方向相反,则可确定N点在M点左侧.由N→P静电力做负功,即沿着电场线移动,又因1.0×10-3 J>6.0×10-4 J,所以肯定移过了M点,即P点位于M点右侧.这样,M、N、P三点电势的高低关系是φN>φM>φP.【对点练习】1.有一电场的电场线如图1-4-9所示,图1-4-9电场中A、B两点电场强度的大小和电势分别用E A、E B和φA、φB表示,则() A.E A>E B,φA>φBB.E A>E B,φA<φBC.E A<E B,φA>φBD.E A<E B,φA<φB2.有关电场,下列说法正确的是()A.某点的电场强度大,该点的电势一定高B.某点的电势高,检验电荷在该点的电势能一定大C.某点的场强为零,检验电荷在该点的电势能一定为零D.某点的电势为零,检验电荷在该点的电势能一定为零3.将一个电荷量为-2×10-8 C的点电荷,从零电势点S移到M点要克服静电力做功4×10-8 J,则M点电势φM=________ V.若将该电荷从M点移到N点,静电力做功14×10-8 J,则N点电势φN=________ V,MN两点间的电势差U MN =________ V.4.如图1-4-10所示.图1-4-10(1)在图甲中,若规定E p A=0,则E p B________0(填“>”“=”或“<”).(2)试分析静电力做功情况及相应的电势能变化情况.【常见题型】题型一静电力做功和电势能变化之间的关系如图1所示,图1把电荷量为-5×10-9C的电荷,从电场中的A点移到B点,其电势能__________(选填“增加”、“减少”或“不变”);若A点的电势U A=15 V,B点的电势U B=10 V,则此过程中静电力做的功为________ J.[思维步步高] 电势能变化和静电力做功有什么关系?负电荷从A点移动到B,静电力做正功还是负功?静电力做功和电势能的变化在数值上有什么关系?[解析]将电荷从电场中的A点移到B点,静电力做负功,其电势能增加;A点的电势能为E p A=qU A,B点的电势能为E p B=qU B,静电力做功等于电势能变化量的相反数,即W=E p A-E p B=-2.5×10-8 J.[答案]增加-2.5×10-8 J[拓展探究]如果把该电荷从B点移动到A点,电势能怎么变化?静电力做功的数值是多少?如果是一个正电荷从B点移动到A点,正电荷的带电荷量是5×10-9 C,电势能怎么变化?静电力做功如何?[答案]减少 2.5×10-8 J增加-2.5×10-8 J[解析]如果把该电荷从B点移动到A点,静电力做正功,电势能减少.静电力做功为2.5×10-8 J;如果电荷的带电性质为正电荷,从B点移动到A点,静电力做负功,电势能增加了,静电力做负功,数值为-2.5×10-8 J.[方法点拨]电场中的功能关系:①静电力做功是电荷电势能变化的量度,具体来讲,静电力对电荷做正功时,电荷的电势能减少;静电力对电荷做负功时,电荷的电势能增加,并且,电势能增加或减少的数值等于静电力做功的数值.②电荷仅受静电力作用时,电荷的电势能与动能之和守恒.③电荷仅受静电力和重力作用时,电荷的电势能与机械能之和守恒.题型二电场中的功能关系质子和中子是由更基本的粒子即所谓“夸克”组成的.两个强作用电荷相反(类似于正负电荷)的夸克在距离很近时几乎没有相互作用(称为“渐近自由”);在距离较远时,它们之间就会出现很强的引力(导致所谓“夸克禁闭”).作为一个简单的模型,设这样的两夸克之间的相互作用力F 与它们之间的距离r 的关系为F =⎩⎨⎧ 0,0<r <r 1,-F 0,r 1≤r ≤r 2,0,r >r 2.式中F 0为大于零的常量,负号表示引力.用U 表示夸克间的势能,令U 0=F 0(r 2-r 1),取无穷远为零势能点.下列U -r 图示中正确的是( )[思维步步高] 零势能面的规定有何用处?无穷远处的势能和r =r 2处的势能是否相同?当r <r 1之后势能怎么变化?[解析] 从无穷远处电势为零开始到r =r 2位置,势能恒定为零,在r =r 2到r =r 1过程中,恒定引力做正功,势能逐渐均匀减小,即势能为负值且越来越小,此过程图象为A 、B 选项中所示;r <r 1之后势能不变,恒定为-U 0,由引力做功等于势能减少量,故U 0=F 0(r 2-r 1).[答案] B[拓展探究]空间存在竖直向上的匀强电场,图2质量为m 的带正电的微粒水平射入电场中,微粒的运动轨迹如图2所示,在相等的时间间隔内( )A.重力做的功相等B.静电力做的功相等C.静电力做的功大于重力做的功D.静电力做的功小于重力做的功[答案] C[解析]根据微粒的运动轨迹可知静电力大于重力,故选项C正确.由于微粒做曲线运动,故在相等时间间隔内,微粒的位移不相等,故选项A、B错误.[方法点拨]电势能大小的判断方法:①利用E p=qφ来进行判断,电势能的正负号是表示大小的,在应用时把电荷量和电势都带上正负号进行分析判断.②利用做功的正负来判断,不管正电荷还是负电荷,静电力对电荷做正功,电势能减少;静电力对电荷做负功,电势能增加.【课后作业】一、选择题1.一点电荷仅受静电力作用,由A点无初速释放,先后经过电场中的B点和C点.点电荷在A、B、C三点的电势能分别用E A、E B、E C表示,则E A、E B 和E C间的关系可能是()A.E A>E B>E C B.E A<E B<E CC.E A<E C<E B D.E A>E C>E B2.如图3所示电场中A、B两点,图3则下列说法正确的是()A.电势φA>φB,场强E A>E BB.电势φA>φB,场强E A<E BC.将电荷+q从A点移到B点静电力做了正功D.将电荷-q分别放在A、B两点时具有的电势能E p A>E p B3.如图4所示,图4某区域电场线左右对称分布,M、N为对称线上的两点.下列说法正确的是()A.M点电势一定高于N点电势B.M点场强一定大于N点场强C.正电荷在M点的电势能大于在N点的电势能D.将电子从M点移动到N点,静电力做正功4.两个带异种电荷的物体间的距离增大一些时()A.静电力做正功,电势能增加B.静电力做负功,电势能增加C.静电力做负功,电势能减少D.静电力做正功,电势能减少5.如图5所示,图5O为两个等量异种电荷连线的中点,P为连线中垂线上的一点,比较O、P 两点的电势和场强大小()A.φO=φP,E O>E PB.φO=φP,E O=E PC.φO>φP,E O=E PD.φO=φP,E O<E P6.在图6中虚线表示某一电场的等势面,图6现在用外力将负点电荷q从a点沿直线aOb匀速移动到b,图中cd为O点等势面的切线,则当电荷通过O点时外力的方向()A.平行于abB.平行于cdC.垂直于abD.垂直于cd7.如图7所示,图7固定在Q点的正点电荷的电场中有M、N两点,已知MQ<NQ.下列叙述正确的是()A.若把一正的点电荷从M点沿直线移到N点,则静电力对该电荷做功,电势能减少B.若把一正的点电荷从M点沿直线移到N点,则该电荷克服静电力做功,电势能增加C.若把一负的点电荷从M点沿直线移到N点,则静电力对该电荷做功,电势能减少D.若把一负的点电荷从M点沿直线移到N点,再从N点沿不同路径移回到M点;则该电荷克服静电力做的功等于静电力对该电荷所做的功,电势能不变二、计算论述题8.如图8所示,图8平行板电容器两极板间有场强为E的匀强电场,且带正电的极板接地.一质量为m、电荷量为+q的带电粒子(不计重力)从x轴上坐标为x0处静止释放.(1)求该粒子在x0处的电势能E p x0.(2)试从牛顿第二定律出发,证明该带电粒子在极板间运动过程中,其动能与电势能之和保持不变.9.图9一根对称的“∧”型玻璃管置于竖直平面内,管所在的空间有竖直向上的匀强电场E.质量为m、带电荷量为+q的小球在管内从A点由静止开始沿管向上运动,且与管壁的动摩擦因数为μ,管AB长为l,小球在B端与管作用没有能量损失,管与水平面夹角为θ,如图9所示.求从A开始,小球运动的总路程是多少?10.如图10所示,图10一绝缘细圆环半径为r,其环面固定在水平面上,场强为E的匀强电场与圆环平面平行,环上穿有一电荷量+q,质量为m的小球,可沿圆环做无摩擦的圆周运动,若小球经A点时速度v A的方向恰与电场垂直,且圆环与小球间沿水平方向无力的作用.(1)求小环运动到A点的速度v A是多少?(2)当小球运动到与A点对称的B点时,小球对圆环在水平方向的作用力F B 是多少?参考答案 【对点练习】1.答案 D2.答案 D3.答案 -2 5 -7解析 本题可以根据电势差和电势的定义式解决. 由W SM =qU SM 得U SM =W SM q =-4×10-8-2×10-8V =2 V而U SM =φS -φM ,所以φM =φS -U SM =(0-2) V =-2 V 由W MN =qU MN 得U MN =W MN q =14×10-8-2×10-8 V =-7 V而U MN =φM -φN ,所以φN =φM -U MN =[-2-(-7)] V =5 V4.答案 (1)< (2)见解析解析(1)A→B 移动正电荷,W AB >0,故E p A >E p B ,若E p A =0,则E p B <0. (2)甲中从A→B 移动负电荷,W AB <0,E p A <E p B 乙中从B→A 移动负电荷,W AB >0,E p A <E p B . 【课后作业】 一、选择题1.答案 AD解析 点电荷在仅受静电力作用的情况下,动能和电势能相互转化,动能最小时,电势能最大,故E A ≥E B ,E A ≥E C ,A 、D 正确.2.答案 BC解析 场强是描述静电力的性质的物理量;电势是描述电场能的性质的物理量,二者无必然的联系.场强大的地方电势不一定大,电势大的地方,场强不一定大,另根据公式E p =φq 知,负电荷在电势低的地方电势能反而大.3.答案 AC解析 由图示电场线的分布示意图可知,MN 所在直线的电场线方向由M 指向N ,则M 点电势一定高于N 点电势;由于N 点所在处电场线分布密,所以N 点场强大于M 点场强;正电荷在电势高处电势能大,故在M 点电势能大于在N点电势能;电子从M点移动到N点,静电力做负功.综上所述,A、C选项正确.4.答案 B解析异种电荷之间是引力,距离增大时,引力做负功,电势能增加.5.答案 A6.答案 D7.答案AD解析由点电荷产生的电场的特点可知,M点的电势高,N点的电势低,所以正电荷从M点到N点,静电力做正功,电势能减少,故A对,B错;负电荷由M点到N点,克服静电力做功,电势能增加,故C错;静电力做功与路径无关,负点电荷又回到M点,则整个过程中静电力不做功,电势能不变,故D对.二、计算论述题8.答案(1)-qEx0(2)见解析解析(1)粒子由x0到O处静电力做的功为:W电=-qEx0①W电=-(0-E p x0)②联立①②得:E p x0=-qEx0(2)在x轴上任取两点x1、x2,速度分别为v1、v2.F=qE=mav22-v21=2a(x2-x1)联立得12mv 22-12mv21=qE(x2-x1)所以12mv22+(-qEx2)=12mv21+(-qEx1)即E k2+E p2=E k1+E p1故在其运动过程中,其动能和势能之和保持不变.9.答案l tan θμ解析由题意知小球所受合力沿玻璃管斜向上,即qE sin θ>mg sin θ+F f ,小球所受管壁弹力垂直管壁向下,作出受力分析如右图所示.小球最终静止在“∧”形顶端,设小球运动的总路程为x ,由动能定理知:qEl sin θ-mgl sin θ-μ(qE cos θ-mg cos θ)x =0,解得x =l tan θμ.10.答案 (1)qErm (2)6qE解析 (1)小球在A 点时所受的静电力充当向心力,由牛顿第二定律得:qE =mv 2A r解得v A = qEr m(2)在B 点小球受力如右图所示,小球由A 运动到B 的过程中,根据动能定理qE·2r=221122B A mu mu -在B 点,FB 、qE 的合力充当向心力:2B B u F qE m r-=,得6B F qE =。
第一章 静电场第一节、电荷及其守恒定律(5)自然界中的两种电荷(1) 正电荷和负电荷:把用丝绸摩擦过的玻璃棒所带的电荷称为 正 电荷,用正数表示,则丝绸带 负 点;把用毛皮摩擦过的硬橡胶棒所带的电荷称为 负 电荷,用负数表示,则毛皮带 正 电。
(2)电荷及其相互作用:同种电荷相互 排斥 ,异种电荷相互 吸引 .原子核式结构:包括原子核(质子“带正电”)和核外电子(带负电)。
通常说物体不带电是指物体中的质子所带的 正电 与电子所带的 负电 在数量上相等,使整个物体对外不显电性。
(3)电荷守恒定律:电荷既不能 创造,也不能 消灭,只能从一个物体转移到另一个物体,或从物体的一部分转移到另一部分,在转移个人过程中,电荷的总量 保持不变。
2.三种起电方式(1)摩擦起电:两个相互绝缘的物体相互摩擦,使其中容易失去电子的物体由于失去电子而带 正电 ,而另一个得到电子的物体带 负点 。
原因:不同物质的原子核束缚电子的能力不同.结果:两个相互摩擦的物体带上了等量异种电荷.(2)感应起电:用静电感应的方法使物体带电,叫做感应起电.静电感应: 把一个带电的物体移近一个不带电的异体时,可以使导体带电的现象。
规律:近端感应异种电荷,远端感应同种电荷。
例 :如图所示,导体棒AB 靠近带正电的导体Q 放置.A 端带 _负_ 电荷.B 端带_正_电荷 。
(3)接触起电:一个带电的导体靠近一个不带电的导体而是这个不带电的导体带电的现象。
强调:三种起电方式的实质:电子的转移 ;三种起电方式都不是创造了电荷,也不是使电荷消失,而是使物体中的正负电荷分开,使电荷从物体的一部分转移到另一部分,或从一个物体转移到另一个物体,转移过程中总量不变。
3.元电荷(1)电荷的多少叫做 电荷量 .符号:Q 或q 单位:库仑 符号:C(2)人们把最小的电荷量叫元电荷,用e 表示。
电荷量e 的值:e=1.6×10-19C电子所带的电荷量的大小为e ,为负电;质子所带电荷量大小也为e ,但为正电。
电势 (选修3-1第一章:静电场的第四节电势能和电势)
★★★★★
○○○
1、电势
(1)定义:电荷在电场中某一点的电势能与它的电荷量的比值.
(2)定义式:q E p
=ϕ,电势的单位是V 。
(3)标矢性:电势是标量,其大小有正负之分,其正(负)表示该点电势比电势零点高(低).
(4)相对性:电势具有相对性,同一点的电势因零电势点的选取的不同而不同.
(5)沿着电场线方向电势逐渐降低.
2、电势反映的是电场中的能的性质,与电场中有无电荷无关,与放置的电荷量无关。
1、等量点电荷的电势比较
2、用电势判断电势能的大小
由E p=qφ,将q、φ的大小、正负号一起代入公式,E p的正值越大,电势能越大;E p的负值越大,电势能越小.
正电荷在电势较大的地方具有的电势能也大,负电荷在电势能较大的地方具有的电势能就较小。
(多选)关于电势的高低,下列说法正确的是( )
A.沿电场线方向电势逐渐降低
B.电势降低的方向一定是电场线的方向
C.正电荷只在静电力的作用下,一定向电势低的地方运动
D.带负电荷的粒子,由静止释放仅受静电力时,一定向电势高的地方运动
【答案】AD
1、(多选)(山东省济南外国语学校2017-2018学年高二10月月考)下述说法正确的是()
A. 沿电场线方向,场强一定越来越小
B. 沿电场线方向,电势一定越来越低
C. 电场强度是反映电场本身特性的物理量,与是否存在试探电荷无关
D. 电场中某点的电势除了与电场本身和零电势位置的选取有关外,还与放入该点电荷的带电情况有关
【答案】BC
【精细解读】沿电场线方向,场强不一定越来越小,可能增强,也可能不变,选项A错误;沿电场线方向,电势一定越来越低,选项B正确;电场强度是反映电场本身特性的物理量,与是否存在试探电荷无关,选项C正确;电场中某点的电势与电场本身和零电势位置的选取有关外,与放入该点电荷的带电情况无关,选项D错误;故选BC.
2、如图所示,Q是带正电的点电荷,P1、P2为其电场中的两点,若E1、E2为P1和P2两点的电场强度的大小,φ1、φ2为P1和P2两点的电势,则( )
A.E1>E2,φ1>φ2 B.E1>E2,φ1<φ2
C.E1<E2,φ1>φ2 D.E1<E2,φ1<φ2
【答案】A
【精细解读】由正电荷电场线的特点可知E1>E2,由沿电场线方向电势逐渐降低可知φ1>φ2,选项A正确.
3、(新疆哈密地区第二中学2017-2018学年高二10月月考)如果把q=1.0×10-7C的电荷从无穷远处移至电场中的A点,需要克服电场力做功W=1.2×10-4J,无限远电势能为零,那么:(1)q在A点的电势能和A点的电势各是多少?
(2)q未移入电场前A点的电势是多少?
【答案】(1)1.2×10-4J;1.2×103V;(2)1.2×103V。