Adaptive multigrid solution for mixed finite elements in 2-dimensional linear elasticity, t
- 格式:pdf
- 大小:140.26 KB
- 文档页数:12
PGElectrical · Principle of Function · Universal Gripper1044Modular RoboticsModular-Standardized interfaces for mechatronics and control for rapid and simple assembly without complicated designs-Cube geometry with diverse possibilities for creating individual solutions from the modular systemIntegrated-The control and power electronics are fully integrated in the modules for minimal space requirements and interfering contours-Single-cable technology combines data transmission and the power supply for minimal assembly and start-up costs Intelligent-Integrated high-end microcontroller for rapid data processing -Decentralized control system for digital signal processing -Universal communication interfaces for rapid incorporation in existing servo-controlled conceptsYour advantages and benefitsThe modules of the PowerCube series provide the basis for flexible combinatorics in automation. Complex systems and multiple-axis robot structures with several degrees of freedom can be achieved with minimum time and expenditure spent on design and programming.Module overviewThe innovative technology of the PowerCube modules already forms the basis of numerous applications in the fields of measuring and testing systems, laboratory automation, service robotics and flexiblerobot technology.PGServo-electric2-Finger Parallel Gripper PRServo-electric Rotary Actuators PWServo-electricRotary Pan Tilt ActuatorsPSMServo-motors with integrated position controlPDUServo-positioning motor with precision gearsPLSServo-electric Linear Axes withball-and-screw spindle drivePG·Universal Gripper1045Method of actuationThe PowerCube modules work completely independently. The master control system is only required for generating the sequential program and sending it step by step to the connected modules. Therefore, only the current sequential command is ever stored in the modules, and the subsequent command is stored in the buffer. The current, rotational speed and positioning are controlled in the module itself. Likewise, functions such as temperature and limit monitoring are performed in the module itself. Real-time capability is not absolutely essential for the master control or bus system. For the communication over Bus-System the SMP - SCHUNK Motion Protocol - is used. This enables you to create industrial bus networks,and ensures easy integration in control systems.Control version AB Hardware Control with PLC (S7)Control with PC Interface Profibus DP CAN bus / RS-232SoftwareWindows (from Windows 98) operating systemLINUX operating systemDevelopment platforms MC-Demo Operating Software PowerCube (LabView, Diadem)with Online documentation, standard softwaregsd-file, programming examples(gsd file, programming examples)on requeston requestIncluded with the ''Mechatronik DVD'' (ID 9949633): Assembly and Operating Manual with manufacturer's declaration, MCDemo software and description and gsd-file for S7 use.1234567889ᕃ24VDC / 48VDC power supply provided by the customerᕄControl system provided by the customer (see control versions A, B and C)ᕅPAE 130 TB terminal block for connecting the voltage supply, the communication and the hybrid cable (Option for easy connection)ᕆPDU servo-motorᕇLinear axis with PLS ball-and-screw spindle drive and PSM servo-motorᕈHybrid cable (single-cable technology) for connecting the PowerCube modules (voltage supply and communication). Not recommended for the use in Profibus applications ᕉPW Servo-electric Rotary Pan Tilt Actuator ᕊPG Servo-electric 2-Finger Parallel Gripper ᕋPR Servo-electric Rotary ActuatorPG· Universal Gripper1046Size 70Weight 1.4 kg Gripping force up to 200 N Stroke per finger 35 mm Workpiece weight1 kgApplication exampleDouble rotary gripper module for loading and unloading of sensitive componentsPG 70 Servo-electric 2-Finger Parallel Gripper PR 70 Servo-electric Rotary ActuatorPGUniversal Gripper1047Gripping force control in the range of 30 - 200 N for the delicate gripping of sensitive workpieces Long stroke of 70 mm for flexible workpiece handlingFully integrated control and power electronics for creating a decentralized control systemVersatile actuation optionsfor simple integration in existing servo-controlled concepts via Profibus-DP, CAN bus or RS-232Standard connecting elements and uniform servo-controlled conceptfor extensive combinatorics with other PowerCube modules (see explanation of the PowerCube system)Single-cable technology for data transmission and power supplyfor low assembly and start-up costsServo-electric 2-finger parallel gripper with highly precise gripping force control and long strokeUniversal GripperArea of applicationUniversal, ultra-flexible gripper for great part variety and sensitive components in clean working environmentsYour advantages and benefitsGeneral information on the seriesWorking principle Ball screw driveHousing materialAluminum alloy, hard-anodized Base jaw materialAluminum alloy, hard-anodized ActuationServo-electric, by brushless DC servo-motorWarranty 24 monthsScope of deliveryGuide centering sleeves and ‘’Mechatronik DVD’’ (contains an Assembly and Operating Manual with manufacturer’s declarartion and MC-Demo software withdescription)PG· Universal Gripper1048Control electronicsintegrated control and power electronics for controlling the servo-motorEncoderfor gripper positioning and position evaluationDrivebrushless DC servo-motorGear mechanismtransfers power from the servo-motor to the drive spindleSpindletransforms the rotational movement into the linear movement of the base jaw Humidity protection cap link to the customer’s systemThe brushless servo-motor drives the ball screw by means of the gear mechanism.The rotational movement is transformed into the linear movement of the base jaw by base jaws mounted on the spindles.Function descriptionThe PG gripper is electrically actuated by the fully integrated control and power electronics. In this way, the module does not require any additional external control units.A varied range of interfaces, such as Profibus-DP, CAN-Bus or RS-232 are available as methods of communication. For the communication over Bus-System the SMP - SCHUNK Motion Protocol - is used. This enables you to create industrial bus networks, and ensures easy integration in control systems.If you wish to create combined systems (e.g. a rotary gripper module), various other modules from the Mechatronik-Portfolio are at your disposal.Electrical actuationSectional diagramPGUniversal Gripper1049Gripping forceis the arithmetic total of the gripping force applied to each base jaw at distance P (see illustration), measured from the upper edge of the gripper.Finger lengthis measured from the upper edge of the gripper housing in the direction of the main axis.Repeat accuracyis defined as the spread of the limit position after 100 consecutive strokes.Workpiece weightThe recommended workpiece weight is calculated for a force-type connection with a coefficient of friction of 0.1 and a safety factor of 2 against slippage of theworkpiece on acceleration due to gravity g. Considerably heavier workpiece weights are permitted with form-fit gripping.Closing and opening timesClosing and opening times are purely the times that the base jaws or fingers are in motion. Control or PLC reaction times are not included in the above times and must be taken into consideration when determining cycle times.General information on the seriesCentering sleevesElectrical accessories PAE terminal blockPAM standardconnecting elementsAccessoriesHybrid cableFor the exact size of the required accessories, availability of this size and the designation and ID, please refer to the additional views at the end of the size in question. You will find more detailed information on our accessory range in the …Accessories“ catalog section.PG 70· Universal Gripper1050Technical dataFinger loadMoments and forces apply per base jaw and may occur simultaneously. M y may arise in addition to the moment generated by the gripping force itself. If the max.permitted finger weight is exceeded, it is imperative to throttle the air pressure so that the jaw movement occurs without any hitting or bouncing. Service life may bereduced.Gripping force, I.D. grippingDescriptionPG 70Mechanical gripper operating data ID 0306090Stroke per finger [mm]35.0Constant gripping force (100 % continuous duty)[N]200.0Max. gripping force [N]200.0Min. gripping force [N]30.0Weight [kg] 1.4Recommended workpiece weight [kg] 1.0Closing time [s] 1.1Opening time [s] 1.1Max. permitted finger length [mm]140.0IP class20Min. ambient temperature [°C] 5.0Max. ambient temperature [°C]55.0Repeat accuracy [mm]0.05Positioning accuracy [mm]on request Max. velocity [mm/s]82.0Max. acceleration [mm/s 2]328.0Electrical operating data for gripper Terminal voltage [V]24.0Nominal power current [A] 1.8Maximum current [A] 6.5Resolution [µm] 1.0Controller operating data Integrated electronics Yes Voltage supply [VDC]24.0Nominal power current [A]0.5Sensor system EncoderInterfaceI/O, RS 232, CAN-Bus, Profibus DPPG 70Universal Gripper1051ᕃ24 VDC power supply provided by thecustomerᕄControl (PLC or similar) provided bythe customerᕅPAE 130 TB terminal block(ID No. 0307725) for connecting the power supply, the communication and the hybrid cableᕆHybrid cable for connecting thePowerCube modulesMain viewsThe drawing shows the gripper in the basic version with closed jaws, the dimensions do not include the options described below.ᕃGripper connection ᕄFinger connectionᕓᕗM16x1.5 for cable glandActuation DescriptionID Length PowerCube Hybrid cable, coiled 03077530.3 m PowerCube Hybrid cable, coiled03077540.5 mPowerCube Hybrid cable, straight (per meter)9941120The ‘Hybrid cable’ is recommended for the use in CAN-Bus- or RS232-systems. For Profibus applications we recommend to use a separate standardized Profibus cable for the communication.You can find further cables in the …Accessories“ catalog section.Interconnecting cablePG 70· Universal Gripper1052Special lengths on requestRight-angle standard element for connecting size 70 PowerCube modulesSpecial lengths on requestConical standard element for connecting size 70 and 90 PowerCube modulesSpecial lengths on requestStraight standard element for connecting size 70 PowerCube modules Right-angle connecting elements Description ID DimensionsPAM 120030782090°/70.5x98Conical connecting elements Description ID DimensionsPAM 110030781090x90/45/70x70 mm PAM 111030781190x90/90/70x70 mmStraight connecting elements Description ID DimensionsPAM 100030780070x70/35/70x70 mm PAM 101030780170x70/70/70x70 mmMechanical accessoriesYou can find more detailed information and individual parts of the above-mentioned accessories in the …Accessories“ catalog section.。
多元自适应回归样条法多元自适应回归样条法(Multivariate Adaptive Regression Splines,MARS)是一种常用的非参数回归方法,具有灵活性和高预测准确性。
它能够处理多个自变量之间的交互作用,并且能够自动选择最佳的样条节点和基函数,从而在建模过程中实现自适应。
在MARS中,样条函数由基函数和节点组成。
基函数是局部拟合的线性段,节点是样本数据中的一个切点,用于划分样本空间。
MARS算法通过逐步添加基函数和调整节点的位置来逼近真实的回归函数。
它的主要优势在于能够自动选择最佳的基函数和节点,从而在模型中实现非线性和交互作用。
MARS的主要步骤包括前向逐步回归(Forward Stage-Wise Regression)和后向逐步修剪(Backward Pruning)。
在前向逐步回归中,算法从一个空模型开始,逐步添加基函数和节点,直到达到停止准则。
然后,在后向逐步修剪中,算法通过删除无用的基函数和节点来提高模型的拟合效果和解释能力。
MARS的优点是能够处理非线性和交互作用,同时避免了过拟合问题。
它基于数据的自适应性能够提供更准确的预测结果,并且不需要事先设定回归函数的形式。
此外,MARS模型还能够提供变量的重要性评估,帮助分析人员在建模过程中了解自变量的影响程度。
MARS在各个领域都有广泛的应用。
在金融领域,MARS可以用于股票价格预测、风险评估等。
在医学领域,MARS可以用于疾病预测、药物反应分析等。
在工程领域,MARS可以用于产品质量控制、故障诊断等。
总之,MARS具有广泛的应用前景,并且能够为各行各业提供有效的数据分析工具。
要使用MARS进行回归分析,需要注意以下几点。
首先,需要选择合适的停止准则,以避免过拟合问题。
常见的停止准则有AIC准则、BIC准则等。
其次,需要选择适当的节点数和基函数数,一般可以通过交叉验证等方法进行选择。
最后,还需要考虑数据的预处理,如标准化、去除异常值等。
多智能体强化学习的几种BestPractice(草稿阶段,完成度40%)多智能体强化学习的几种Best Practice - vonZooming的文章 - 知乎 https:///p/99120143这里分享一下A Survey and Critique of Multiagent Deep Reinforcement Learning这篇综述里面介绍的多智能体强化学习Best Practice。
这部分内容大部分来自第四章,但是我根据自己的理解加上了其他的内容。
1.改良Experience replay buffer1.1 传统的Single-agent场景之下的Replay bufferReplay Buffer[90, 89]自从被提出后就成了Single-Agent强化学习的常规操作,特别是DQN一炮走红之后[72] 。
不过,Replay Buffer有着很强的理论假设,用原作者的话说是——The environment should not changeover time because this makes pastexperiences irrelevantor even harmful.(环境不应随时间而改变,因为这会使过去的experience replay变得无关紧要甚至有害)Replay buffer假设环境是stationary的,如果当前的环境信息不同于过去的环境信息,那么就无法从过去环境的replay中学到有价值的经验。
(画外音:大人,时代变了……别刻舟求剑了)在multi-agent场景下,每个agent都可以把其他的agent当作环境的一部分。
因为其他的agent不断地学习进化,所以agent所处的环境也是在不断变换的,也就是所谓的non-stationary。
因为multi-agent场景不符合replay buffer的理论假设,所以有的人就直接放弃治疗了——例如2016年发表的大名鼎鼎的RIAL和DIAL中就没有使用replay buffer。
交替方向乘子法(Alternating Direction Method of Multipliers,简称ADMM)是一种求解优化问题的迭代算法。
这种方法广泛应用于各个领域,如信号处理、图像处理、机器学习等。
它主要用于解决具有可分解性结构的优化问题,特别是某些包含约束条件和非凸非线性问题。
ADMM的基本思想是将原始问题转化为一个增广拉格朗日函数问题,并采用迭代方法不断更新乘子变量和优化变量,以逐渐逼近问题的最优解。
在每一次迭代中,ADMM分别对增广拉格朗日函数的乘子变量和优化变量进行更新,并在更新过程中保持其他变量的不变。
通过交替迭代,ADMM逐渐逼近问题的最优解。
ADMM的优势在于它能够将原始问题分解为多个子问题,这些子问题往往更容易求解。
此外,ADMM还具有可扩展性和并行性,能够方便地应用于大规模优化问题。
然而,ADMM也存在一些局限性,例如对于一些非凸优化问题,可能需要更多的迭代次数才能收敛,且收敛速度可能较慢。
总之,ADMM是一种有效的求解优化问题的迭代算法,尤其适用于具有可分解性结构的优化问题。
通过将原始问题分解为多个子问题,ADMM能够方便地应用于大规模优化问题,并具有可扩展性和并行性。
然而,对于一些非凸优化问题,ADMM可能需要更多的迭代次数才能收敛,且收敛速度可能较慢。
NX Flow uses computational fluid dynamics (CFD)to accurately and efficiently simulate fluid flow and convection.An element-based,finite volume CFD scheme is used to compute 3D fluid velocity,temperature and pressure by solving the Navier-Stokes equations.The NX Flow technology allows a user to model complex fluid flow problems.The solver and modeling features include:•Steady-state and transient analysis (adaptive correction multigrid solver)•Unstructured fluid meshes (supports tetrahedral,brick and wedge element types)•Skin mesh (boundary layer mesh)•Complete set of automatic and/or manual meshing options for the selected fluid domains•T urbulent (k-ε,mixing length),laminar and mixed flows•CFD solution intermediate results recovery and restart•Heat loads and temperature restraints on the fluid•Forced,natural and mixed convection•Fluid buoyancy•Multiple enclosures•Multiple fluids•Internal or external flows•Complete and seamless coupling to NX Thermal for simulation of conjugate heat transfer (handlesdisjoint meshes at fluid/solid boundaries)•Losses in fluid flow due to screens,filters and other fluid obstructions (including orthotropicporous blockages)•Head loss inlets and openings (fixed or proportional to calculated velocity or squared velocity)•Fluid swirl at inlet and internal fans NX FlowComputational fluid dynamics (CFD)to accurately and efficiently simulate fluid flowand convectionNX/plmfact sheetBenefitsAllows for investigation of multiple ‘what-if’scenarios involving complex assembliesAllows the selection of a bounding volume around complex geometry to specify external boundaries of the fluid domainProvides extensive set of tools for creating CFD analysis-ready geometryBy default,all 2D and 3D solids will transfer heat to the fluid they adjoin and serve as obstruction to the fluid ers can control the surface roughness and walls convective properties globally and locally Features Automatic connection between disjoint fluid meshes within an assembly Option for automatic fluid mesh created at run time NX integrated CFD solution toolset Geometry modeling and abstraction toolset All solid surfaces obstructing the fluid can automatically transfer heat to the fluid they adjoin Handling of disjoint meshes at the fluid/solid boundaries for conjugate heat transferSummaryNX ®Flow software is a computational fluid dynamics (CFD)solution that is fully integrated into the native NX Advanced Simulation environment.It provides sophisticated tools to simulate fluid flow and heat transfer for complex parts and assemblies.The integrated CFD solution allows fast and accurate fluid flow simulations and provides insight into product performance during all design development phases,limiting costly,time consuming prototype testing cycles.NX Flow simulation requirements and applications are typical to these industries:aerospace and defense,automotive,consumer products,high-tech electronics,medical,power generation and process.Siemens PLM Softwaresolid surfaces will automaticallyadjoin.Similarly,all volumes thatnot already defined as flowfrom their surfaces as well.suite of Advanced Simulation applications available within theeither NX Advanced FEM or NX Advanced Simulation as awith NX Thermal,NX Flow provides a coupled multi-physicsapplications.hardware platforms and operating systems including Unix,Windows ContactSiemens PLM SoftwareAmericas8004985351Europe44(0)1276702000Asia-Pacific852********/plm©2007Siemens Product Lifecycle Management Software Inc.All rights reserved.Siemens and the Siemens logo are registered trademarks of Siemens AG.T eamcenter,NX,Solid Edge,T ecnomatix,Parasolid,Femap,I-deas,JT,UGS Velocity Series and Geolus are trademarks or registered trademarks of Siemens Product Lifecycle Management Software Inc.or its subsidiaries in the United States and in other countries.All other logos,trademarks,registered trademarks or service marks used herein are the property of their respective holders.10/07。
2021,36(1)电子信息对抗技术Electronic Information Warfare Technology㊀㊀中图分类号:V279;TN97㊀㊀㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀㊀㊀文章编号:1674-2230(2021)01-0059-06收稿日期:2020-02-28;修回日期:2020-03-30作者简介:王树朋(1990 ),男,博士,工程师㊂基于自适应遗传算法的多无人机协同任务分配王树朋,徐㊀旺,刘湘德,邓小龙(电子信息控制重点实验室,成都610036)摘要:提出一种自适应遗传算法,利用基于任务价值㊁飞行航程和任务分配均衡性的适应度函数评估任务分配方案的优劣,在算法运行过程中交叉率和变异率进行实时动态调整,以克服标准遗传算法易陷入局部最优的缺点㊂将提出的自适应遗传算法用于多无人机协同任务分配问题的求解,设置并进行了实验㊂实验结果表明:提出的自适应遗传算法可以较好地解决多无人机协同任务分配问题,得到较高的作战效能,证明了该方法的有效性㊂关键词:遗传算法;适应度函数;无人机;任务分配;作战效能DOI :10.3969/j.issn.1674-2230.2021.01.013Cooperative Task Assignment for Multi -UAVBased on Adaptive Genetic AlgorithmWANG Shupeng,XU Wang,LIU Xiangde,DENG Xiaolong(Science and Technology on Electronic Information Control Laboratory,Chengdu 610036,China)Abstract :An improved adaptive genetic algorithm is proposed,and a fitness function based ontask value,flying distance and the balance of task allocation scheme is used to evaluate the qualityof task allocation schemes.In the proposed algorithm,the crossover probability and mutation prob-ability can adjust automatically to avoid effectively the phenomenon of the standard genetic algo-rithm falling into the local optimum.The proposed improved genetic algorithm is used to solve the problem of cooperative task assignment for multiple Unmanned Aerial Vehicles (UAVs).The ex-periments are conducted and the experimental results show that the proposed adaptive genetic al-gorithm can significantly solve the problem and obtain an excellent combat effectiveness.The ef-fectiveness of the proposed method is demonstrated with the experimental results.Key words :genetic algorithm;fitness function;UAV;task assignment;combat effectiveness1㊀引言无人机是一种依靠程序自主操纵或受无线遥控的飞行器[1],在军事科技方面得到了极大重视,是新颖军事技术和新型武器平台的杰出代表㊂随着战场环境日益复杂,对于无人机的性能要求越来越高,单一无人机在复杂的战场环境中执行任务具有诸多不足,通常多个无人机进行协同作战或者执行任务㊂通常地,多无人机协同任务分配是:在无人机种类和数量已知的情况下,基于一定的环境信息和任务需求,为多个无人机分配一个或者一组有序的任务,要求在完成任务最大化的同时,多个无人机任务执行的整体效能最大,且所付出的代价最小㊂从理论上讲,多无人机协同任务分配属于NP -hard 的组合优化问题,通常需95王树朋,徐㊀旺,刘湘德,邓小龙基于自适应遗传算法的多无人机协同任务分配投稿邮箱:dzxxdkjs@要借助于算法进行求解㊂目前,国内外研究人员已经对于多无人机协同任务分配问题进行了大量的研究,并提出很多用于解决该问题的算法,主要有:群算法㊁自由市场机制算法和进化算法等㊂群算法是模拟自然界生物群体的行为的算法,其中蚁群算法[2-3]㊁粒子群算法[4]以及鱼群算法[5]是最为典型的群算法㊂研究人员发现群算法可以用于求解多无人机协同任务分配问题,但是该算法极易得到局部最优而非全局最优㊂自由市场机制算法[6]是利用明确的规则引导买卖双方进行公开竞价,在短时间内将资源合理化,得到问题的最优解和较优解㊂进化算法适合求解大规模问题,其中遗传算法[7-8]是最著名的进化算法㊂遗传算法在运行过程中会出现不容易收敛或陷入局部最优的问题,许多研究人员针对该问题对遗传算法进行了改进㊂本文提出一种改进的自适应遗传算法,在算法运行过程中适应度值㊁交叉率和变异率可以进行实时动态调整,以克服遗传算法易陷入局部最优的缺点,并利用该算法解决多无人机协同任务分配问题,以求在满足一定的约束条件下,无人机执行任务的整体收益最大,同时付出的代价最小,得到较大的效费比㊂2㊀问题描述㊀㊀多无人机协同任务分配模型是通过设置并满足一定约束条件的情况下,包括无人机的自身能力限制和环境以及任务的要求等,估算各个无人机执行任务获得的收益以及付出的代价,并利用评价指标进行评价,以求得到最大的收益损耗比和最优作战效能㊂通常情况下,多无人机协同任务分配需满足以下约束:1)每个任务只能被分配一次;2)无人机可以携带燃料限制造成的最大航程约束;3)无人机载荷限制,无人机要执行某项任务必须装载相应的载荷㊂另外,多无人机协同任务分配需要遵循以下原则:1)收益最高:每项任务都拥有它的价值,任务分配方案应该得到最大整体收益;2)航程最小:应该尽快完成任务,尽可能减小飞行航程,这样易满足无人机的航程限制,同时降低无人机面临的威胁;3)各个无人机的任务负载尽可能均衡,通常以任务个数或者飞行航程作为标准判定; 4)优先执行价值高的任务㊂根据以上原则,提出多无人机协同任务分配的评价指标,包括:1)任务价值指标:用于评估任务分配方案可以得到的整体收益;2)任务分配均衡性指标:用于评估无人机的任务负载是否均衡;3)飞行航程指标:用于评估无人机的飞行航程㊂3㊀遗传算法㊀㊀要将遗传算法用于多无人机协同任务分配问题的求解,可以将任务分配方案当作种群中的个体,确定合适的染色体编码方法,利用按照一定结构组成的染色体表示任务分配方案㊂然后,通过选择㊁交叉和变异等遗传操作进行不断进化,直到满足约束条件㊂通常来说,遗传算法可以表示为GA=(C,E, P0,M,F,G,Y,T),其中C㊁E㊁P0和M分别表示染色体编码方法㊁适应度函数㊁初始种群和种群大小,在本文的应用中,P0和M分别表示初始的任务分配方案集合以及任务分配方案的个数;F㊁G 和Y分别表示选择算子㊁交叉算子和变异算子;T 表示终止的条件和规则㊂因此,利用遗传算法解决多无人机协同任务分配问题的主要工作是确定以上8个参数㊂3.1㊀编码方法利用由一定结构组成的染色体表示任务分配方案,将一个任务分配方案转换为一条染色体的过程可以分为2个步骤:第一步是根据各个无人机需执行的任务确定各个无人机对应的染色体;第二步是将这些小的染色体结合,形成整个任务分配方案对应的完整染色体㊂假设无人机和任务的个数分别为N u和N t,其中第i个无人机U i的06电子信息对抗技术㊃第36卷2021年1月第1期王树朋,徐㊀旺,刘湘德,邓小龙基于自适应遗传算法的多无人机协同任务分配任务共有k个,分别是T i1㊁T i2㊁ ㊁T ik,则该无人机对应的任务染色体为[T i1T i2 T ik]㊂在任务分配时,可能出现N t个任务全部分配给一个无人机的情况,另外为增加随机性和扩展性,提高遗传算法的全局搜索能力,随机将N t-k个0插入到以上的任务染色体中,产生一条全新的长度为N t的染色体㊂最终,一个任务分配方案可以转换为一条长度为N u∗N t的染色体㊂3.2㊀适应度函数在本文的应用中,适应度函数E是用于判断任务分配方案的质量,根据上文提出的多无人机协同任务分配问题的原则和评价指标可知,主要利用任务价值指标㊁任务分配均衡性指标以及飞行航程指标等三个指标判定任务分配方案的质量㊂假设有N u个无人机,F i表示第i个无人机U i的飞行航程,整个任务的总飞行航程F t可以表示为:F t=ðN u i=1F i(1)无人机的平均航程为:F=F t Nu(2)无人机飞行航程的方差D可以表示为:D=ðN u i=1F i-F-()2N u(3)为充分考虑任务价值㊁飞行航程以及各个无人机任务的均衡性,将任务分配方案的适应度函数定义为:E=V ta∗F t+b∗D(4)其中:V t为任务的总价值,F t为总飞行航程,D为各个无人机飞行航程的方差,a和b分别表示飞行航程以及飞行航程均衡性的权重㊂另外,任务分配方案的收益损耗比GL可以表示为:GL=V tF t(5)另外,在遗传算法运行的不同阶段,需要对任务分配方案的适应度进行适当地扩大或者缩小,新的适应度函数E可以表示为:Eᶄ=1-e-αEα=m tE max-E avg+1,m=1+lg T()ìîíïïïï(6)其中:E为利用公式(4)计算得到的原适应度值, E avg为适应度值的平均值,E max为适应度最大值,t 为算法的运行次数,T为遗传算法的终止条件㊂在遗传算法运行初期,E max-E avg较大,而t较小,因此α较小,可以提高低质量任务分配方案的选择概率,同时降低高质量任务分配方案的选择概率;随着算法的运行,E max-E avg将逐渐减小,t 将逐渐增大,因此α会逐渐增大,可以避免算法陷入随机选择和局部最优㊂3.3㊀种群大小㊁初始种群和终止条件按照通常做法,将种群大小M的取值范围设定为20~100㊂首先,随机产生2∗M个符合要求的任务分配方案,利用公式(4)计算各个任务分配方案的适应度值㊂然后,从中选取出适应度值较高的M 个任务分配方案组成初始种群P0,即初始任务分配方案集合㊂终止条件T设定为:在规定的迭代次数内有一个任务分配方案的适应度值满足条件,则停止进化;否则,一直运行到规定的迭代次数㊂3.4㊀选择算子首先,采用精英保留策略将当前适应度值最大的一个任务分配方案直接保留到下一代,提高遗传算法的全局收敛能力㊂随后,利用最知名的轮盘赌选择法选择出剩余的任务分配方案㊂3.5㊀交叉算子和变异算子在算法运行过程中需随时动态调整p c和p m,动态调整的原则如下:1)适当降低适应度值比平均适应度值高的任务分配方案的p c和p m,以保护优秀的高质量任务分配方案,加快算法的收敛速度;2)适当增大适应度值比平均适应度值低的任务分配方案的p c和p m,以免算法陷入局部最优㊂另外,任务分配方案的集中度β也是决定p c 和p m的重要因素,β可以表示为:16王树朋,徐㊀旺,刘湘德,邓小龙基于自适应遗传算法的多无人机协同任务分配投稿邮箱:dzxxdkjs@β=E avgE max(7)其中:E avg 表示平均适应度值;E max 表示最大适应度值㊂显然,β越大,任务分配方案越集中,遗传算法越容易陷入局部最优㊂因此,随着β增大,p c 和p m 应该随之增大㊂基于以上原则,定义p c 和p m 如下:p c =0.8E avg -Eᵡ()+0.6Eᵡ-E min ()E avg -E min +0.2㊃βEᵡ<E avg 0.6E max -Eᵡ()+0.4Eᵡ-E avg ()E max -E avg +0.2㊃βEᵡȡE avgìîíïïïïïp m =0.08E avg -E‴()+0.05E‴-E min ()E avg -E min +0.02㊃βE‴<E avg and β<0.80.05E max -E‴()+0.0001E‴-E avg ()E max -E avg+0.02㊃βE‴ȡE avg and β<0.80.5βȡ0.8ìîíïïïïïï(8)其中:E max 为最大适应度值,E min 为最小适应度值,E avg 为平均适应度值,Eᵡ为进行交叉操作的两个任务分配方案中的较大适应度值,E‴为进行变异操作的任务分配方案的适应度值,β为任务分配方案的集中度,可利用公式(7)计算得到㊂4㊀实验结果4.1㊀实验设置4架无人机从指定的起飞机场起飞,飞至5个任务目标点执行10项任务,最终降落到指定的降落机场㊂其中,如表1所示,无人机的编号分别为UAV 1㊁UAV 2㊁UAV 3和UAV 4㊂另外,起飞机场㊁降落机场㊁目标如图6所示㊂任务的编号分别为任务1至任务10(简称为T 1㊁T 2㊁ ㊁T 10),每项任务均为到某一个目标点执行侦察㊁攻击㊁事后评估中的某一项,任务设置如表2所示㊂表1㊀无人机信息编号最大航程装载载荷UAV 120侦察㊁攻击UAV 120侦察UAV 125攻击㊁评估UAV 130侦察㊁评估图1㊀任务目标位置示意图表2㊀任务设置任务编号目标编号任务类型任务价值T 11侦察1T 21攻击2T 32攻击3T 42评估3T 53侦察4T 63评估6T 74侦察2T 84攻击3T 94评估5T 105评估14.2㊀第一组实验首先,随机地进行任务分配,得到一个满足多无人机协同任务分配的约束条件的任务分配方案如下:㊃UAV 1:T 2ңT 5㊃UAV 2:T 1ңT 7㊃UAV 3:T 3ңT 6ңT 8㊃UAV 4:T 4ңT 9ңT 10计算可知,4个无人机的飞行航程分别是14.0674㊁12.6023㊁20.1854和22.1873,飞行总航程为69.0423,执行任务的总价值为30,最终的收益损耗比约为0.43㊂另外,各个飞行器飞行航程的方差约为16.18,UAV 1和UAV 2的飞行航程相对较短,而UAV 3和UAV 4的飞行航程相对较长,各个无人机之间的均衡性存在明显不足㊂为提高收益损耗比,分别利用标准遗传算法和本文提出的自适应遗传算法进行优化,两个算法的参数设置如表3所示㊂26电子信息对抗技术·第36卷2021年1月第1期王树朋,徐㊀旺,刘湘德,邓小龙基于自适应遗传算法的多无人机协同任务分配表3㊀遗传算法参数设置参数名称标准遗传算法自适应遗传算法E 公式(4)公式(6)M 2020选择方法精英策略轮盘赌选择法精英策略轮盘赌选择法P c 0.8公式(8)交叉方法单点交叉单点交叉P m 0.2公式(8)T500500最终,利用标准遗传算法得到任务分配方案如下:㊃UAV 1:T 3ңT 8㊃UAV 2:T 1ңT 7㊃UAV 3:T 9㊃UAV 4:T 6ңT 5计算可得,4个无人机的飞行航程分别为12.78㊁12.6023㊁12.434和12.9443,总飞行航程为50.7605,总任务价值为24,计算可知收益损耗比约为0.47,相对于随机任务分配提高约9.3%㊂另外,各个飞行器飞行航程的方差约为0.04,无人机飞行航程比较均衡,未出现飞行航程过长或过短的情况㊂在算法运行过程中,最佳适应度曲线如图2所示,在遗传算法约迭代到第160次时陷入局部最优,全局搜索能力不足㊂图2㊀标准遗传算法的最佳适应度曲线图1为进一步提高算法的效率,利用本文提出的改进自适应遗传算法解决多无人机协同任务分配问题㊂最终,利用自适应遗传算法得到的任务分配方案如下:㊃UAV 1:T 2ңT 3ңT 8ңT 7㊃UAV 2:T 5㊃UAV 3:T 6㊃UAV 4:T 1ңT 4ңT 9计算可知,4个无人机的飞行航程分别为12.8191㊁12.9443㊁12.9443和12.8191,总飞行航程为51.5268,总任务价值为29,收益耗比约为0.56,相对于随机任务分配提高约30.2%,相对于基于标准遗传算法的任务分配方案提高约19.1%㊂另外,各个飞行器飞行航程的方差约为0.004,无人机飞行航程的均衡性相对于基于标准遗传算法的任务分配方案有了进一步的提高㊂在算法运行过程中,最佳适应度值曲线如图3所示,可以有效避免遗传算法陷入局部最优或者随机选择㊂图3㊀自适应遗传算法的最佳适应度曲线图14.3㊀第二组实验在第一组实验中,因任务10(简称为T 10)的价值较低,在最终的任务分配方案中极少被分配㊂在第二组实验中,将T 10的价值由1调整为6,其他设置项不变㊂首先,随机进行任务分配,最终的任务分配方案和第一组实验相同㊂随后,利用标准遗传算法进行多无人机协同任务分配,最终的任务分配方案如下:㊃UAV 1:T 2ңT 3ңT 7ңT 8㊃UAV 2:T 5㊃UAV 3:T 6ңT 10㊃UAV 4:T 9基于此任务分配方案,4个无人机的飞行航程分别为12.8191㊁12.9443㊁13.6883和12.434,总飞行航程为51.8857,总任务价值为31,因此计36王树朋,徐㊀旺,刘湘德,邓小龙基于自适应遗传算法的多无人机协同任务分配投稿邮箱:dzxxdkjs@算可得收益损耗比约为0.6,相对于随机任务分配提高约17.6%㊂另外,各个飞行器飞行航程的方差约为0.21,各个无人机的飞行航程的均衡性一般,相对于随机任务分配有一定的提高㊂在算法运行过程中,最佳适应度值曲线如图4所示,在算法迭代运行约90次时陷入较长时间的局部最优,直到迭代次数为340次时,然后再次陷入局部最优㊂图4㊀标准遗传算法的最佳适应度曲线图2最后,将本文提出的自适应遗传算法用于多无人机协同任务分配问题的求解,得到最终的任务分配方案如下:㊃UAV 1:T 2ңT 3ңT 8ңT 7㊃UAV 2:T 5㊃UAV 3:T 6ңT 10㊃UAV 4:T 1ңT 4ңT 9基于此任务分配方案可得,4个无人机的航程分别是12.8191㊁12.9443㊁13.6883以及12.8191,总飞行航程为52.2708,总任务价值为35,计算可得效益损耗比约为0.67,相对于利用标准遗传算法得到的任务分配方案有了进一步提高㊂另外,各个无人机飞行航程的方差约为0.13,飞行航程的均衡性较好㊂在算法运行过程中,最佳适应度值曲线如图5所示,适应度值一直在实时动态变化,可以有效避免遗传算法陷入局部最优或者随机选择㊂由实验结果可得,当任务10的任务价值从1调整为6以后,不再出现该任务没有无人机执行的情况,这说明利用遗传算法进行多无人机协同任务分配可以根据任务的价值以及代价进行实时动态调整,符合 优先执行价值高的任务 的原则㊂图5㊀自适应遗传算法的最佳适应度曲线图25 结束语㊀㊀本文提出了一种基于自适应遗传算法的多无人机协同任务分配方法,整个遗传过程利用自适应的适应度函数评估任务分配结果的优劣,交叉率和变异率在算法运行过程中可以实时动态调整㊂实验结果表明,和随机进行任务分配相比,本文提出的方法在满足一定的原则和约束条件下,可以得到更高的收益损耗比,并且无人机飞行航程的均衡性更好㊂另外,和标准遗传算法相比,本文提出的改进遗传算法可以有效地扩展搜索空间,具有较高的全局搜索能力,不易陷入局部最优㊂参考文献:[1]㊀江更祥.浅谈无人机[J].制造业自动化,2011,33(8):110-112.[2]㊀楚瑞.基于蚁群算法的无人机航路规划[D].西安:西北工业大学,2006.[3]㊀杨剑峰.蚁群算法及其应用研究[D].杭州:浙江大学,2007.[4]㊀刘建华.粒子群算法的基本理论及其改进研究[D].长沙:中南大学,2009.[5]㊀李晓磊.一种新型的智能优化方法-人工鱼群算法[D].杭州:浙江大学,2003.[6]㊀AUSUBEL L M,MILGROM P R.Ascending AuctionsWith Package Bidding[J].Frontiers of Theoretical E-conomics,2002,1(1):1-42.[7]㊀刘昊旸.遗传算法研究及遗传算法工具箱开发[D].天津:天津大学,2005.[8]㊀牟健慧.基于混合遗传算法的车间逆调度方法研究[D].武汉:华中科技大学,2015.46。
自适应Cartesian网格结合无网格边界处理的Navier-Stokes方程数值模拟李现今,郑洪伟,杨国伟,陈春刚(中国科学院力学研究所高温气体动力学国家重点实验室(筹),北京海淀区 100190)摘要本文发展了基于四叉树数据结构的网格生成和流动的N-S方程数值求解器。
采用压力梯度或者密度梯度的绝对值作为网格自适应的控制参量,同时采用基于最小二乘法的无网格方法处理对于一般Cartesian网格难于处理的物体表面边界条件。
文中采取了绕圆柱流动和绕方柱流动的经典算例对所发展的方法进行了验证。
计算的结果表明所发展的方法在处理复杂流动时是合理的,有效的。
关键词自适应,Cartesian网格,无网格边界处理,数值模拟引言随着CFD的发展,有关复杂几何外形的流场分析计算已经成为人们极为关心问题。
而合理设计并生成高质量的网格是CFD计算的前提条件。
目前,处理复杂几何外形的CFD网格类型主要有如下三种:贴体的结构网格、非网格和Cartesian网格。
事实上,对于结构Cartesian 网格由于其在网格生成方面的简易、快速等优点,在CFD发展的初期得到了广泛的应用,然而,由于其在处理固壁表面边界问题上的复杂性与低效性,很快又被贴体曲线网格所替代。
近来,非结构的Cartesian网格由于采用的是四叉树的简单数据结构易于结合网格自适应技术,其又重新引起了人们对Cartesian网格的普遍兴趣。
然而,如何合理的处理复杂的物面边界条件仍然是Cartesian网格技术的一个关键问题。
本文采用无网格方法【6,7】来处理物面边界条件。
不同于切割网格方法,此方法直接利用最小二乘法获得通量变量的值并且能够较好的处理物面附近网格点的复杂分布。
因此本文将Cartesian网格方法和无网格方法相结合,利用Cartesian网格法处理计算区域内部网格点,而将无网格法用于处理物面边界条件。
空间采用有限体积Roe格式,时间格式采用修正的四步Runge-Kutta法。
基于加权渐进插值的Loop细分曲面等距逼近陈甜甜;赵罡【摘要】等距曲面在CAD/CAM领域有着重要的作用,由于细分曲面没有整体解析表达式,使得计算细分曲面等距比参数曲面更加困难.针对目前已有的两种等距面逼近算法进行了改进,利用加权渐进插值技术避免了传统细分等距逼近算法产生网格偏移的问题.此外,提出了针对边界等距处理方案,使得等距后的细分曲面在内部和边界都均匀等距.该方法无需求解线性方程组,具有全局和局部特性,能够处理闭网格和开网格,为Loop细分曲面数控加工奠定了良好的基础算法.最后给出的实例验证了算法的有效性.【期刊名称】《图学学报》【年(卷),期】2013(034)005【总页数】5页(P66-70)【关键词】等距;Loop细分曲面;渐进插值;逼近【作者】陈甜甜;赵罡【作者单位】北京航空航天大学机械工程及自动化学院,北京100191;北京航空航天大学机械工程及自动化学院,北京100191【正文语种】中文【中图分类】TP391曲面等距在快速成型、数控加工、机器人运动干涉的避免以及带厚度薄片实体(如汽车车身、箱包等)的计算机辅助几何设计中有着广泛的应用,尤其在数控加工刀具轨迹的生成方面,通过将等距面与一系列平面相交可以产生无干涉的刀具轨迹[1]。
可见,曲面等距是CAD/CAM领域最重要的几何操作之一。
近十几年来,随着细分理论基础的不断加深与拓展,细分造型技术已经成为三维模型造型中非常重要的一类技术。
细分曲面是初始网格通过对细分规则不断迭代生成光滑曲面的造型方法,结合了多边形造型和参数曲面造型的优点,能够将光滑的设计模型和离散的加工模型整合与统一模型中[2]。
除保留了传统NURBS曲面保凸性、局部可调等良好性质外,其优于NURBS曲面的拓扑任意性和一致性使得细分曲面逐渐受到工业造型和数控加工领域的广泛关注。
但是细分曲面这一非常具有潜力的造型技术还未真正应用于工程领域,究其原因,一是细分曲面没有显式的数学表达公式;二是细分曲面没有完善的配套几何工具,例如等距和相交,这就限制了细分曲面在CAD/CAM中的应用。
多元自适应回归样条代码1. 什么是多元自适应回归样条?多元自适应回归样条(Multivariate Adaptive Regression Splines,MARS)是一种基于二次 B 样条基函数的非参数回归方法。
它通过使用局部平滑技术和交互效应来自适应地拟合数据。
与其他回归方法相比,MARS 在解释性和预测性方面具有更好的表现。
2. MARS 的基本思想MARS 方法的基本思想是将问题分解为多个简单的子问题,并针对每个子问题应用回归方法。
MARS 通过递归地执行一系列操作来实现这一目标,包括向前选择、向后剪枝、交叉验证等。
3. MARS 的核心算法MARS 算法核心是贪心搜索算法。
该算法在每次选择基函数时,将数据集分成两个子集,然后在每个子集中尝试所有可能的基函数,最终选择一个效果最好的基函数。
该算法不断地执行下去,直到满足某种停止条件。
4. MARS 的优缺点MARS 方法具有以下优点:- MARS 方法适用于高维数据集,可以自适应处理分类和回归问题。
- MARS 方法可以自动选择合适的基函数和交互效应,并生成简单的解释性模型。
- MARS 方法的计算效率较高,可以处理大样本数据集。
但是,MARS 方法也存在一些缺点:- MARS 方法不适用于存在离群点的数据集,因为离群点会严重干扰 MARS 方法的拟合结果。
- MARS 方法的选择过程可能会导致过拟合问题。
- MARS 方法对于非连续的自变量不太适用。
5. MARS 的应用MARS 方法在实际应用中被广泛使用,主要应用于数据挖掘、回归分析和时间序列预测等领域。
MARS 方法主要用于解决真实世界中非线性和高维度的复杂问题。
6. MARS 的代码实现R 和 Python 都提供了 MARS 方法的代码实现。
例如,Python 中的 scikit-learn 包提供了 MARS 方法的实现。
同时,使用 R 的模型拟合包 MARS 套件可以为数据挖掘工作者提供一个快速的、灵活的、基于样条的多元回归技术。
收稿日期:2006年07月26日 基金项目:国家自然科学基金资助项目(70572008,70772012);清华大学归国学者研究基金。
文章编号:1002-1566(2007)06-0941-10应用联合分析和混合回归模型进行市场细分王 高1 黄劲松2 赵字君1 李石磊1(1.清华大学经济管理学院,北京,1000842.北京航空航天大学管理学院,北京,100083)摘要:联合分析是一种有效地反映消费者需求差异的方法,所以被广泛地应用到市场细分的研究中。
但是,传统的方法存在着一定的不足。
本研究提出了一个残差分布假设不同的混合回归模型,模型估计的效率比较高,而且模型系数也必较可靠。
所以不失为一个比较理想的市场细分分析工具。
本文应用该模型方法对一个笔记本电脑联合分析案例进行了实证分析。
关键词:联合分析;混合回归模型;市场细分;笔记本电脑中图分类号:F22419文献标识码:ASeg m en ti n g the M arket Usi n g Con jo i n t Ana lysis and M i xture Regressi on M odelWANG Gao 1,HUANG J in 2s ong 2,Z HAO Zi 2jun 1,L I Shi 2lei1(1.School of Econom ics &M anage ment .Tsinghua University,Beijing,100084,China;2.School of Econom ics &Manage ment .Beihang University,Betjing,100083,China )Abstract:Conj oint analysis is a method that can effectively reflect the variati on of consu mer needs;hence it iswidely app lied in the research of market seg mentati on .But the traditi onal methods of analysis have s ome shortcom ings .This study p r oposes a m ixture regressi on modelwith a different assump ti on of residual distrib m i on .This model is more effi 2cient in model esti m ati on and the model coefficients are relatively reliable as well .Theref ore,this model can be a comparatively ideal analytic t ool f or market seg mentati on .This artieie app lied this model t o a case of a conj oint analy 2sis of lap t op computers .Key words:conj oint analysis;m ixture regressi on model;seg mentati on;lap t op computer0 引言消费者的需求存在很大差异。
Multigrid方法简介Multigrid方法是一种用于求解线性方程组的迭代算法。
它可以有效地处理大规模的线性方程组,特别是在高维问题中表现出色。
Multigrid方法通过将问题分解为多个粗糙和细致的网格层次,并在这些层次之间传递信息来加速求解过程。
基本思想Multigrid方法的基本思想是利用不同尺度上的信息来加速求解过程。
它通过将问题从一个精细的网格转移到一个更粗糙的网格上,然后再通过插值操作将结果传递回来。
这种多层次迭代的过程可以有效地降低计算复杂度,并提高求解速度。
算法流程Multigrid方法通常包括以下步骤:1.初始化:给定初始猜测解x(0)和右侧向量b。
2.预处理:对初始解进行平滑操作,以减小高频误差。
3.残差计算:计算残差r=b−Ax(k),其中A是系数矩阵。
4.限制:将残差限制到更粗糙的网格上得到r c。
5.求解:通过迭代或递归地求解A c x c=r c,其中A c是更粗糙网格上的系数矩阵。
6.插值:将求解结果插值回原始网格上得到x(k+1)。
7.平滑:对更新后的解进行平滑操作,以减小低频误差。
8.终止条件检查:检查是否达到收敛条件,如果未达到则返回第3步。
多层次结构Multigrid方法中的多层次结构是该方法的关键之一。
它通过在不同尺度上建立网格层次来传递信息和加速求解过程。
通常情况下,Multigrid方法包括一系列的网格层次,从最精细的网格到最粗糙的网格。
在每个层次上,Multigrid方法使用相同的迭代算法进行求解。
然而,在更粗糙的网格上,问题变得更简单,并且收敛速度更快。
因此,在每个层次上进行少量迭代可以获得较好的近似解。
平滑操作平滑操作是Multigrid方法中非常重要的一步。
它通过迭代地更新解向量来减小高频误差。
常用的平滑算法包括Jacobi、Gauss-Seidel和SOR等。
在Multigrid方法中,平滑操作通常在每个层次上都进行。
然而,在更粗糙的网格上,平滑操作可以更快地减小误差。
自适应步长萤火虫群多模态函数优化算法黄正新;周永权【期刊名称】《计算机科学》【年(卷),期】2011(38)7【摘要】Because the GSO algorithm has slow convergence and low precision defects when optimizing the multi-modal function,a self-adaptive step glowworm swarm optimization(SASGSO) algorithms was proposed in this paper. This al gorithm can overcome slow convergence and low precision defects of the GSO algorithm simultaneously it can find all peaks of the multi-modal functioa Experiments show that,the SASGSO algorithm has the advantages of simple operation, easy to understand,fast convergence rates and high precision.%针对萤火虫群优化(GSO)算法优化多模态函数存在收敛速度慢和求解精度低等缺陷,提出一种自适应步长萤火虫群多模态函数优化算法(SASGSO).该算法解决了萤火虫群优化(GSO)算法优化多模态函数所存在的不足;同时SASGSO算法也可找到多模态函数的所有极值点.数值实验仿真表明,该算法具有操作简单、易理解、收敛速度快和求解精度高等优点.【总页数】5页(P220-224)【作者】黄正新;周永权【作者单位】广西民族大学数学与计算机科学学院,南宁530006;广西民族大学数学与计算机科学学院,南宁530006【正文语种】中文【中图分类】TP18【相关文献】1.改进型人工免疫网络多模态函数优化算法 [J], 陈芸;洪露2.变步长自适应萤火虫群多模态函数优化算法 [J], 黄正新;周永权3.自适应步长萤火虫优化算法 [J], 欧阳喆;周永权4.多模态函数聚类后再创种群的并行搜索佳点集萤火虫算法 [J], 方贤;铁治欣;李敬明;高雄5.二进制自适应步长萤火虫优化算法 [J], 吴轩;冯志常;胡欢因版权原因,仅展示原文概要,查看原文内容请购买。
网络出版时间:2012-08-16 10:45网络出版地址:/kcms/detail/11.2127.TP.20120816.1045.019.htmlComputer Engineering and Applications计算机工程与应用基于自适应权重的多重稀疏表示分类算法段刚龙, 魏龙, 李妮DUAN Ganglong, WEI Long, LI Ni西安理工大学信息管理系, 陕西西安 710048Department of Information Management, Xi’an University of Technology, Xi’an 710048, ChinaAdaptive weighted multiple sparse representation classification approach Abstract:An adaptive weighted multiple sparse representation classification method is proposed in this paper. To address the weak discriminative power of the conventional SRC (sparse representation classifier) method which uses a single feature representation, we propose using multiple features to represent each sample and construct multiple feature sub-dictionaries for classification. To reflect the different importance and discriminative power of each feature, we present an adaptive weighted method to linearly combine different feature representations for classification. Experimental results demonstrate the effectiveness of our proposed method and better classification accuracy can be obtained than the conventional SRC method.Key words:adaptive weight; multiple sparse representation; SRC摘要:提出了一种基于多特征字典的稀疏表示算法。
9. 求解。
1.设置求解控制参数∙离散格式对求解器性能的影响控制方程中的扩散项一般采用中心差分格式离散,而对流项则可采用多种不同的格式进行离散4。
FLUENT允许用户为对流项选择不同的离散格式(注意粘性项总是自动使用二阶精确度的离散格式)。
默认情况下,当使用分离式求解器时,所有方程中的对流项均用一阶迎风格式离散;当使用祸合式求解器时,流动方程使用二阶精度格式、其他方程使用一阶精度格式进行离散。
此外,当使用分离式求解器时,用户还可为压力选择插值方式。
当流动与网格对齐时,如使用四边形或六面体网格模拟层流流动,使用一阶精度离散格式是可以接受的。
但当流动斜穿网格线时,一阶精度格式将产生明显的离散误差(数值扩散)。
因此,对于2D三角形及3D四面体网格,注意要使用二阶精度格式,特别是对复杂流动更是如此。
一般来讲,.在一阶精度格式下容易收散,但精度较差。
有时,为了加快计算速度,可先在一阶精度格式下计算,然后再转到二阶精度格式下计算。
如果使用二阶精度格式遇到难于收敛的情况,则可考虑改换一阶精度格式。
对于转动及有旋流的计算,在使用四边形及六面体网格时,具有三阶精度的QUICK格式可能产生比二阶精度更好的结果。
但是,一般情况下,用二阶精度就已足够,即使使用QUICK 格式,结果也不一定好。
乘方格式(Power-law scheme)一般产生与一阶精度格式相同精度的结果。
中心差分格式一般只用于大涡模拟模型,而且要求网格很细的情况。
∙欠松弛因子对性能的影响欠松弛(Under Relaxation):所谓欠松弛就是将本层次计算结果与上一层次结果的差值作适当缩减,以避免由于差值过大而引起非线性迭代过程的发散。
用通用变量来写出时,为松弛因子(Relaxation Factors)。
《数值传热学-214》FLUENT中的欠松弛:由于FLUENT所解方程组的非线性,我们有必要控制的变化。
一般用欠松弛方法来实现控制,该方法在每一部迭代中减少了的变化量。
基于自适应窗和行列双动态规划的改进立体匹配算法吴方;王沛【摘要】An improved stereo matching algorithm based onadaptive⁃window and determinantal dual dynamic programming is proposed in this paper. RGB space is imported into the adaptive window stereo matching algorithm as an initial disparity map to improve matching accuracy,and then a global energy optimization algorithm based on determinantal dual dynamic program⁃ming is proposed to improve apparent defective stripes caused by dynamic programming. The energy minimization model is used to solve the optimization problem,during which the corresponding data items is introduced for different reward values. The different reward mechanism is given based on the change of the initial disparity in the direction of column to make the disparity map clo⁃ser to the actual disparity. Experimental results show this algorithm can effectively reduce the matching error rates in depthdis⁃continuities,low⁃textured regions and apparent defective stripes,and improve the image matching quality.% 提出了一种基于RGB空间的改进的自适应窗口和行列双动态规划的快速立体匹配算法。
基于自适应网格的多目标粒子群优化算法
杨俊杰;周建中;方仍存;李英海;刘力
【期刊名称】《系统仿真学报》
【年(卷),期】2008(20)21
【摘要】针对现有多目标进化算法计算复杂度高、搜索效率低等缺点,提出了基于自适应网格的多目标粒子群优化(AGA-MOPSO)算法,其特点包括:评估非劣解集中粒子密度估计信息的自适应网格算法;能够平衡全局和局部搜索能力的基于AGA的Pareto最优解搜索技术;删除非劣解集集中品质差的多余粒子以维持非劣解集在一定规模的基于AGA的非劣解集截断技术。
仿真计算表明,和文献中典型的多目标进化算法比较,AGA-MOPSO算法在求解复杂大规模优化问题方面表现了良好的性能。
【总页数】5页(P5843-5847)
【作者】杨俊杰;周建中;方仍存;李英海;刘力
【作者单位】华中科技大学水电与数字化工程学院
【正文语种】中文
【中图分类】TP301.6
【相关文献】
1.基于网格排序的多目标粒子群优化算法
2.基于搜索空间自适应分割的多目标粒子群优化算法
3.基于种群曼哈顿距离的自适应多目标粒子群优化算法
4.基于改进粒
子群优化算法的多目标自适应巡航控制5.基于量子行为特性粒子群和自适应网格
的多目标优化算法
因版权原因,仅展示原文概要,查看原文内容请购买。
Adaptive multigrid solution for mixedfiniteelements in2-dimensional linear elasticityChristian WienersInstitut f¨u r Computeranwendungen III,Universit¨a t StuttgartPfaffenwaldring27,70569Stuttgart,GermanyAbstractWe explain the implementation of adaptive multigrid methods for mixedfinite element in its hybrid formulation using interelement Lagrange multipliers and staticcondensation.We apply this method to problems in linear elasticity using the stabi-lized BDM elements introduced by S TENBERG.Therefore,a new type of grid transferand a new error indicator is introduced.Numerical examples on unstructured locallyrefined grids are given.AMS Subject Classification:65N30Key words:multigrid methods,mixedfinite elements,Lagange multipliers,linearelasticity1IntroductionIn the last years the application of mixedfinite elements in linear elasticity was discussed intensively:Mechanical conditions for stability and optimal convergence where investigated by S TEIN-R OLFES[14].There,the numerical stability condition for mixed elements is interpreted by mechanical terms and is reduced to an condition which can be verified locally.The implementation of mixed elements is described in detail by K LAAS-S CH¨ODER-M IEHE-S TEIN[12].Here,the stability of the approximation for nearly incom-pressible materials is demonstrated and the performance is compared with other discretizations.An appropriate error indicator is introduced by B RAESS-K LAAS-N IEKAMP-S TEIN-W OBSCHAL[5].The advantage of locally refined grids is shown by several exam-ples.The coupling of mixedfinite elements with boundary elements is considered byB RINK-C ARSTENSEN-S TEIN[10].There,the numerical solving process for the resulting linear systems is not considered. Here,we want to continue the discussion and we introduce an adaptive multigrid solver for mixed elements on locally refined grids.This solver is of optimal complexity:the solution process has complexity,where is the number of degrees of freedom.Thus,our method can be applied effectively to very large problems or to linearized problems in a nonlinear time-dependent process.2 C.Wieners Multigrid methods for mixed and nonconformingfinite elements are considered e.g.by A RBOGAST-C HEN,B RENNER,V ERFUEHRT[1,8,9,15],but the these algorithms has to be adapted for systems in linear elasticity.We explain in detail the modifications for the standard multigrid method which are necessary for the application to mixed elements in elasticity on unstructured locally refined grids.Especially,the construction of the grid transfer is different for mixed elements.Furthermore,we modify the error indicator pro-posed in[5]to make it more efficient.The local components of the indicator build an error bound in the energy norm.The paper is organized as follows.In thefirst section we introduce our notation.Then,we summarize the local multigrid algorithm adapted to unknowns bounded to the edges.In the third section we explain the computation of error bounds for the stabilized BDM dis-cretization.Finally,we give numerical examples in planar linear elasticity.All computa-tions are done with UG,aflexible toolbox for adaptive multigrid methods on unstructured grids[4],using thefinite element library described in[17].2Mixed and hybrid formulations in linear elasticityIn linear elasticity,we want to compute a symmetric stress tensor such that the equilib-rium equationholds in a domain,where describes the body load.Let be a disjunct decomposition of the boundary.We requireonwhere describes the surface traction.Then,the solution will be inonThe stress tensor is coupled with the displacement vector by the constitutive equation where.The idea of interelement Lagrange multipliers is to relax the continuity requirements on .Furthermore,the symmetry and the boundary condition on will be claimed onlyMultigrid solution for mixedfinite elements in linear elasticity3 implicitly.Therefore,let be a polygonal resp.polyhedral domain approximating decomposed into elements and definefor allThen,if is continuous on every edge resp.side,of and is symmetric.Here,denotes the outer unit normal vector and is the approximation on on.The corresponding problem is equivalent tofind such that(3) under the constraints(2),(4)and(5)for all for all.Introducing Lagrange multipliers for the constraints,we get an equivalent saddle point formulation of the problem:find a saddle point of(6)i.e.for all.Since our problem is linear,the saddle point problem is equivalent to the variational equa-tion:find with(7) 3Local multigrid methodsThe standard multigrid method(see e.g.[11])can be applied to unstructured grids and local refinement,but it must be modified in order to avoid a deterioration of the complex-ity of the algorithm.In particular,the smoothing process must be performed only in the refined region.For linear conforming approximations this is investigated using different approaches e.g.by Y SERENTANT[18],B ANK-D UPONT-Y SERENTANT[2],B RAMBLE-P ASCIAK-X U[7],B RAMBLE-P ASCIAK-W ANG-X U[6].These algorithms has to be mod-ified for mixed elements.Here,we explain in detail the concept which was realized by B ASTIAN[3]and which forms the basis of UG.We use a multiplicative multigrid method with smoothing in a slightly enlarged refined region.Up to now,this is the only way of obtaining optimal complexity combined with robustness for a wide range of applications.4 C.Wieners3.1Grids and MultigridsA grid is a closed polygonal or polyhedral set and a decomposition into elements.For an element,the corresponding domain in,is denoted by and the boundary is denoted by.A grid is consistent,if is empty,a common node (corner),a common edge or a common side for all elements.Let be a domain.A multigrid is a sequence of consistent grids approximating.The set of elements is denoted by,. Elements of different grids will be distinguished.For,we assume that there exists a father element for all elements.In general,,but this property will be violated near curved boundaries.For,letbe the set of son elements of.The refinement of an element to can be of type regular,irregular or copy.The application of a refinement rule results in the gener-ation of elements of the corresponding type,e.g.application of an irregular refinement rule to results in being irregular elements.For copy elements we trivially have .Successive regular refinement of an element results in elements which satisfying a minimum angle condition independent of the number of refinements.Succes-sive irregular refinement,however,can decrease the interior angles arbitrarily;hence it is allowed only once.The copy elements are needed in order to cover the domain on all levels.Most of the copy elements can be omitted in thefinal implementation as will be explained below.In the following,we will speak of an element as refined if it is refined either regularly or irregularly(but not copy).Algorithms for refining and derefini ng grids of this type are described in detail in[13].3.2Geometrically based dataWe assume that a linear problem is given on and that we can define afinite dimen-sional solution approximating the continuous solution on for every grid approximat-ing.Therefore,vectors and matrices have to be defined on every grid.Here,we explain the data structure used for interelement Langrange multipliers in two dimension.Then, the unknowns are associated to the edges.The set of edges on level is denoted by. In the UG-context,an edge will be called point or interpolation point.The points on different levels will be distinguished.In general,father points cannot be defined for refined elements,but for all edges on copy elements there exists a well defined father edge.Furthermore,denotes the number of degrees of freedom associated to.resp.denotes the number of degrees of freedom per element resp.in.For the stabilized BDM-elements we consider triangular elements only where and.Let be a multigrid and letbe a vector for the grid on level,the restriction to an element andthe restriction to an interpolation point.On the grid of the top level,the discretized problemMultigrid solution for mixedfinite elements in linear elasticity5 is given by the global stiffness matrix and the global right hand side ,the global solution vector is denoted by.Afinite element discretization is constructed from element stiffness matrices and element right hand sides. The global stiffness matrix and the global right hand side vector are assembled from resp.and a modification due to boundary conditions for somepoints.For the lower levels,we need the stiffness matrix only, because in a multigrid algorithm,auxiliary problems are solved,where the right hand side is replaced by the defect and the solution vector is replaced by the correction vector.Example.The construction of the stiffness matrix for the stabilized BDM elements.The stress tensor on a triangle is approximated inwhere is a bubble function vanishing on,the Lagrange parameters are approximated infor every edgeThis leads to thefinite dimensional problemThe submatrix is a block matrix and can be eliminated in every ele-ment.Then,one has to solve the reduced system for the corresponding Schur complement only,which can be assembled elementwise.3.3Grid transferFor multigrid methods,the grid transfer is essential for the coupling of values on different levels.In general,the interpolation from level to level is given by matrices and can be constructed by local interpolation from a father element to a son element.For mixed elements we have to construct local interpolation matricesThen,the interpolated values on the edges will be different for the elements on the left and on the right side.Therefore,the global interpolation matrix is defined by6 C.Wieners where is a diagonal scaling matrix with. Furthermore,the grid transfer from afine level to a coarse level will be defined by the transposed matrix.Example.The construction of the interpolation a for the stabilized BDM elements. Given the Lagrange parameter on a coarse level,compute for every elementand the father elementandMultigrid solution for mixedfinite elements in linear elasticity7 Let be consistent and the defect.If for is changed,the new defect will change for points with.In order to compute the new defect,one needs for all points with.This motivates the following definition:the local grids are the smallest subsets of the surface grids,such that for all with,i.e.for someOn the base level we have.The local multigrid method will be defined such that the solution vector and the correction are always consistent.If the stiffness matrix and the right hand side are assembled on the local grids,they are not consistent.Thus,and for must not be used on local grids.Nevertheless,the defect on the surface grid can be constructed recursively from the local defects:for set for andfor.We do not need the values for,they will be set to zero in the smoothing step.Therefore,the restriction of must not change for such that .For a simple notation,we set if is a point on a copy element and if for a refined element.Then,the set of points where can be changed get.3.5Smoother and solverWe formulate the multigrid method for the surface grids,but all steps will be defined such that only points on the local grids are used.The basic step on every level is the smoothing.S set forsolve,set for,In the examples considered below,we use an incomplete block-LU decomposition ,where,respect the sparsity pattern of.A multigrid cycle is defined recursively and combines the grid transfer and several smooth-ing steps.8 C.Wieners MCifcall S until(coarse grid solver)elsefor call S(pre-smoothing)(restriction)forfor call MC(coarse grid correction)(prolongation)for call S(post-smoothing)In our examples we use a V-cycle()with one pre-and one post-smoothing step (and).For symmetric problems,the multigrid cycle can used as preconditioner of the conjugated gradient method.CG,,repeatcall MCuntil4Global error bounds and local error indicators for sta-bilized BDM-elementsLet be the exact solution of the problem,an approximation for the solution and resp.an approximation for stress tensor resp.the strain tensor in which satisfy the boundary condition.Then,we have the error bound in the energy normfor some constant(cf.[16]).In our examples,the body load is constant on every element.Thus can be fulfilled exactly.In addition,we assume that the boundary conditions are piecewise linear and that they can be approximate exactly. Using BDM elements,only conforming approximations for stress and stain tensor are available.In order to use this error bound as an error indicator for refinement,we define a conforming interpolation.Therefore,let be the set of all nodes and all midpoints of edges of the grid.Then,will be a piecewise quadraticMultigrid solution for mixedfinite elements in linear elasticity9 function represented by its values at the nodal points.The interpolation points for the Lagange parameter are the two Gaußpoints on every edge.They will be denoted by. The computation of consists of two steps:in thefirst step in every element a quadratic approximation is defined byHere,denotes the cubic bubble function in the component.In the second step,where the element contributionsare used as local indicators:all element whereare marked for refinement.In practice,for gives reasonable results.5Numerical examplesThe efficiency of our algorithm is demonstrated on the problems given in[5].As thefirst example,we consider Cook’s mebrane problem.conv,,,fixed onsurface traction onYoung modulus,Possion ratio10 C.Wienersmixed(Stenberg)nonconforming(Falk)conforming(P2)245122.76 4422722.626 6440222.618 8384922.608 105it1627.402325622.78443409622.61763it1622.1893617422.5375676322.60476154622.60996306222.610115635022.610The second example is a plane strain problem with Young Modulus and the Poisson ratio.We consider a punctured disc with a constant surface load on the top and on the bottom.Due to the symmetry of the problem we compute only a quarter of the domain.Young ModulusPoisson ratiosurface loadstress tensor,full refinement local refinement(Stenberg)P1Falk Stenbergstep it1600643-6.742563-7.9510243-9.5640963-11.15163843-12.35655363-13.0step16-07.4 1464-10.9 35218-13.3 55804-13.94 772322-13.938Multigrid solution for mixedfinite elements in linear elasticity11 References[1]T.A RBOGAST AND Z.C HEN,On the implementation of mixed methods as non-conforming methods for second-order elliptic problems,p.,64(1995), pp.943–972.[2]R.E.B ANK,T.F.D UPONT,AND H.Y SERENTANT,The hierarchical basis multi-grid method,Numer.Math.,52(1988),pp.427–458.[3]P.B ASTIAN,Parallele adaptive Mehrgitterverfahren,Teubner Skripten zur Nu-merik,Teubner-Verlag,1996.[4]P.B ASTIAN,K.B IRKEN,K.J OHANNSEN,S.L ANG,N.N EUSS,H.R ENTZ-R EICHERT,AND C.W IENERS,UG–aflexible software toolbox for solving partial differential equations,Computing and Visualization in Science,1(1997),pp.1–30.[5]D.B RAESS,O.K LAAS,R.N IEKAMP,E.S TEIN,AND F.W OBSCHAL,Error in-dicators for mixedfinite elements in2-dimensional linear elasticity,Comp.Methods Appl.Mech.Engrg.,127(1995),pp.345–356.[6]J.B RAMBLE,J.P ASCIAK,J.W ANG,AND J.X U,Convergence estimates for mult-grid algorithms without regularity assumptions,p.,57(1991),pp.23–45.[7]J.H.B RAMBLE,J.E.P ASCIAK,AND J.X U,Parallel multilevel preconditioners,p.,55(1990),pp.1–22.[8]S.C.B RENNER,A multilevel algorithm for the lowest-order raviart-thomas mixedtriangularfinite element method,SIAM J.Numer.Anal.,29(1992),pp.647–678.[9]12 C.Wieners [15]R.V ERF¨UHRT,A multilevel algorithm for mixed problems,SIAM J.Numer.Anal.,21(1984),pp.264–271.[16]C.W IENERS,Adaptive multigrid solution for mixedfinite elements in2-dimensionallinear elasticity,tech.rep.,Universit¨a t Stuttgart,SFB404Preprint97/13,1997. [17]。