农产品中农药残留物检测方法
- 格式:doc
- 大小:25.00 KB
- 文档页数:3
农药残留检测措施导言:农药在现代农业生产中发挥着重要的作用,但长期使用农药也会导致农产品中残留农药的问题。
这些农药残留对人类健康和环境造成潜在的危害。
为了确保农产品的安全性和质量,需要采取一系列的农药残留检测措施。
本文将深入探讨农药残留检测的目的、方法和技术,以及其在农产品贸易中的作用。
一、农药残留检测的目的农药残留检测的主要目的是确保农产品中的农药残留物在国家和国际安全标准下的合理限量。
通过进行农药残留检测,可以保护消费者的健康,保证农产品的安全性。
二、农药残留检测的方法1. 采样方法:采样是农药残留检测的第一步。
合理的采样方法能够保证样品的代表性,确保检测结果的准确性。
常用的采样方法包括区域采样、随机采样和定向采样等。
2. 样品处理:样品处理是农药残留检测的关键环节之一。
它包括样品的预处理、提取、净化等步骤,以确保得到可靠的检测结果。
常用的样品处理方法有溶剂萃取法、固相萃取法和超临界流体萃取法等。
3. 分析方法:分析方法是农药残留检测的核心环节。
常用的分析方法包括高效液相色谱法(HPLC)、气相色谱法(GC)、质谱法(MS)等。
这些分析方法能够提供高灵敏度和高选择性的检测结果,有效地鉴定和定量农药残留物。
三、农药残留检测的技术1. 生物传感技术:生物传感技术是一种快速、敏感且经济的农药残留检测方法。
它利用生物体对特定农药残留物的特异性识别和反应性质,通过转换成可测量信号进行检测。
生物传感技术可以实现实时监测,缩短检测时间,并减少对实验室设备和专业人员的需求。
2. 近红外光谱技术:近红外光谱技术是一种无损、快速的农药残留检测方法。
它利用农产品中所含成分对近红外光的吸收、散射和反射特性进行分析和判定。
近红外光谱技术具有非破坏性、快速、操作简便等优点,可以广泛应用于农产品贸易中的农药残留检测。
四、农药残留检测在农产品贸易中的作用农药残留检测在农产品贸易中起着重要的作用。
它不仅是农产品质量安全的重要保障,也是国际贸易中的非贸易壁垒措施。
农药残留检测方法农药残留是指在农作物生长过程中或者在收获、运输、加工等环节中,由于农药的施用或者其他原因,导致农产品中残留有害物质的现象。
农药残留对人体健康和环境造成了严重的危害,因此对农产品中的农药残留进行检测具有重要意义。
下面将介绍几种常用的农药残留检测方法。
首先,常见的农药残留检测方法之一是色谱法。
色谱法是利用气相色谱仪或者液相色谱仪对样品中的农药成分进行分离和检测的方法。
通过色谱法,可以快速、准确地检测出农产品中残留的农药成分,并且可以对不同的农药成分进行区分和定量分析。
色谱法在农药残留检测中具有较高的灵敏度和准确性,因此被广泛应用于农产品质量安全监测领域。
其次,免疫学检测法也是一种常用的农药残留检测方法。
免疫学检测法是利用抗体与抗原之间的特异性结合反应来检测样品中的农药残留成分。
这种方法具有操作简便、快速、灵敏度高的特点,可以对多种不同类型的农药残留进行检测。
免疫学检测法在农产品质量安全监测中得到了广泛的应用,尤其是在快速筛查和初步检测方面具有明显的优势。
另外,生物学检测法也是一种常用的农药残留检测方法。
生物学检测法是利用生物学方法对样品中的农药残留进行检测的方法,主要包括细胞毒性检测、生物传感器检测等。
这种方法具有对样品中的整体毒性进行评价的优势,可以全面、综合地评估样品中的农药残留情况。
生物学检测法在农产品质量安全监测中具有独特的优势,尤其是在对复杂样品的检测和评价方面具有重要意义。
综上所述,色谱法、免疫学检测法和生物学检测法是目前常用的农药残留检测方法。
这些方法各具特点,在农产品质量安全监测中发挥着重要作用。
随着科学技术的不断发展,农药残留检测方法也在不断完善和创新,相信在不久的将来,会有更多更先进的方法应用于农产品质量安全监测中,为人们的生活健康和环境保护提供更有力的保障。
农产品中农药残留物检测方法引言农药残留是指农药使用后残存于生物体、农副产品和环境中的农药原体、有毒代谢物、降解物和杂质的总称。
残存的数量称为残留量,在一般情况下主要是指农药原体的残留量和具有比原体毒性更高或相当毒性的降解物的残留量。
农药残留量检测是微量或超微量分析,必须采用高灵敏度的检测器才能实现。
由于农药品种多、化学结构和性质各异、待测组分复杂,有的还要检测其有毒代谢物、降解物、转化物等,尤其是近几年来,高效农药品种不断出现,在农产品和环境中的残留量很低,国际上对农药最高度限量要求也越来越严格,给农药残留检测技术提出了更高的要求。
1农药检测方法1.1仪器检测方法仪器检测可以定性、定量的检测农药残留量。
是国家规定的标准检测方法,但是这种方法需要昂贵的仪器设备及训练有素的工作人员,消耗试剂多,检测成本高,检测时间长。
1.1.1气相色谱法(GC)GC是目前应用最多的方法,易气化且气化后不分解的农药均可采用GC检测。
近年来,高效、分离能力强、灵敏度高的毛细管气相色谱发展很快,尤其是毛细管柱和进样系统的不断完善,使毛细管气相色谱的应用更加广泛。
农药几乎都含有杂原子,而且经常是一个分子含有多个杂原子,常见的杂原子有O、P、S、N、CL、Br和F,因此检测不同类型的农药应采用不同的检测器。
理想的检测器应具备灵敏度高、稳定性和重复性好、线性范围宽、响应速度快、结构简单、造价低、操作安全、应用范围广等特点。
如:电子捕获检测器(ECD)被广泛应用于有机氯农药和其他含电负性较大原子的农药残留物的检测;火焰光度检测器(FPD)用来检测含硫、磷农药的残留物;氮磷检测器(NPD)用于有机氮和有机磷类农药残留物的检测。
1.1.2高效液相色谱法(HPLC)HPLC可以分离检测极性强、分子量大及离子型农药,尤其对不易气化或受热易分解的化合物更能显示出它的突出优点。
HPLC常用的检测器为紫外线检测器(UVD)、二级管阵列检测器(DAD)、荧光检测器㈣。
农残检测步骤范文农残检测是对农产品中农药残留的含量以及其他有害物质的检测分析,以保障食品安全,保护消费者的健康。
农残检测步骤主要分为样品准备、提取分析和定性定量三个环节。
一、样品准备样品准备是农残检测的第一步,主要目的是将样品处理成适合后续提取分析的形式。
样品准备的步骤包括:1.采样:根据农残检测的具体要求,选择代表性的样品进行采样,例如蔬菜水果的外皮、肉类的肌肉、饲料的颗粒等。
在采样过程中要注意避免交叉污染,避免非目标物质的污染。
2.样品粉碎:对于较硬的样品,如果实、种子等,需要进行粉碎,以增加样品与溶剂接触的面积,便于后续提取操作。
3.样品分割:对于大样品,如大块肌肉、大颗粒饲料等,需要进行适当的分割,以便于提取操作时的均匀性和可操作性。
4.样品分析前处理:根据检测方法的要求,对样品进行必要的前处理步骤,如去除杂质、除去色素等,以避免后续提取分析时的干扰和误差。
二、提取分析提取分析是农残检测的核心环节,主要目的是将样品中的目标残留物质从样品基质中分离出来,并浓缩到适宜的浓度进行后续的分析与检测。
提取分析的步骤包括:1.样品液-液萃取:将样品与适宜的有机溶剂或水溶液进行混合,以使溶剂和目标物质充分接触和混合。
然后通过离心或振荡等方法分离两相,收集有机层或水层,即为提取物。
有机层或水层可以继续浓缩、净化和进一步分析。
2.固相萃取:将样品溶液通过含有固定相材料的柱子或卡片进行处理,根据目标物质与固相之间的亲合性或吸附性选择性地将目标物质吸附到固相上,然后用适宜的溶剂洗脱目标物质。
洗脱液可以进一步浓缩、净化和进一步分析。
3.超临界流体萃取:利用超临界流体(如二氧化碳)的特殊性质,通过调节温度和压力,将有机溶剂或水溶液与样品进行萃取。
超临界流体萃取具有高效、环保等优点,适用于多种样品的提取。
三、定性定量定性定量是农残检测的最后一步,主要目的是确定农产品中农药残留物的种类和含量。
定性定量的步骤包括:1.色谱分析:使用气相色谱(GC)或液相色谱(LC)等方法对提取物进行分析。
农药残留及其检测方法
农药残留是指农药在农产品中残留的量,农药残留的存在会对人体健康和环境产生潜在的危害风险。
因此,及时准确地检测农药残留是非常重要的。
常见的农药残留检测方法包括以下几种:
1.色谱法:色谱法是一种常用的农药残留检测方法,可以通过
气相色谱(GC)和液相色谱(LC)来分离和定量农药。
色谱
法具有灵敏度高、选择性好等优点。
2.质谱法:质谱法可以通过测量农药分子的质量来进行定性和
定量分析。
常用的农药残留检测质谱方法包括气质联用(GC-MS)和液质联用(LC-MS)等。
3.免疫分析法:免疫分析法是利用农药与抗体之间的特异结合
反应进行分析的方法,包括酶联免疫吸附试验(ELISA)和免
疫层析法等。
免疫分析法具有灵敏度高、操作简便等特点。
4.生物传感器法:生物传感器法是利用生物体(如细胞、酵素)对农药进行特异识别和反应的方法。
常用的生物传感器包括电化学生物传感器、光学生物传感器等。
5.微生物方法:微生物方法利用某些微生物对农药进行降解或
转化的能力,通过测量微生物生长或产物生成来定量分析农药残留。
需要注意的是,不同的农药具有不同的化学性质和残留特点,因此在农药残留检测中需要选择适当的方法进行分析,并根据不同的农产品和农药设置相应的残留限量。
正规的农产品检测机构或实验室都会使用科学、准确的方法对农产品进行农药残留检测。
农药残留检测仪检测农药残留的原理及方法农药残留检测仪是一种用于检测农产品和环境中农药残留物的仪器设备。
它的工作原理基于常见的物理、化学和生物学分析技术,通常包括样品制备、提取、测定和数据处理等步骤。
以下是农药残留检测仪的原理及方法的详细介绍。
1.原理:-物理分析:常用的物理分析方法包括质谱法、傅里叶变换红外光谱法等。
质谱法主要通过质量光谱器对样品进行分析,可以鉴定农药的种类和含量;傅里叶变换红外光谱法则是通过光谱仪测定样品中的吸收谱,找出样品中农药的特征。
-化学分析:化学分析方法主要是利用化学反应,测定农药残留物含量。
常用的方法有气相色谱法(GC)、液相色谱法(HPLC)和高效液相色谱法(UPLC)等。
这些方法主要通过测定样品中农药残留物与特定试剂之间的化学反应,来测定农药的含量。
-生物学分析:生物学分析方法主要利用生物学反应,来检测农药残留物的存在。
常用的方法包括酶标记法和免疫赋形法。
酶标记法是利用酶作为标记物,与样品中的农药发生反应,通过测定酶的活性来测定农药的含量;免疫赋形法则是利用抗体与农药残留物结合,通过测定抗体与农药结合的强度来测定农药的含量。
2.方法:(1)样品制备:将待测样品(例如农产品或环境样品)进行处理,如去皮、去籽、粉碎、过筛等,以获得代表性的样品。
(2)样品提取:将样品中的农药残留物提取出来。
提取方法可以采用浸提法、萃取法、超声波萃取法等。
这些方法利用不同溶剂和不同温度对样品中的农药进行提取。
(3)测定:采用各种分析技术对提取的样品进行测定。
常见的方法有气相色谱法(GC)、液相色谱法(HPLC)和高效液相色谱法(UPLC)等。
这些方法主要是通过测定分离出来的农药残留物与特定试剂之间的化学反应或物理性质来测定农药的含量。
(4)数据处理:对测定结果进行分析和计算,得到农药残留的含量。
根据国家标准或行业标准,对检测结果进行评估,判断样品是否合格或者是否超过安全标准。
此外,为了提高检测的准确性和可信度,农药残留检测仪一般会进行质控和方法验证。
农残快速检测原理及操作流程农残快速检测是一种用于快速检测农产品中农药残留的技术。
其原理是利用化学或生物基础的方法,将农产品样品与检测试剂发生特异性反应,通过测量反应产物的信号强度来判断样品中农药残留的含量。
下面将详细介绍农残快速检测的原理及操作流程。
一、农残快速检测的原理:1.化学法:基于化学反应的原理,通过特定的反应产生变色或发光等信号。
常见的化学反应方法有酶促反应、免疫反应等。
-酶促反应:利用特定酶对农药进行催化反应,生成可观测的信号。
如酯酶对乳胶颗粒的催化分解,使溶液变浊,可根据浊度的变化来判断样品中农药残留的含量。
-免疫反应:基于特异性抗体与农药残留物的结合,产生特定信号的原理。
如ELISA(酶联免疫吸附实验)技术,通过将抗体与农药结合后添加酶标记的二抗,使得样品中的农药残留物与反应后的酶产物生成颜色或荧光等信号。
2.生物法:利用生物体对特定农药残留物的识别和反应机制,通过特异性的生物传感器来检测农药残留。
常见的生物法包括酵母菌生物传感器、细菌生物传感器等。
-酵母菌生物传感器:利用酵母菌的生物反应对农药残留物进行识别与检测。
当样品中存在特定的农药残留物时,酵母菌的生长状态或代谢产物会发生变化,通过测量这些变化来判断样品中农药残留的含量。
-细菌生物传感器:利用细菌的生物反应对农药残留物进行检测。
细菌在检测过程中会产生特定的物质,如荧光、发光或溶解酶等,通过测量这些物质的变化来判断样品中农药残留的含量。
二、农残快速检测的操作流程:1.样品的准备:将待检测的农产品样品进行处理和准备。
通常包括样品的打碎与均匀混合,确保样品的代表性。
2.反应试剂的制备:根据检测方法的要求,准备好反应试剂,包括特定酶、抗体、底物等。
3.反应过程:将样品与反应试剂混合并加入到反应体系中,接触一定的时间,使反应发生。
具体的反应条件与时间根据不同的农药和检测方法而定。
4.信号检测:通过仪器对反应产物进行检测并判断含量。
可以根据具体的检测方法选择合适的仪器,如光度计、荧光仪等。
农残快速检测方法
农残是指在农产品(如蔬菜、水果、粮食等)中存在的农药残留物。
农残的快速检测方法主要包括以下几种:
1. 色谱法:色谱法包括气相色谱法(GC)和液相色谱法(HPLC)。
这些方法可以通过分离和定量分析样品中的农残,并且具有高分辨率和灵敏度。
2. 免疫技术:免疫技术主要包括酶联免疫吸附试验(ELISA)和免疫层析检测(IC)。
这些方法利用特定的抗体与农药残留结合,并通过颜色反应或凝胶形成来定性或定量分析样品中的农残。
3. 质谱法:质谱法包括质谱-质谱(MS-MS)和嗜热飞行时间质谱(HR-MS)。
这些方法可用于农残的定性和定量分析,并具有高分辨率和灵敏度。
4. 生物传感器:生物传感器是一种利用生物体或生物反应器件来检测和测量特定分析物的方法。
它可以通过与目标分子的特异性相互作用来快速检测样品中的农残。
以上方法在农残的快速检测中已经得到广泛应用,并且不断在技术上不断发展和改进。
综合利用不同的检测方法,可以提高农残检测的准确性和效率。
农产品农药残留检测方法和步骤农产品农药残留是当前重要的农业环境问题之一、农药残留不仅对人体健康产生潜在风险,而且对环境生态带来负面影响。
因此,为了确保农产品质量和食品安全,农药残留检测显得尤为重要。
本文将对农产品农药残留检测的方法和步骤进行详细介绍。
一、农产品农药残留检测方法1.物理检测方法:物理检测方法是通过人工检查农产品外观和触感,观察是否存在异物或异常现象。
例如,通过外观检查来判断是否存在农药施用不当导致的污染现象。
2.化学检测方法:化学检测方法是通过分析样品中的化学组成和化学性质来判断是否存在农药残留。
常用的化学检测方法包括高效液相色谱法(HPLC)、气相色谱法(GC)、质谱法(MS)等。
这些方法可以分析样品中农药的残留量及种类,可以对多种不同农药进行同时检测。
3.生物学检测方法:生物学检测方法是通过利用生物体对特定物质的生物反应来进行残留物的检测。
例如,用酵母菌或细菌来检测样品中农药的毒性,或者通过对植物种子的生长情况进行观察来判断样品是否受到农药的污染。
二、农产品农药残留检测步骤1.样品采集:首先需要从农田或市场选取一定数量的农产品作为样品。
样品的选择应该代表性,以确保样品的检测结果具有参考意义。
同时,样品需要保持新鲜,以便后续处理和分析。
2.样品制备:将采集到的农产品样品进行加工制备。
这一步骤可能涉及样品的剪切、研磨、浸泡等处理方式,以提取样品中的农药残留。
3.样品提取:将制备好的样品进行萃取,以将样品中的有机物质提取出来。
常用的提取方法有溶剂提取、水浸提取等。
4.提取物净化与浓缩:由于样品中可能存在一些干扰物,需要对提取物进行净化处理。
常用的净化方法包括液液分离、固相萃取、气相色谱净化等。
之后,将净化后的提取物通过浓缩,以便后续的检测。
5.检测方法选择:根据农药的特性和需要检测的农药的种类,选择适当的检测方法进行检测。
如前所述,常用的方法有HPLC、GC、MS等。
6.检测结果分析和评估:将检测结果与相应的卫生标准或法规进行比较,以评估样品的农药残留情况。
农残检测测定的知识点农药残留检测是确保农产品质量安全的重要一环,那么你知道农药残留的检测方法有哪些吗?在超市、农贸市场以及质量监督中,人们常用的农药残留检测仪来开展农残检测,那么农药残留检测仪检测方法,检测原理又是什么呢?本文一一解答。
一、农药残留的检测方法(4种)1、波谱法该方法是根据有机磷农药中某些官能团或水解、还原产物与特殊的显色剂在特定条件下发生氧化、磺酸化、酯化、络合等化学反应,产生特定波长的颜色反应来进行定性或定量(限量)测定。
2、色谱法(1)薄层色谱法(TLC)薄层色谱法是一种成熟的、应用也较广的微量快速检测方法。
它在农药残留测定技术上有它独特的用处,它既是重要的分离手段,又是定性、定量的分析方法。
检测过程一般先用适宜的溶剂提取有机磷农药,经纯化浓缩后,在薄层硅胶板上分离展开,显色后与标准的有机磷农药比较Rf值进行定性测定或用仪器进行定量测定。
(2)气相色谱法(GC)该方法是利用经提取、纯化、浓缩后的有机磷农药注入气相色谱柱,程序化升温汽化后,不同的有机磷农药在固相中分离,经不同的检测器检测扫描绘出气相色谱图,通过保留时间来定性,通过峰或峰面积与标准曲线对照来定量。
一次可同时测定多组份,简便快捷,灵敏度高,准确性也好。
而色谱条件的设定是气相色谱技术的关键。
(3)高效液相色谱法(HPLC)高效液相色谱法是在液相色谱柱层析的基础上,引入气相色谱理论并加以改进而发展起来的色谱分析方法。
高效液相色谱法在农药残留分析的应用越来越广泛,是因为高效液相色谱法能适合分析沸点高而不太容易汽化、热不稳定和强极性农药及其代谢产物;且可以与柱前提取、纯化及柱后荧光衍生化反应和质谱等联用,易实现分析自动化;同时一些新型检测器的问世在一定程度上提高了高效液相色谱法的检测灵敏度。
与气相色谱法相比,不仅分离效能好,灵敏度高,检测速度快,而且应用面广。
3、色谱一质谱联用法色谱一质谱联用技术既发挥了色谱法的高分离能力,又发挥了质谱法的高鉴别能力,能在多种残留物同时存在的情况下对其进行定性定量分析,尤其适合于多残留分析。
农产品中农药残留物检测方法
引言
农药残留是指农药使用后残存于生物体、农副产品和环境中的农药原体、有毒代谢物、降解物和杂质的总称。
残存的数量称为残留量,在一般情况下主要是指农药原体的残留量和具有比原体毒性更高或相当毒性的降解物的残留量。
农药残留量检测是微量或超微量分析,必须采用高灵敏度的检测器才能实现。
由于农药品种多、化学结构和性质各异、待测组分复杂,有的还要检测其有毒代谢物、降解物、转化物等,尤其是近几年来,高效农药品种不断出现,在农产品和环境中的残留量很低,国际上对农药最高度限量要求也越来越严格,给农药残留检测技术提出了更高的要求。
1农药检测方法
1.1仪器检测方法
仪器检测可以定性、定量的检测农药残留量。
是国家规定的标准检测方法,但是这种方法需要昂贵的仪器设备及训练有素的工作人员,消耗试剂多,检测成本高,检测时间长。
1.1.1气相色谱法(GC)
GC是目前应用最多的方法,易气化且气化后不分解的农药均可采用GC检测。
近年来,高效、分离能力强、灵敏度高的毛细管气相色谱发展很快,尤其是毛细管柱和进样系统的不断完善,使毛细管气相色谱的应用更加广泛。
农药几乎都含有杂原子,而且经常是一个分子含有多个杂原子,常见的杂原子有O、P、S、N、CL、Br和F,因此检测不同类型的农药应采用不同的检测器。
理想的检测器应具备灵敏度高、稳定性和重复性好、线性范围宽、响应速度快、结构简单、造价低、操作安全、应用范围广等特点。
如:电子捕获检测器(ECD)被广泛应用于有机氯农药和其他含电负性较大原子的农药残留物的检测;火焰光度检测器(FPD)用来检测含硫、磷农药的残留物;氮磷检测器(NPD)用于有机氮和有机磷类农药残留物的检测。
1.1.2高效液相色谱法(HPLC)
HPLC可以分离检测极性强、分子量大及离子型农药,尤其对不易气化或受热易分解的化合物更能显示出它的突出优点。
HPLC常用的检测器为紫外线检测器(UVD)、二级管阵列检测器(DAD)、荧光检测器㈣。
HPLC的新技术体现在采用高效色谱柱、高压泵和高灵敏度的检测器,柱前或柱后衍生化技术、以及计算机联用等,大大提高了液相色谱的检测效率、灵敏度、速度和操作自动化程度,现已成为农药残留检测不可缺少的重要方法。
其缺点是溶剂消耗量大,检测器种类较GC少,灵敏度不如GC高,液谱柱制备较GC柱困难,价格昂贵。
1.1.3色谱-质谱联用(GC-MS,LC-MS)
将气相色谱仪或液相色谱仪分别和质谱仪串联起来,成为一个整机使用,既发挥了色谱法的高分离能力,又发挥了质谱法的高鉴别能力,不仅可以判断化合物分子结构,还可以准确测定相对分子质量等,特别适用于农药代谢物、降解物和多种农药残留的定性检测。
1.1.4毛细管区带电泳(CZE)
对于一般常规液相色谱方法难以分离的离子型农药,CZE是理想的分析方法。
这一技术具有很高的效率和分离能力,可达几百万个理论塔板数,其操作简单,具有很大灵活性,如缓冲液的组成、PH、毛细管的类型以及所用电场的波形都可调节,分析时需样品量极少,一般只需几纳升(nl)。
1.1.5超临界流体色谱(SFC)
SFC是以超临界流体为流动相的色谱分离检测技术,能弥补GC和HPLC各自的不足。
由于超临界流体具有气体和液体的双重性质,粘度小、传质阻力小、扩散速度快,分离能力和速度可与GC相比;密度、溶解力和速度可与HPLC相比。
流体的物理、化学性质都是密度的函数,因此,在SFC中采用程序升密度相对于GC中的程序升温和HPLC中的梯度淋洗,其突出的特点是SFC可以与大部分GC和HPLC的检测器相连,这样就极大地拓宽了其应用范围,许多在GC和HPLC上需经过衍生化才能分析的农药,都可以用SFC直接测定。
1.2快速检测方法
快速检测方法则具备快速、便捷的特点,适用于农产品批发市场、超市等大型场所,但大都只能检测有机磷和氨基甲酸酯类农药,灵敏度也不是很高。
1.2.1酶抑制率法
胆碱酯酶抑制法用于测定有机磷和氨基甲酸酯类农药残留。
在一定条件下,有机磷和氨基甲酸酯类农药对胆碱酯酶正常功能有抑制作用,其抑制率与农药的浓度呈正相关系。
正常情况下,酶催化神经传导代谢产物(乙酰胆碱)水解,其水解产物与显色剂反应,产生黄色物质,用分光光度计测定吸光度随时间的变化值,计算出抑制率,通过抑制率可以判断出样品中是否含有有机磷或氨基甲酸酯类农药的存在。
目前市场上应用较多的各种农药残留速测仪都是依照此方法原理设计的。
1.2.2免疫分析技术
免疫分析法是一种以抗体作为生物化学检测器对化合物、酶或蛋白质等物质进行定性和定量分析的分析技术,免疫分析方法很多,能用于农残快速检测的主
要有:荧光免疫测定技术、放射免疫测定技术以及酶免疫测定技术等。
目前在农残快速检测中应用最多的酶免疫测定技术是酶联免疫分析技术。
免疫分析具有特异性强、灵敏度高、方便快捷、分析容量大、分析成本低、安全可靠等优点。
2结束语
农药残留分析是一门综合性强、涉及面广的分析学科。
检测方法应具备简便、快捷、灵敏度高的特点,根据检测目的、待测农药性质和样本的种类等,采用符合要求的方法。
随着生物农药逐步代替化学农药,分析重点将转向与生物组织成分很难区分的生物大分子农药,新的分析技术将要求有细胞化学,发酵化学,免疫化学和多肽排列结构等方面学科知识的支持,随着科学技术的不断发展,残留分析技术也正在不断更新、完善和迅速发展。