miRNA检测最快最简单的非同位素最新方法
- 格式:pdf
- 大小:999.62 KB
- 文档页数:6
miRNA的常用检测方法研究miRNA是一类长度约为22核苷酸的非编码RNA分子,它们能够通过调节靶基因的表达来参与生物体内细胞的生长、分化、凋亡和代谢等生理过程。
miRNA在各种疾病的发生发展中扮演着重要的角色,因此对miRNA的研究也变得越来越重要。
为了更准确、快速地检测miRNA的存在和表达水平,科研人员开展了各种miRNA的检测方法研究。
本文将介绍miRNA的常用检测方法,包括定量PCR、原位杂交、miRNA芯片和次世代测序等。
一、定量PCR定量PCR技术是一种检测miRNA表达水平的常用方法。
由于miRNA分子较小,难以使用传统的RT-PCR方法进行检测。
科研人员开发了一种特殊的PCR方法——逆转录聚合酶链反应(RT-PCR),常用于miRNA的检测。
在这种方法中,miRNA首先被逆转录成cDNA,然后通过PCR扩增和定量分析miRNA的表达水平。
相比于传统PCR方法,定量PCR技术能够更加准确地检测miRNA的表达水平,对于疾病的诊断和治疗具有重要的意义。
二、原位杂交原位杂交技术是一种检测miRNA位置和表达水平的重要方法。
在这种方法中,使用与miRNA序列互补的探针标记miRNA,然后通过显微镜观察细胞或组织中miRNA的分布和表达水平。
原位杂交技术能够直观地展示miRNA在生物体内的表达情况,对于研究miRNA在细胞和组织中的功能具有重要的意义。
三、miRNA芯片四、次世代测序miRNA的检测方法研究对于深入理解miRNA在生物体内的功能和作用具有重要的意义,为医学研究和临床诊断提供了重要的工具和方法。
随着科学技术的不断发展,相信miRNA的检测方法研究也会不断更新和完善,为人类健康和生活质量的提高做出更大的贡献。
miRNA的常用检测方法研究miRNA(microRNA)是一类长度约为22个核苷酸的非编码RNA,可以通过调节靶基因的表达水平来影响细胞的生物过程,包括细胞增殖、分化、凋亡等。
miRNA在多种疾病的发生和发展中扮演着重要的角色,因此对miRNA进行准确、灵敏的检测对于疾病的早期诊断和治疗具有重要意义。
目前,常用的miRNA检测方法包括定量PCR、miRNA芯片、高通量测序等。
本文将对这些miRNA检测方法进行综述,希望对miRNA的检测有所帮助。
一、定量PCR定量PCR是一种常用的miRNA检测方法,包括SYBR Green法和TaqMan法等。
SYBR Green法是通过引物引导,结合SYBR Green染料进行实时荧光定量PCR,适用于多个miRNA 的同时检测。
TaqMan法则是利用与目标miRNA序列互补的引物和荧光探针进行PCR扩增和实时监测,具有高度的特异性和灵敏度。
这两种方法在miRNA检测中都有广泛的应用,具有准确、灵敏、特异、重现性好等特点。
二、miRNA芯片miRNA芯片是一种高通量的平行检测技术,可以同时检测数百种miRNA的表达水平。
miRNA芯片通过将细胞或组织中的miRNA转录后转化为cDNA,然后标记成荧光探针并杂交到芯片上,最后通过扫描仪进行扫描和信号检测。
miRNA芯片具有高通量、高灵敏度、高效率的优势,但其成本较高,且需要严格的实验技术和数据分析能力。
三、高通量测序高通量测序是一种能够对整个miRNA组进行全面检测的技术,通过对miRNA序列进行测序,可以获取miRNA的全面信息。
高通量测序技术具有高灵敏度、全面性和精准度高的特点,可以发现新的miRNA,同时能够检测miRNA的修饰和异质性。
高通量测序技术的成本较高,需要较长的分析时间,对实验技术和数据分析有较高的要求。
在miRNA的检测中,不同的方法各有优势和局限性,具体选择何种方法应根据实验目的、实验条件和经费预算来决定。
miRNA的常用检测方法研究miRNA是小分子非编码 RNA,具有调节基因表达和参与多种生物学过程的作用。
近年来,由于其在许多疾病的发生和发展中起到重要的调节作用,成为热门的研究方向。
因此,miRNA的检测方法也逐渐得到发展和完善。
本文将对常用的miRNA检测方法进行综述。
(一)荧光定量PCR检测方法荧光定量PCR(qPCR)是目前较为常用的miRNA检测方法之一。
此方法通常包括两个步骤:首先利用逆转录酶将miRNA转录成cDNA,然后在PCR反应中使用荧光探针进行检测。
其中,探针通常为miRNA特异的探针,一旦检测到miRNA与探针结合,就会产生荧光信号。
荧光定量PCR具有灵敏度高、特异性强、通量大、分析速度快等优点,但是,该方法的检测结果受到样品特殊性的影响,因此需要针对不同类型的样本做出相应的优化。
(二)microarray检测方法microarray(微阵列)技术可以同时检测大量miRNA的表达水平,通常使用Oligonucleotide或者LNA探针来辨别miRNA。
其优点是一次能测量大量miRNA,自动化高效,但是这种方法相对荧光定量PCR方法相对成本较高,而且对于大规模的样品检测来说,该方法的分辨率会降低且结果会更加复杂。
(三)in situ hybridization 检测方法in situ hybridization技术主要用于miRNA的组织表达定位、功能研究和诊断等。
该技术的基本原理是利用特异探针和标记物来检测组织中miRNA的表达情况,从而实现miRNA在组织中的空间表达。
in situ hybridization的优点是对于局部miRNA的表达情况具有比较高的检测灵敏度,可以检测miRNA在细胞中的亚细胞定位。
但是,需要进行多次操作,时间较为繁琐、耗时较长,分析量相对较小,不适合快速高通量的miRNA检测。
(四)基于高通量技术的检测方法在大规模的miRNA检测过程中,使用传统的方法会遇到处理数据量巨大、数据分析复杂等问题。
《MicroRNA靶基因的寻找及鉴定方法研究进展》篇一一、引言MicroRNA(miRNA)是一类内源性的、非编码的小RNA分子,通过与靶基因的mRNA序列进行互补配对,进而在转录后水平上调控基因的表达。
近年来,随着生物信息学和分子生物学技术的飞速发展,寻找和鉴定miRNA靶基因的方法得到了广泛的研究和应用。
本文旨在综述当前MicroRNA靶基因的寻找及鉴定方法的研究进展。
二、寻找及鉴定方法(一)生物信息学方法生物信息学方法主要依靠计算机软件和算法,对已知的miRNA序列与基因组数据进行比对,预测可能的靶基因。
常见的生物信息学软件包括TargetScan、PicTar、miRanda等。
这些软件主要通过分析miRNA与靶基因mRNA序列的互补性、碱基配对的自由能等因素,预测潜在的靶基因。
然而,这种方法存在一定的假阳性率,需要结合其他实验手段进行验证。
(二)分子生物学实验方法1. 荧光素酶报告基因实验:通过构建包含miRNA靶位点的荧光素酶报告基因载体,检测miRNA对荧光素酶活性的影响,从而确定miRNA与靶基因的结合情况。
这种方法具有较高的准确性,但操作较为复杂。
2. 芯片技术:通过将miRNA芯片与靶基因mRNA芯片进行杂交,检测miRNA与mRNA之间的相互作用。
这种方法可以大规模地筛选miRNA的靶基因,但易受实验条件影响,结果需要结合其他实验手段进行验证。
3. 实时荧光定量PCR技术:通过检测miRNA与靶基因mRNA的表达水平变化,验证miRNA对靶基因的调控作用。
这种方法具有较高的灵敏度和特异性,是鉴定miRNA靶基因的常用方法之一。
(三)其他方法除了上述两种方法外,还有基于蛋白质组学的分析方法、免疫共沉淀技术等。
这些方法可以进一步验证miRNA与靶基因之间的相互作用关系,为深入研究miRNA的生物学功能提供有力支持。
三、研究进展近年来,随着高通量测序技术和生物信息学算法的不断发展,寻找和鉴定miRNA靶基因的方法得到了极大的改进和优化。
miRNA 高效检测方法及具体步骤miRNA 是一种既可爱又可恨的小东西,它们深居简出,它们飘忽不定,它们似乎总是在和我们捉迷藏,当我们费尽力气以为即将要将它们掌控的时候,它却又顽皮的从我们的指缝中溜走,而我们却又毫无办法。
同学莫怕,TIANGEN 即将上市的最新产品 miRcute 增强型 miRNA cDNA 第一链合成试剂盒(KR211)与 miRcute 增强型miRNA荧光定量检测试剂盒(SYBR Green)(FP411)这对黄金搭档轻松解决所有问题,反转加A一步完成,高灵敏度检测试剂让低丰度miRNA清晰显现。
May the Force be with you!miRcute 增强型miRNA cDNA 第一链合成试剂盒(KR211)——配方升级,让 miRNA 反转录更快速、更准确●省时省力:加 A 尾反应和反转录反应合二为一,一步完成 miRNA cDNA 的第一链合成。
●区分度强:只针对单链 RNA 进行加尾和反转录,免除 miRNA 前体的干扰。
●通量高:一次反应即可反转录所有的 miRNA 及内参。
使用 TIANGEN miRcute 增强型 miRNA cDNA 第一链合成试剂盒(KR211)分别与国外知名 Q 公司(左)和国内 T 公司(右)的同类产品反转录人类 miRNA mimics mix,之后用荧光定量检测 hsa-miR-133a-3p。
结果显示,对于同一样本,TIANGENKR211(红色线)与竞品(蓝色线)相比反转录得到的 cDNA 量更大。
KR211 具有更高的反转效率。
miRcute增强型miRNA荧光定量检测试剂盒(SYBRGreen)(FP411)——采用全新的化学修饰 DNA 聚合酶及优化的体系,特异性更好●灵敏度高:可在 pg 级的总 RNA 中检测到目的 miRNA。
●特异性强:识别单碱基的差异,完美区分家族中的不同 miRNA。
●通用性好:适用于各种类型的荧光定量 PCR 仪。
一、miRNA简介小RNA是19~28nt的调控RNA分子,主要包括微RNA(micro RNA,miRNA)和小干涉RNA(short interfering RNA,siRNA)两类,其中的miRNAs成为继siRNAs之后新的研究热点之一,名列2002年和2003年美国《科学》杂志评出的年度十大科学成就。
miRNAs是长片段RNA序列的一部分,同siRNAs一样是比较短小的单链小分子RNA,一般来源于染色体的非编码区域,由大约70 nt大小的可形成发夹结构的前体加工而来,它通过与其目标mRNA分子的3 端非编码区域(3-untranslated region,3 UTR)互补导致该mRNA 分子的翻译受到抑制。
在miRNA公共数据库miRBase (/)中已经有1W多条来自不同物种的miRNA序列。
MiRNA检测方法要了解miRNA在基因调控中扮演的角色,很关键的一个方法就是迅速、准确地定量检测miRNA基因的表达。
因此,miRNA表达水平的检测也成为了科学家们研究的热点。
但是由于小分子RNA是一类很小的分子,部分小分子RNA表达水平可能很低,因而需要极为灵敏而定量的分析工具。
常用的检测方法有:1.1 Northern blotting1.2 核糖核酸酶保护分析以及基于此方法的液相杂交。
1.3 RT-PCR也被用来检测miRNA前体的表达水平,其他基于PCR技术检测miRNA的方法有:引物延伸法,就是在引物的5 末端加一个特异标记,可以定量测定低丰度的RNA含量;原位杂交技术(CISH,FISH)可以方便的检测miRNA的时空表达的差异。
1.4 芯片(microarrays)技术[46,47]是一种较快的研究miRNA表达的方法。
二、反转录引物分类以及设计原理Real-time PCR方法克服了由于miRNA分子太短(~22 nt)带来的定量最大难题而引入靶向特异性的反转录引物,该RT引物可以与成熟miRNA结合,形成反转录引物/成熟miRNA 复合物,并在miRNA的5’末端延伸。
miRNA高效检测方法及具体步骤miRNA(microRNA)是一类长度约为22个核苷酸的小分子RNA,它在生物体内起到调节基因表达的重要作用。
由于miRNA在许多生物学功能中的重要性,开展高效检测miRNA的方法具有很大的研究价值。
目前,有许多方法可以用于检测miRNA,本文将介绍其中几种常见的方法及其具体步骤。
1.基于荧光探针的实时定量PCR法实时定量PCR (qPCR) 是一种常见且广泛应用的方法,可以用于miRNA的检测。
该方法在miRNA的检测过程中,首先将miRNA转录为cDNA,然后通过PCR反应扩增miRNA的序列。
在qPCR中,miRNA将与一个标记有荧光探针的引物结合,通过荧光信号的监测,可以对miRNA的数目进行定量分析。
具体步骤如下:- 步骤一:RNA提取:使用RNA提取试剂盒将miRNA从细胞或组织样本中提取出来。
- 步骤二:miRNA逆转录:使用miRNA逆转录试剂盒将miRNA逆转录为cDNA。
- 步骤三:qPCR扩增:使用qPCR试剂盒对miRNA的cDNA进行PCR扩增。
- 步骤四:数据分析:通过检测PCR产物的荧光信号,计算miRNA的表达量。
2. Northern blotting法Northern blotting是一种传统的RNA分析方法,也可以用于miRNA的检测。
在该方法中,首先将miRNA与若干硝酸酰胺交联,并通过琼脂糖凝胶电泳分离miRNA。
然后,将miRNA转移到膜上,并使用与miRNA互补的探针进行杂交。
通过放射性或化学染料检测标记的探针与miRNA的结合,可以确定miRNA的存在与周围环境的定量。
具体步骤如下:- 步骤一:miRNA分离:使用硝酸酰胺交联和电泳方法从总RNA中分离miRNA。
- 步骤二:膜转移:将miRNA转移到膜上。
- 步骤三:杂交:使用与miRNA互补的标记探针进行杂交。
- 步骤四:探针检测:通过放射性或化学物质检测标记的探针与miRNA的结合来确定miRNA的存在。
miRNA的常用检测方法研究miRNA (microRNA) 是一类长度约22个核苷酸的内源性非编码RNA,在细胞中起着重要的调控作用。
miRNA参与调控基因表达、细胞周期、代谢、增殖和凋亡等各种生物学过程,因此在许多疾病的发生发展中也扮演着重要角色。
miRNA的检测方法成为了当前研究的热点之一。
本文将介绍miRNA的常用检测方法,并对其优缺点进行探讨。
目前miRNA的检测方法主要包括定量PCR、芯片芯片技术、Next-generation sequencing(NGS)、蛋白质悬浊微球(Protein-coated-magnetic beads)和分子影像技术等。
以下将详细介绍各种方法的原理、步骤和特点。
第一种miRNA检测方法是定量PCR。
PCR是一种常用的核酸检测技术,通过链式反应扩增目标区域的DNA序列,基于PCR的miRNA检测技术可以分为两类:miRNA逆转录-定量PCR(RT-qPCR)和miRNA转录-定量PCR(TaqMan PCR)。
在RT-qPCR中,miRNA首先被逆转录成cDNA,然后通过PCR扩增cDNA,最后通过实时荧光技术检测PCR产物的数量。
TaqMan PCR则是直接对miRNA进行PCR扩增并检测。
这两种方法都具有灵敏度高、特异性好、操作简便等优点,但需要提取RNA,且不能检测未知miRNA。
第二种miRNA检测方法是芯片技术。
芯片技术是一种高通量平行检测技术,能够同时检测数千种核酸分子。
miRNA芯片技术主要包括两类:杂交芯片和基于微阵列的miRNA检测芯片。
杂交芯片是通过杂交技术检测miRNA的表达水平,而基于微阵列的miRNA检测芯片则是通过检测miRNA与探针的结合情况来定量miRNA水平。
芯片技术具有高通量和高比较度的优点,但需要大量的样本,并且只能检测已知的miRNA。
第三种miRNA检测方法是Next-generation sequencing(NGS)。
microrna功能验证实验方法嘿,咱今儿就来聊聊 miRNA 功能验证实验方法。
你知道吗,这miRNA 啊,就像是细胞里的小调控精灵,它们在生命活动中起着至关重要的作用呢!要验证 miRNA 的功能,首先得有合适的细胞模型呀。
这就好比你要建房子,得先有块好地不是?找到合适的细胞,才能让我们的实验顺顺利利地进行下去。
然后呢,就是设计实验啦。
这可不是随随便便就能搞定的事儿哦!得精心策划,就像将军布局打仗一样。
可以通过过表达 miRNA 或者抑制它的表达,来观察细胞会有啥变化。
比如说,我们可以用一些技术手段把 miRNA 加进去,让它的量增多,看看细胞会不会有什么特别的反应。
这就好像给细胞吃了个大力丸,然后等着看它变得多厉害。
或者呢,想办法把 miRNA 给拦住,不让它发挥作用,再看看细胞是不是就乱了套。
还有啊,检测手段也很重要呢!得像侦探一样,敏锐地捕捉到细胞的各种变化。
可以看看细胞的形态啦、生长情况啦、基因表达啦等等。
这就像是在细胞的世界里寻找蛛丝马迹,一点点揭开 miRNA 功能的神秘面纱。
再想想,这 miRNA 就像是隐藏在细胞深处的密码,我们要努力去破解它。
做实验的时候,可不能马虎大意,每个步骤都得小心翼翼的,不然可能就前功尽弃啦!咱做这些实验不就是为了搞清楚 miRNA 的作用嘛,这可关系到好多生命现象的理解呢!要是能把这些小不点儿的功能都搞清楚了,那对医学、生物学的发展可是有大大的好处呀!说不定以后就能通过调控 miRNA 来治疗各种疾病呢,那得多牛啊!所以啊,大家可得认真对待 miRNA 功能验证实验,这可不仅仅是在实验室里玩玩哦,这是在为人类的健康事业做贡献呢!别小看了这些小小的实验,它们也许就能带来大大的改变呢!你说是不是?总之,好好做实验,努力去探索,让我们一起揭开 miRNA 神秘的面纱吧!。
mirna研究方法引言:MicroRNA(miRNA)是一类短链非编码RNA,在生物体内起着重要的调控作用。
为了深入了解miRNA的功能和机制,科学家们开展了大量的miRNA研究工作。
本文将介绍一些常用的miRNA 研究方法,包括miRNA检测、miRNA定量和miRNA功能研究等方面。
一、miRNA检测方法1. Northern blottingNorthern blotting是一种最早被用于miRNA检测的方法。
该方法通过RNA电泳分离并转移到膜上,然后使用标记的miRNA探针与目标miRNA发生互补杂交,再通过探针标记物的检测来确定目标miRNA的存在与否。
尽管Northern blotting具有高度特异性,但是它需要大量的RNA样品,并且操作复杂,所以在miRNA检测中逐渐被其他方法所取代。
2. 基于PCR的方法a. Reverse transcription-PCR(RT-PCR)RT-PCR是一种常用的miRNA检测方法。
它首先通过逆转录将miRNA转化为cDNA,然后使用特定的miRNA引物进行PCR扩增,最后通过凝胶电泳分析PCR产物。
RT-PCR可以检测低丰度的miRNA,但是由于miRNA本身长度较短,所以设计引物时需要特别注意。
b. 实时定量PCR(qPCR)qPCR是一种常用的miRNA定量方法。
与常规PCR不同,qPCR 可以实时监测PCR过程中的产物累积量,从而准确测量miRNA的表达水平。
qPCR具有高灵敏度、高特异性和高通量的优点,被广泛应用于miRNA的定量研究。
二、miRNA定量方法1. microarray技术microarray技术是一种高通量的miRNA定量方法。
它基于探针与miRNA的互补杂交,通过检测探针与miRNA的结合信号来确定miRNA的表达水平。
microarray技术可以同时检测数千种miRNA,因此被广泛应用于miRNA表达谱分析和疾病标志物筛选等领域。
This article appeared in a journal published by Elsevier.The attached copy is furnished to the author for internal non-commercial research and education use,including for instruction at the authors institutionand sharing with colleagues.Other uses,including reproduction and distribution,or selling or licensing copies,or posting to personal,institutional or third partywebsites are prohibited.In most cases authors are permitted to post their version of thearticle(e.g.in Word or Tex form)to their personal website orinstitutional repository.Authors requiring further informationregarding Elsevier’s archiving and manuscript policies areencouraged to visit:/copyrightDetecting miRNAs by liquid hybridization and color developmentXiangqi Li a ,b ,⇑,Minjie Ni a ,Yonglian Zhang a ,b ,⇑aShanghai Key Laboratory for Molecular Andrology,State Key Laboratory of Molecular Biology,Institute of Biochemistry and Cell Biology,Shanghai Institutes for Biological Sciences,Shanghai 200031,China bShanghai Institute of Planned Parenthood Research,Shanghai 200032,Chinaa r t i c l e i n f o Article history:Available online 3August 2012Communicated byGray Brewer Keywords:Method MicroRNALiquid hybridizationAvidin–biotin detection system Color developmenta b s t r a c tCurrently,two methods,PCR and Northern blot,are widely used to detect individual microRNAs (miRNA).Although PCR is highly sensitive,false positives and difficulties of primer design discourage its use.While a Northern blot is an effective tool,traditional Northern blot protocols are complicated,time-consuming,and usually inconvenient for users.Liquid Northern blot methods are rapid but require instruments for detection of fluorescent signals.Here,we describe an alternative protocol,liquid hybridization and color development (LHCD),based on the rapidity of liquid hybridization and the signal amplification of avidin–biotin complex (ABC)for detection.LHCD can distinguish a one-nucleotide difference within a miRNA family and allow for the sensitive detection of 2.5f mol of miRNAs.Furthermore,LHCD is not only simple and rapid,but detection is visual and so it does not require expensive equipment.LHCD is easy to learn and convenient for miRNA analyses.Ó2012Elsevier Inc.All rights reserved.1.IntroductionMicroRNAs (miRNAs)are $21-nucleotide RNAs in plants,ani-mals and microbes.They have emerged as key post-transcriptional regulators of gene expression and have revolutionized our compre-hension of gene expression [1,2].Predictions suggest that about one-third of all protein-coding genes are regulated by miRNAs [3].In mammals,miRNAs are predicted to control the activity of $50%of all protein-coding genes,and are involved in the regula-tion of almost every cellular process investigated so far [2].Impor-tantly,their altered expression is associated with many human pathologies [2].To date,release 18of the miRBase sequence data-base contains 21,643mature miRNAs from 168species (/),and novel molecules are constantly discov-ered.However,the biological characterization and the functional confirmation of most miRNAs remain to be investigated.Since the first miRNA gene was discovered in 1993[4–6],great advances have been made in miRNA biology.However,the smallsize of miRNAs increases the technical difficulty of their identifica-tion,spatiotemporal detection,and functional confirmation.Gen-erally,to investigate an individual miRNA,PCR and Northern blotting are used to measure miRNA expression levels in vitro.PCR is undoubtedly highly sensitive [7],however,the rates of false positives and difficulties designing primers limit its use.Northern blotting is the gold standard for directly examining the expression of miRNA [8].Traditional Northern blot protocols include fraction-ating small RNAs by gel electrophoresis;transferring the separated RNA fragments onto a nylon membrane;over-night hybridization;and hours to days or even months of autoradiography [9,10].The method is complex,lengthy,and inconvenient and in general,does not lend itself for simple and rapid analyses.The new technology of liquid Northern hybridization over-comes these shortcomings and allows quick and simple detection of miRNA [11].However,the use of fluorescent probes can present problems of decreased sensitivity due to fluorescence quenching.Furthermore,instruments for detection of fluorescent signals must be available.Avidin–biotin complex (ABC)method is a standard tool in immunohistochemistry (IHC).The avidin–biotin interaction is one of the strongest known non-covalent interactions (K d =10À15M)[12],making it ideal for both purification and detec-tion strategies [13].Based on our experience with Northern blotting,IHC,and Wes-tern blotting methods,we developed an alternative method of li-quid hybridization and color development (LHCD),which combines the rapid features of liquid hybridization and the ampli-fied signals provided by avidin–biotin complex detection [14,15].1046-2023/$-see front matter Ó2012Elsevier Inc.All rights reserved./10.1016/j.ymeth.2012.07.025Abbreviations:LHCD,liquid hybridization and color development;ABC,avidin–biotin complex;IHC,immunohistochemistry;AP,alkaline phosphatase;HRP,horseradish peroxidase;BCIP/NBT,5-bromo-4-chloro-3-indolyl-phosphate/nitro blue tetrazolium;DAB,3,30-diaminobenzidine;ECL Prime,Amersham™ECL™prime Western blotting reagent;SSWF,Super signal Òwest femto;BSA,bovine serum albumin;TBS,tris-buffered saline.⇑Corresponding authors at:Shanghai Key Laboratory for Molecular Andrology,State Key Laboratory of Molecular Biology,Institute of Biochemistry and Cell Biology,320Yue-Yang Road,Shanghai Institutes for Biological Sciences,Shanghai 200031,China.Fax:+862154921011.E-mail addresses:lixq@ (X.Li),ylzhang@ (Y.Zhang).We describe a LHCD protocol that provides an easy-to-learn and convenient-to-use tool for detecting miRNAs.2.Method2.1.OutlinePurified small RNAs are hybridized in buffer with50biotin-la-beled DNA probes.The hybridized mixture is dotted onto a nylon membrane after non-hybridized probes are digested with Exonu-clease I.The membrane is then incubated with ABC.Finally,the membrane is developed with BCIP/NBP or DAB to produce colori-metric end products;ECL prime can be used to produce light for detection(Fig.1).2.2.Liquid hybridizationHybridization buffer is pipeted into an Eppendorf tube.Synthe-sized or isolated small RNAs and50biotinylated probes are added into the hybridization buffer,mixed thoroughly,and heated at 94°C for4min.The hybridization reaction is performed at42–65°C for60min.Finally,digest non-hybridized probes with Exo-nuclease I at37°C for30min.2.3.Color developmentDot the digested hybridization mixture onto a nylon membrane, dry,and perform ultraviolet crosslinking.Block the membrane with10%BSA,then incubate the membrane with ABC–AP or ABC–HRP at37°C for30min.Wash the membrane with TBS buffer six times.Finally,develop with BCIP/NBP,or DAB,or ECL Prime.2.4.Experimental protocol2.4.1.Prepare total RNA sampleIsolate total RNAs by adding TRIzol(Invitrogen)to cells follow-Fractionator System(Ambion,USA)can be used according to the manufacturer’s instructions.2.4.3.Prepare reagents and materialsPrepare hybridization buffer,50biotinylated DNA probes,Exo-nuclease I,BSA,nylon membrane,ABC–AP or ABC–HRP,1ÂTBS, and BCIP/NBT,DAB,ECL Prime,or SSWF.Hybridization buffer(Buf-fer A:30mmol/L Sodium phosphate buffer(pH8.0),0.3mol/L of NaCl,10mmol/L of EDTA(11);or Buffer B:1ÂExonuclease I).50 biotinylated DNA probes are cheaper,and can be easily synthesized by commercial company(e.g.,Takara,Japan).Exonuclease I,BSA, ABC–AP,ABC–HRP,1ÂTBS,Triton-X-100,Tween-20,BCIP/NBT, and DAB are common inexpensive reagents readily available from commercial sources.Here,Exonuclease I was ordered from NEB (USA);BSA,Triton-X-100,Tween-20,ABC–AP,ABC–HRP,BCIP/ NBT,and DAB from Boster(China),1ÂTBS buffer from Dycent Bio-tech(China);ECL Prime from Amersham(USA).SSWF(Super Sig-nalÒWest Femto)is expensive and is available from Thermo Scientific(USA).Nylon membrane is from Roche(Switzerland). 2.4.4.Liquid hybridizationUp to16l L hybridization buffer is loaded into a200l L Eppen-dorf tube.A specific amount of small RNAs(such as20pmol)and50 biotinylated probes(such as20pmol)is added into the hybridiza-tion buffer;mix thoroughly and heat the mixture to94°C for 4min.Next,carry out the hybridization reaction by incubating the mixture in a water bath at42–65°C for60min.Finally,remove non-hybridized,single-strand probes thoroughly by incubating the reaction mixture with Exonuclease I(20U/l l,2l l)at37°C for 30min.2.4.5.Color developmentThe above digested mixture is50%diluted with1.5M NaCl.Spot a specific volume(0.5l L)of the diluted mixture onto a nylon membrane with a micropipettor,then air dry for10or5min at 50°C.Crosslink with ultraviolet90s(Energy:3,000,CL-1000Ultra-violet crosslinker)at room temperature.Next,block the membraneFig.1.Schematic diagram of procedures.Purified small RNAs are hybridized in buffer with50biotin-labeled DNA probes.The mixture is spotted on a nylon membrane after digestion of non-hybridized probes with Exonuclease I.The membrane is then incubated with ABC and is developed with BCIP/NBT,DAB,or ECL to produce colorimetric end products that can be seen by eye.Fig. 2.Selection of hybridization buffers.(A)Buffer A is30mmol/L sodium phosphate buffer(pH8.0),0.3mol/L NaCl,and10mmol/L EDTA.(B)Buffer B is ÂExonuclease I buffer.The indicated amounts of a synthesized22-nt small RNA (UCGGUCAGUCUGGGGCAGGCAA)and its antisense50biotin-labeled DNA probe (gtTTGCCTGCCCCAGACTGACCGA)were hybridized in the indicated buffers at55°C, digested with Exonuclease I,and0.5l l of each reaction was spotted on the membrane.Alkaline phosphatase-labeled ABC was employed and BCIP/NBT was selected for color development.152X.Li et al./Methods58(2012)151–155hybridization membranes.(A)Positively charged nylon membrane from Roche applied science(cat no.,11417240001);60207);(C)Hybond-N+membrane optimized for nucleic acid transfer from Amersham Pharmacia/GE healthcare charged nylon membrane from AMBION(cat no.,0711004);(E)GeneScreen™–plus hybridization transfer membrane PVDF membrane from Amersham Pharmacia/GE healthcare(cat no.,RPN303F);(G)Whatman Protran™nitrocellulose 10401396).The indicated amounts of small RNA described in Fig.2were hybridized and spotted on the indicated membranes.Roche provided the greatest signal com-NC membrane had little background,butPVDF and NC had comparable sensitivity backgrounds but were less sensitive than the ny-Roche.However,PVDF requires a methanolthus chose nylon membrane from RochehybridizationRNAs were used to examine the sensitivity ofTo evaluate the specificity of the liquid hybridization system,a series of hybridizations were performed with the antisense of Rno–miR-29a as probe to assess whether the probe could distinguish between the members of the Rno–pared to Rno–miR-29a,Rno–miR-29b and Rno–miR-29c containfive-base and one-base mismatches,respectively(Fig.5A).The hybridization results indicated that Rno–miR-29a probe did not hybridize with the other member miRNAs(Fig.5B–D).Thus,the procedure can distinguish single nucleotide differences in sequence,consistent with a report of FITC-labeled probes[11].3.5.Detection of tissue miRNAsDetection of Rno–miR-29a was performed with small RNAs from a variety of tissues.Eight nanograms of total small RNA from rat epididymis,heart,intestine,liver,testis,seminal vesicle,and kidney were analyzed by liquid Northern hybridization at61°C. Expression of miRNA-29a was easily detected in these tissues (Fig.6).Similar results were obtained with color development for 1min with ECL prime,30s with BCIP/NBT,and5s with DAB.The background with BCIP/NBT was low,and less than DAB;ECL had little background as well.Additionally,expression of miRNA-21 was examined in2ng of total small RNAs from these tissues.How-ever,signals were low,and ECL prime yielded no signals(data not shown).Consequently,to increase sample mass per spot,12ng of sample RNA was spotted onto the nylon membrane at the same spot6times(2ng each time);consecutive spotting avoids pipet-ting too much volume onto the membrane at one time.While, ECL prime yielded no signals after20min development,SSWF provided ample signals for detection(data not shown).Thesehybridization with different color development reagents.(A)Color developed with BCIP/NBT.(B)Color developed with DAB.min.The red arrow indicates the most sensitive detection.The hybridization treatments were as described inexperiments indicated that the liquid hybridization and color development system is applicable for detecting miRNAs from tis-sue samples.4.Tips and troubleshootingExonuclease I catalyzes the30–50removal of nucleotides from single-stranded DNA.To confirm removal of non-hybridized, single-strand probes by Exonuclease I,it is important to use a neg-ative control.When preparing miRNA samples,it is important to purify them by gel or by other methods to minimize cross-hybrid-ization with their ually,we cannot detect miRNA precursors for most of miRNA species,so purification procedures are generally not required.For hybridization buffer,we recommend1ÂExonuclease I buf-fer since it is very simple and effective.For hybridization time,1h is usually sufficient;incubation greater than1h does not signifi-cantly enhance signal intensity[11].For hybridization tempera-ture,we recommend42°C to obtain high hybridization-signal intensity[11],but only if negative controls have little or no signals. However,for distinguishing members of miRNA families at single-nucleotide resolution,the hybridization temperature will require optimization depending on the sequence of the probe used,as well as the cell/tissue type.For instance,we can differentiate rat miR-NA-29a and miRNA-29b/c with a61°C hybridization temperature (Fig.5).Consistent with traditional Northern blotting,higher temperature yields less signal strength,while lower temperature yields higher signal strength.For color development,BCIP/NBT and DAB are widely used chromogenic substrates for IHC,while ECL and SSWF are com-monly used chemiluminogenic substrates for Western blot. Whether using BCIP/NBT or DAB,blocking the membrane with BSA or other materials is required to minimize non-specific signals. ECL Prime and SSWF were used in this procedure for chromogenic substrates,not chemiluminescent substrates and provided low backgrounds in general.However,optimal signal-to-noise was ob-tained with BCIP/NBT.Finally,it is essential to keep the sample-spotted membrane wet at all times to prevent high backgrounds.Moreover,0.1%Tri-ton-X-100must be included when ABC is used on the membrane, since it stabilizes the enzyme activity of AP and HRP.5.Concluding remarksTraditional solid-phase Northern blotting is labor intensive and requires special facilities.Newly developed liquid-phase hybridiza-tion procedures overcome these problems.However,fluorescent labeling techniques raise concerns about impaired sensitivity and the need forfluorescence detectors.We have combined liquid hybridization and color development,LHCD,to take advantage of the rapidity of liquid hybridization and the amplification of signals provided by the avidin–biotin system.This makes detecting miR-NAs more convenient because the signals are visible by eye and the color-developed membranes can serve as a permanent record. Furthermore,depending on the requirements,one can select spe-cial membranes or color development reagents.Moreover,there is little need for special buffer preparation.In conclusion,LHCD is rapid,simple,and visual,providing an easy-to-learn and conve-nient-to-use approach for assessing miRNA expression levels. AcknowledgmentsWe thank all the members of our group for providing assistance and advice.This research was supported by Grants from the National Basic Science Research and Development Project of China (30930053)and the Chinese Academy of Sciences(CAS)Knowledge Innovation Program(KSCX2-EW-R-07).References[1]D.P.Bartel,Cell116(2004)281–297.[2]J.Krol,I.Loedige,W.Filipowicz,Nat.Rev.Genet.11(2010)597–610.[3]B.P.Lewis,C.B.Burge,D.P.Bartel,Cell120(2005)15–20.[4]R.C.Lee,R.L.Feinbaum,V.Ambros,Cell75(1993)843–854.[5]B.Wightman,I.Ha,G.Ruvkun,Cell75(1993)855–862.[6]E.Berezikov,Nat.Rev.Genet.12(2011)846–860.[7]R.Shi,V.L.Chiang,Biotechniques39(2005)519–525.[8]K.A.Cissell,S.K.Deo,Anal.Bioanal.Chem.394(2009)1109–1116.[9]E.Varallyay,J.Burgyan,Z.Havelda,Nat.Protoc.3(2008)190–196.[10]E.Varallyay,J.Burgyan,Z.Havelda,Methods43(2007)140–145.[11]X.Wang,Y.Tong,S.Wang,Int.J.Mol.Sci.11(2010)3138–3148.[12]J.M.Teulon,Y.Delcuze,M.Odorico,S.W.Chen,P.Parot,J.L.Pellequer,J.Mol.Recognit.24(2011)490–502.[13]E.P.Diamandis,T.K.Christopoulos,Clin.Chem.37(1991)625–636.[14]S.M.Hsu,L.Raine,H.Fanger,J.Histochem.Cytochem.29(1981)577–580.[15]V.Chi,K.G.Chandy,J.Vis.Exp.(2007)308.。