线性电阻电路的一般分析方法
- 格式:pdf
- 大小:214.96 KB
- 文档页数:7
第2章 线性电阻电路的分析内容:网络方程法:支路电流法、节点电压法、回路电流法。
线性电路定理:替代定理、戴维宁定理、诺顿定理。
2.1 电阻的串联、并联和混联电路分析线性电阻电路的方法很多,但基本依据是KCL 、KVL 及元件的伏安关系()VAR 。
根据这些基本依据可推导出三种不同的分析电路的方法:等效法、方程法、定理法。
本章首先介绍等效变换,然后讨论支路电流法、网孔分析法及节点电位法,最后介绍常用定理,包括叠加定理和齐次定理、戴维南定理和诺顿定理等。
2.1.1 电路等效的一般概念1.等效电路的概念:在分析电路时,可以用简单的等效电路代替结构较复杂的电路,从而简化电路的分析计算,它是电路分析中常用的分析方法。
但值得注意的是,等效电路只是它们对外的作用等效,一般两个电路内部具有不同的结构,工作情况也不相同,因此,等效电路的等效只对外不对内。
2.等效电路的应用:简化电路。
2.1.2 电阻的串联、并联与混联1. 电阻的串联电阻串联的概念:两个或两个以上电阻首尾相联,中间没有分支,各电阻流过同一电流的连接方式,称为电阻的串联。
串联电阻值: 123R R R R =++ 电阻串联时电流相等,各电阻上的电压:1 11122223333RUU IR R UR RRUU IR R UR RRUU IR R UR R⎫===⎪⎪⎪===⎬⎪⎪===⎪⎭2. 电阻的并联电阻的并联概念:两个或两个以上电阻的首尾两端分别连接在两个节点上,每个电阻两端的电压都相同的连接方式,称为电阻的并联并联电阻电流值:123123123111U U UI I I I UR R R R R R⎧⎫=++=++=++⎨⎬⎩⎭并联电阻值:1231111R R R R=++电阻并联电路的等效电阻的倒数等于各个电阻的倒数之和。
电阻并联时电压相等,各电阻上的电流:111122223333GU RII IR R GGU RII IR R GGU RII IR R G⎫===⎪⎪⎪⎪===⎬⎪⎪===⎪⎪⎭3. 电阻的混联既有电阻串联又有电阻并联的电路叫混联电路。
线性电路的分析方法解析线性电路是由被动元件(如电阻、电容、电感等)和有源元件(如电源、放大器等)组成的一种电路。
线性电路主要通过应用基本电路定律和电路分析方法来分析和解决电路问题。
以下是常见的线性电路分析方法:1.基本电路定律:线性电路分析的基础是基本电路定律,包括欧姆定律(电流与电压成正比关系)、基尔霍夫电压定律(环路电压之和为0)和基尔霍夫电流定律(节点电流之和为0)。
通过这些定律可以建立电路的等式,进一步解决电路问题。
2.等效电路:将复杂的线性电路简化为等效电路是简化分析的常见方法。
等效电路可以用简单的电路元件(如电阻、电流源等)来代替原始电路,但仍然保持电路特性不变。
常见的等效电路包括电阻串联、并联、电流源串联和电压源并联等。
3.节点电压法:节点电压法是一种常用的线性电路分析方法。
它通过将电路中的节点连接到地(或任意选定基准点)上,使用基尔霍夫电流定律分析各节点的电压。
通过列写节点电压方程,可以解得节点的电压值,进而计算电路中的电流和功率等参数。
4.微分方程法:微分方程法是分析线性电路的另一种常见方法。
通过对电路中的元件进行建模,可以得到元件之间的基本关系式,进而得到描述电路行为的微分方程。
通过求解微分方程可以得到电路中的电流和电压等参数。
5.模拟计算:模拟计算是一种常用的线性电路分析方法。
通过使用模拟计算软件,将电路图输入并设置元件参数和初始条件,软件可以自动计算电路中的电流、电压和功率等参数,并绘制相应的波形图。
模拟计算可以方便地分析复杂的线性电路,并可以进行参数的优化和灵敏度分析。
6.相量法:对于交流电路,相量法是一种便捷的分析方法。
相量法将交流电压和电流看作有大小和相位的量,通过将它们用复数表示来进行分析。
通过相量法可以方便地计算交流电路中的电路参数,如电流、电压、功率等。
7.频域分析:频域分析是分析交流电路的另一种常用方法。
频域分析通过将电路中的电压和电流信号进行傅里叶变换,将它们从时域转换为频域。
第二章 电阻电路分析的基本方法本章以直流电路为研究对象,讨论电路的几种普遍的分析、计算方法。
包括等效变换、支路电流法、结点电位法、叠加原理和戴维南定理等。
这些方法可统称为网络方程法;它是以电路元件的伏安关系和基尔霍夫定律为基础的,选择适当的未知变量,建立一组独立的网络方程,并求解方程组;最后得出所需要的支路电流或支路电压或其他变量。
这些电阻电路的分析计算方法只要稍加扩展,即可用于交流电路的分析计算,所以本章是分析、计算电路的基础。
§2-1 等效电阻和等效二端网络通常,工程中所接触的电路形状复杂如网,故电路又称为网络。
(a)(b)图2-1 二端网络如果电路只有一个输入端口或输出端口,则这个电路称为单口网络或二端网络。
若二端网络内部含有电源,则称为有源二端网络。
若内部不含电源,则称为无源二端网络。
如图2-1(a )所示为一个有源二端网络,a 、b 为此网络的输出端点。
图2-1(b )所示为一个无源二端网络。
无源二端网络是由电阻元件组成的。
在它内部,电阻的连接可能很复杂,但对外部电路来说,可以用一个等效电阻来代替它。
这个电阻就称为这一无源二端网络的等效电阻。
这里,“等效”是对外部电路来说。
如图2-1(b )中虚线框内的四个电阻,可以用一个等效电阻来代替它们,只要端口上的U 、I 不变,则对虚线以外的电路来说是等效的,因为它不影响虚线以外的任何电路。
但对虚线框内部,也就是说对无源二端网络内部并不等效。
电路原是四个电阻组成,现只有一个电阻,电路的结构、参数完全不同,不可能等效。
所以说,等效是一个相对的概念。
一、电阻的串联与分压(一)串联电阻的等效化简所谓串联就是两个或多个元件首尾相联接流过同一电流。
如图2-2(a )所示为两个电阻R 1、R 2串联,可以用等效电阻R 代替它们,如图2-2(b )所示,只要R 满足如下关系即可:R = R 1+R 2 (2-1)若由n 个电阻串联,则其等效电阻为R = R 1 + R 2 + … + R n =∑=ni iR1(2-2)上式表明,串联电阻的等效电阻值总是大于其中任一个电阻阻值的。
3.1 支路电流法(Branch Current Method )
n 个节点、b 个支路的电路:支路电流:b 个支路电压:b 个需2b 个独立的电路方程例:R 1R 2
R 3
R 4
R 5
+
–i 3
i 4i 1i 5
i 6
23
4
b =6n =4
独立方程数应为2b=12个。
支路电流法:以各支路电流为未知量列写电路方程分析电
路的方法。
3.2 回路电流法(Loop Current Method)
基本思想:假想每个回路中有一个回路电流。
各支路电流可用回路电流线性组合表示。
回路电流对每个相关节点均流进一次,流出一次,所以
自动满足。
回路电流法只需对独立回路列写KVL 方程。
i 3
u S2
R 2R 3
b
a
+–
i 2i l 1i l 2
b =3,n =2。
独立回路为l =b -(n -1)=2。
选图示的两个独立回路,回路电流分别为i l 1、i l 2。
支路电流i 1=i l 1,i 2= i l 2-i l 1,i 3=i l 2。
3. 3 节点电压法(Node Voltage Method)
基本思想:
是否有一种方法使KVL自动满足,从而就不必列写KVL 方程,减少联立方程的个数?
KVL说明了电位的单值性。
如果选节点电压为未知量则KVL自动满足,可只列写KCL方程。