GPS定位的坐标系统及时间系统解析
- 格式:ppt
- 大小:764.50 KB
- 文档页数:4
GPS定位坐标
1. 介绍
GPS(Global Positioning System)是一种全球定位系统,利用卫星信号来确定地球上任何一个点的位置。
它通过三个或更多的卫星发射的信号,用来测量接收器的距离和位置。
GPS定位坐标是通过这些卫星信号计算得出的经度和纬度坐标。
2. GPS的工作原理
GPS系统主要由三个部分组成:卫星系统、控制系统和用户接收器。
卫星系统由一组维持在大约20200公里轨道上的卫星组成,它们不断地向地面发射信号。
控制系统负责维护卫星的轨道、状态和时间的准确性。
用户接收器则接收来自卫星的信号,并通过计算接收器与卫星之间的距离来确定接收器的位置。
GPS定位坐标是通过测量接收器与至少四颗卫星之间的距离来计算得出的。
接收器接收到卫星发射的信号后,会测量信号发送和接收之间的时间延迟。
由于光速是已知的,接收器可以使用这个延迟时间来计算信号传播的距离。
通过测量与多个卫星的距离,接收器可以使用几何定位原理来计算自己的准确位置。
3. GPS定位坐标的表示方法
GPS定位坐标使用经度和纬度来表示一个地点的位置。
经度表示东西方向上的位置,范围从-180度到180度,以0度经线(本初子午线)为基准。
东经表示正数,西经表示负数。
纬度表示南北方向上的位置,范围从-90度到90度,以赤道为基准。
北纬表示正数,南纬表示负数。
GPS定位坐标通常使用度(°)、分(’)和秒(。
G P S导航定位原理以及定位解算算法TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-GPS导航定位原理以及定位解算算法全球定位系统(GPS)是英文Global Positioning System的字头缩写词的简称。
它的含义是利用导航卫星进行测时和测距,以构成全球定位系统。
它是由美国国防部主导开发的一套具有在海、陆、空进行全方位实时三维导航与定位能力的新一代卫星导航定位系统。
GPS用户部分的核心是GPS接收机。
其主要由基带信号处理和导航解算两部分组成。
其中基带信号处理部分主要包括对GPS卫星信号的二维搜索、捕获、跟踪、伪距计算、导航数据解码等工作。
导航解算部分主要包括根据导航数据中的星历参数实时进行各可视卫星位置计算;根据导航数据中各误差参数进行星钟误差、相对论效应误差、地球自转影响、信号传输误差(主要包括电离层实时传输误差及对流层实时传输误差)等各种实时误差的计算,并将其从伪距中消除;根据上述结果进行接收机PVT(位置、速度、时间)的解算;对各精度因子(DOP)进行实时计算和监测以确定定位解的精度。
本文中重点讨论GPS接收机的导航解算部分,基带信号处理部分可参看有关资料。
本文讨论的假设前提是GPS接收机已经对GPS卫星信号进行了有效捕获和跟踪,对伪距进行了计算,并对导航数据进行了解码工作。
1 地球坐标系简述要描述一个物体的位置必须要有相关联的坐标系,地球表面的GPS接收机的位置是相对于地球而言的。
因此,要描述GPS接收机的位置,需要采用固联于地球上随同地球转动的坐标系、即地球坐标系作为参照系。
地球坐标系有两种几何表达形式,即地球直角坐标系和地球大地坐标系。
地球直角坐标系的定义是:原点O与地球质心重合,Z轴指向地球北极,X轴指向地球赤道面与格林威治子午圈的交点(即0经度方向),Y轴在赤道平面里与XOZ 构成右手坐标系(即指向东经90度方向)。
GPS测量坐标系GPS(全球定位系统)是一种全球性的卫星导航系统,广泛应用于定位、导航和时间同步等领域。
在GPS测量中,坐标系起着至关重要的作用。
本文将介绍GPS测量中常用的坐标系及其应用。
1. 地球坐标系(WGS84)地球坐标系是GPS测量中使用最广泛的坐标系,也是全球通用的地理坐标系。
它使用经度(longitude)和纬度(latitude)来描述地球上的位置。
经度指的是某位置距离本初子午线的东西方向距离,纬度指的是某位置距离地球赤道的南北方向距离。
WGS84坐标系是一种基于椭球面模型的坐标系,能够准确地描述地球上的各个位置。
它通常用于GPS设备和地理信息系统(GIS)中,用于定位和导航。
2. 地心坐标系(ENU)地心坐标系又称为局部大地坐标系,是一种以地球为中心的坐标系。
在地心坐标系中,地球的中心被定义为原点,x轴指向经度0°的点,y轴指向经度90°的点,z轴指向北极。
该坐标系在GPS测量中通常用于计算测量点之间的距离和方位角。
地心坐标系可以通过将地球坐标系(WGS84)中的经纬度转换为直角坐标来获得。
它具有较小的误差,适用于短距离测量和小范围应用。
3. 大地坐标系(Geodetic)大地坐标系是一种以地球为基准的坐标系,用于描述地球上的位置和形状。
它通过考虑地球的椭球形状和重力场来获得更准确的位置信息。
大地坐标系通常采用大地水准面和大地椭球体来描述地球表面的形状。
在GPS测量中,大地坐标系常用于计算测量点之间的高程差和斜距离。
4. 本地坐标系(Local)本地坐标系是一种以测量点为中心的坐标系,用于描述测量点周围的相对位置。
它是相对于地心坐标系或大地坐标系的一种局部坐标系。
本地坐标系通常用于图纸、工程测量和地理信息系统中,用于精确测量和定位。
它可以通过在地心坐标系中定义一个起始点和坐标轴方向来创建。
5. 投影坐标系(Projection)投影坐标系是将三维地理坐标映射到二维平面上的一种方式。