第三章--基因与基因组的结构
- 格式:pptx
- 大小:1.00 MB
- 文档页数:177
现代分子生物学课后习题及答案(共10章)第一章绪论1.你对现代分子生物学的含义和包括的研究范围是怎么理解的?答:分子生物学是从分子水平研究生命本质的一门新兴边缘学科,它以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究对象,是当前生命科学中发展最快并正在与其它学科广泛交叉与渗透的重要前沿领域。
狭义:偏重于核酸的分子生物学,主要研究基因或DNA的复制、转录、表达和调节控制等过程,其中也涉及与这些过程有关的蛋白质和酶的结构与功能的研究。
分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景。
所谓在分子水平上研究生命的本质主要是指对遗传、生殖、生长和发育等生命基本特征的分子机理的阐明,从而为利用和改造生物奠定理论基础和提供新的手段。
这里的分子水平指的是那些携带遗传信息的核酸和在遗传信息传递及细胞内、细胞间通讯过程中发挥着重要作用的蛋白质等生物大分子。
这些生物大分子均具有较大的分子量,由简单的小分子核苷酸或氨基酸排列组合以蕴藏各种信息,并且具有复杂的空间结构以形成精确的相互作用系统,由此构成生物的多样化和生物个体精确的生长发育和代谢调节控制系统。
阐明这些复杂的结构及结构与功能的关系是分子生物学的主要任务。
2.分子生物学研究内容有哪些方面?答:分子生物学主要包含以下三部分研究内容:A.核酸的分子生物学,核酸的分子生物学研究核酸的结构及其功能。
由于核酸的主要作用是携带和传递遗传信息,因此分子遗传学(moleculargenetics)是其主要组成部分。
由于50年代以来的迅速发展,该领域已形成了比较完整的理论体系和研究技术,是目前分子生物学内容最丰富的一个领域。
研究内容包括核酸/基因组的结构、遗传信息的复制、转录与翻译,核酸存储的信息修复与突变,基因表达调控和基因工程技术的发展和应用等。
遗传信息传递的中心法则(centraldogma)是其理论体系的核心。
基因与基因组基因是生物体遗传信息的基本单位,它决定了生物体的性状和功能。
而基因组则是一个生物体内全部基因的集合。
在这篇文章中,我们将探讨基因与基因组的重要性、结构以及它们对生物进化和疾病的影响。
一、基因的重要性和结构基因作为生物体的遗传单位,承载着生物体遗传信息的传递和表达。
它们通过编码蛋白质的序列,决定了生物体的性状和功能。
基因由DNA分子组成,DNA分子是由四种碱基(腺嘌呤、鸟嘌呤、胞嘧啶和鸟嘌呤)的排列组合而成,形成了基因的序列编码。
基因的结构包含启动子、编码区和终止子三个主要组成部分。
启动子位于基因的起始位置,起到启动基因转录的作用。
编码区包含了生物体所需的具体信息,它被转录成mRNA并翻译成蛋白质。
终止子则是基因转录的结束位置。
二、基因组的重要性和组成基因组是一个生物体内所有基因的集合。
它包含了全部的遗传信息,决定了生物体的发育、功能以及遗传特征。
基因组可分为核基因组和线粒体基因组两部分。
核基因组位于细胞核中,包含了大部分的基因。
线粒体基因组则位于细胞质中,主要编码线粒体所需的蛋白质。
基因组的大小和组织结构因不同生物体而异。
在人类基因组计划中,科学家确定了人类的基因组组成,发现人类基因组大小约为3亿个碱基对,包含约2万个编码蛋白质的基因。
三、基因与进化基因在生物进化中起到了关键作用。
通过突变和自然选择的过程,基因的变异导致了物种的多样性和进化。
突变是基因的随机变异,可以产生新的基因型和表型。
自然选择则是通过环境对基因型的选择,促使适应性更好的个体存活和繁殖,从而引发物种的进化。
例如,在人类进化过程中,基因的突变和自然选择共同作用,导致了人类智力和行为的不断进化。
与此同时,基因组的比较分析还揭示了人类和其他灵长类动物之间的亲缘关系。
四、基因与疾病基因的变异也与多种疾病的发生相关。
一些疾病是由特定基因的突变引起的,例如遗传性疾病。
通过对基因的研究,科学家可以识别和预测患有遗传疾病风险的个体,为疾病的预防和治疗提供依据。
现代分子生物学课后习题及答案(共10章)第一章绪论1. 你对现代分子生物学的含义和包括的研究范围是怎么理解的?2. 分子生物学研究内容有哪些方面?3. 分子生物学发展前景如何?4. 人类基因组计划完成的社会意义和科学意义是什么?答案:1. 分子生物学是从分子水平研究生命本质的一门新兴边缘学科,它以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究对象,是当前生命科学中发展最快并正在与其它学科广泛交叉与渗透的重要前沿领域。
狭义:偏重于核酸的分子生物学,主要研究基因或 DNA 的复制、转录、达和调节控制等过程,其中也涉及与这些过程有关的蛋白质和酶的结构与功能的研究。
分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景。
所谓在分子水平上研究生命的本质主要是指对遗传、生殖、生长和发育等生命基本特征的分子机理的阐明,从而为利用和改造生物奠定理论基础和提供新的手段。
这里的分子水平指的是那些携带遗传信息的核酸和在遗传信息传递及细胞内、细胞间通讯过程中发挥着重要作用的蛋白质等生物大分子。
这些生物大分子均具有较大的分子量,由简单的小分子核苷酸或氨基酸排列组合以蕴藏各种信息,并且具有复杂的空间结构以形成精确的相互作用系统,由此构成生物的多样化和生物个体精确的生长发育和代谢调节控制系统。
阐明这些复杂的结构及结构与功能的关系是分子生物学的主要任务。
2. 分子生物学主要包含以下三部分研究内容:A.核酸的分子生物学,核酸的分子生物学研究核酸的结构及其功能。
由于核酸的主要作用是携带和传递遗传信息,因此分子遗传学(moleculargenetics)是其主要组成部分。
由于 50 年代以来的迅速发展,该领域已形成了比较完整的理论体系和研究技术,是目前分子生物学内容最丰富的一个领域。
研究内容包括核酸/基因组的结构、遗传信息的复制、转录与翻译,核酸存储的信息修复与突变,基因达调控和基因工程技术的发展和应用等。
第三章基因与基因组第一节基因概念的历史演变第二节DNA与基因第三节真核生物的割裂基因第四节基因大小第五节重叠基因第六节真核生物的基因组第七节真核生物DNA序列组织第八节细胞器基因组第九节基因鉴定第十节人类基因组计划第三章基因与基因组1 基因(gene)的概念基因是遗传的功能单位,DNA分子中不同排列顺序的DNA片段构成特定的功能单位;含有合成有功能的蛋白质多肽链或RNA所必需的全部核苷酸序列。
广义地说,基因是有功能的DNA片段。
第一节基因概念的历史演变2 基因概念的历史演变:(1)Mendel提出基因的存在(2)Morgan证实基因在染色体上(3)“一个基因一个酶”修正为“一个基因一个多肽链”“基因”一词的创立: 1909年,丹麦遗传学家约翰逊“基因”(gene)。
Gregor MendelThomas Hunt Morgan3 基因概念的理论基础3.1 一个基因一个酶1941年G W Beadle 和E L Tatum研究证实红色链孢霉各种突变体的异常代谢是一种酶的缺陷,产生这种酶缺陷的原因是单个基因的突变。
3.2 一个基因一条多肽链本世纪50年代,Yanofsky有些蛋白质不只由一种肽链组成,如血红蛋白和胰岛素,不同肽链由不同基因编码,因而又提出了“一个基因一条多肽链”的假设。
3.3 基因的化学本质是DNA(有时是RNA)1944年,O T Avery 证实了DNA是遗传物质。
有些病毒只含有RNA。
1953年沃森和克里克建立DNA分子的双螺旋结构模型。
3.4 基因顺反子(Cistron)的概念1955年,美国本兹尔(Benzer)提出顺反子的概念:是指编码一个蛋白质的全部组成所需信息的最短片段,即一个基因。
基因仅是一个功能单位,基因内部的碱基对才是重组单位和突变单位。
一对同源染色体上两突变(a和b)在同一染色体上时,称为顺式构型,在两个染色体上时,为反式构型;顺反互补测验(cis-trans test):比较顺式和反式构型个体的表型来判断两个突变是否发生在一个基因(顺反子)内的测验。
第二章 DNA 与染色体一、填空题1.病毒ΦX174及M13的遗传物质都是单链DNA 。
2.AIDS 病毒的遗传物质是单链RNA 。
3.X射线分析证明一个完整的DNA螺旋延伸长度为 3.4nm 。
4.氢键负责维持A-T间(或 G-C间)的亲和力。
5.天然存在的DNA分子形式为右手 B 型螺旋。
第三章基因与基因组结构一、填空题1.在许多人肿瘤细胞内,端粒酶基因的异常活化似乎与细胞的无限分裂能力有关。
2.包装为核小体可将裸露 DNA 压缩的 7 倍。
3.哺乳动物及其他一些高等动物的端粒含有同一重复序列,即 TTAGGG 。
4.细胞主要在分裂间期表达基因,此时染色体结构松散。
5.在所有细胞中都维持异染色质状态的染色体区,称为组成型异染色质。
6.在分裂间期呈现着色较深的异染色质状态的失活 X 染色体,也叫作巴氏小体。
7.果蝇唾液腺内的巨大染色体叫作多线染色体,由众多同样的染色质平行排列而成。
8.一般说来,哺乳动物线粒体与高等植物叶绿体的基因组相比,叶绿体更大些。
9.原生动物四膜虫的单个线粒体称作动粒。
第四章 DNA 复制一、填空题1.在 DNA 合成中负责复制和修复的酶是 DNA聚合酶。
2.染色体中参与复制的活性区呈 Y 开结构,称为 DNA复制叉。
3.在 DNA 复制和修复过程中,修补 DNA 螺旋上缺口的酶称为 DNA连接酶。
4.在 DNA复制过程中,连续合成的子链称为前导链,另一条非连续合成的子链称为后随链。
5.如果 DNA 聚合酶把一个不正确的核苷酸加到 3′端,一个含 3′→5′活性的独立催化区会将这个错配碱基切去。
这个催化区称为校正核酸外切酶。
6.DNA 后随链合成的起始要一段短的 RNA引物,它是由 DNA引发酶以核糖核苷酸为底物合成的。
7.复制叉上 DNA 双螺旋的解旋作用由 DNA解旋酶催化的,它利用来源于 ATP 水解产生的能量沿 DNA 链单向移动。
8.帮助 DNA 解旋的单链结合蛋白(SSB)与单链 DNA 结合,使碱基仍可参与模板反应。
第3章基因与基因组的结构1.主要内容1)断裂基因构成性质2)重叠基因种类3)C值矛盾4)原核生物与真核生物基因组的区别5)真核生物染色体的结构6)真核生物DNA序列的4种类型7)基因家族、基因簇、卫星DNA、分散重复DNA 序列8)人类基因组计划2.教学要求1)掌握基因,断裂基因,顺反子,C值矛盾,重叠基因,基因家族,重复序列,卫星DNA等基本概念;2)熟悉原核生物和真核生物基因组结构特点与功能;3)了解人类基因组的重复顺序、人类基因组计划。
第1节基因的概念第2节基因命名简介第3节真核生物的断裂基因第4节基因及基因组的大小与C值矛盾第5节重叠基因第6节基因组第7节真核生物DNA序列组织第8节基因家族第9节人类基因组研究进展第1节基因的概念●基因:带有特定遗传信息的核酸分子片段。
包括结构基因:编码蛋白质tRNA rRNA调控基因:●基因研究的发展染色体分子反向生物学●基因位于染色体和细胞器的DNA分子上•基因和顺反子•1955,Benzer用以表述T4 具溶菌功能的区的2个亚区: rⅡA rⅡB•现代分子生物学文献中,顺反子和基因这两个术语互相通用。
第2节基因命名简介•表示基因3个小写斜体字母,lac•表示基因座3个小写斜体字母+ 1个大写斜体字母。
lacZ•表示质粒自然质粒 3 个正体字母,首字母大写重组质粒在2个大写字母前面加小写p•基因为斜体,蛋白质为正体•人类基因为大写斜体第3节真核生物的断裂基因•一、割裂基因的发现•1977,通过成熟mRNA(或cDNA)与编码基因的DNA杂交试验而发现•真核生物的基因是不连续的,大大改变了原来对基因结构的看法,现在知道大多数真核生物的基因都是不连续基因或割裂基因(split gene)。
•割裂基因的概念——是编码序列在DNA分子上不连续排列而被不编码的序列所隔开的基因。
•割裂基因的构成•构成割裂基因的DNA序列被分为两类:•基因中编码的序列称为外显子(exon),外显子是基因中对应于信使RNA序列的区域;•不编码的间隔序列称为内含子(intron),内含子是从信使RNA中消失的区域。