概率的一般加法公式
- 格式:ppt
- 大小:251.50 KB
- 文档页数:25
概率加法原理
概率加法原理是概率论中的一个基本概念,用于计算多个事件的联合概率。
它的核心思想是,对于两个互斥事件A和B,它们的联合概率等于它们的概率之和。
假设有两个事件A和B,它们互斥,即A事件和B事件不能同时发生。
那么它们的联合概率就是指A事件或者B事件发生的概率。
根据概率加法原理,可以得到如下公式:
P(A∪B) = P(A) + P(B)
其中,P(A∪B)表示事件A或者事件B发生的概率,P(A)表示事件A发生的概率,P(B)表示事件B发生的概率。
概率加法原理还可以进一步推广到多个事件的情况。
对于互斥的事件A₁、A₂、...、Aₙ,它们的联合概率可以表示为它们的概率之和:
P(A₁∪A₂∪...∪Aₙ) = P(A₁) + P(A₂) + ... + P(Aₙ)
需要注意的是,概率加法原理只适用于互斥事件,即事件之间的排斥性质决定了它们的联合概率。
如果事件之间存在重叠或相互关联,就不能直接使用概率加法原理计算联合概率,而需要借助其他概率论的方法。
概率统计公式大全概率统计是研究随机现象及其规律性的一门学科,其核心就是用数学方法来描述和分析随机现象。
在概率统计的理论体系中,有很多重要的公式和定理,下面对一些常用的公式进行介绍。
1.概率公式:(1)加法规则:P(A∪B)=P(A)+P(B)-P(A∩B),其中A和B为事件,P(A)和P(B)分别是事件A和事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。
(2)乘法规则:P(A∩B)=P(A)×P(B,A),其中P(A∩B)表示事件A和事件B同时发生的概率,P(A)表示事件A发生的概率,P(B,A)表示在事件A发生的条件下事件B发生的概率。
2.条件概率公式:(1)贝叶斯定理:P(A,B)=P(B,A)×P(A)/P(B),其中P(A,B)表示在事件B发生的条件下事件A发生的概率,P(B,A)表示在事件A发生的条件下事件B发生的概率,P(A)和P(B)分别是事件A和事件B发生的概率。
(2)全概率公式:P(B)=ΣP(Ai)×P(B,Ai),其中B是一个事件,Ai是样本空间的一个划分,即Ai是互不相容且并集为样本空间的一组事件。
3.期望公式:(1) 离散型随机变量的期望:E(X) = ΣxiP(X=xi),其中X是一个离散型随机变量,xi是X的取值,P(X=xi)是X取值为xi的概率。
(2) 连续型随机变量的期望:E(X) = ∫xf(x)dx,其中X是一个连续型随机变量,f(x)是X的概率密度函数。
4.方差公式:(1) 离散型随机变量的方差:Var(X) = Σ(xi-E(X))^2P(X=xi),其中Var(X)表示随机变量X的方差,xi是X的取值,E(X)是X的期望,P(X=xi)是X取值为xi的概率。
(2) 连续型随机变量的方差:Var(X) = ∫(x-E(X))^2f(x)dx,其中Var(X)表示随机变量X的方差,E(X)是X的期望,f(x)是X的概率密度函数。
概率论的公式大全概率论是数学的一个分支,研究随机事件发生的概率。
以下是概率论中常用的公式。
1.基本概率公式:P(A)=n(A)/n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A的样本空间中的有利结果数量,n(S)表示样本空间中的总结果数量。
2.加法公式:P(A或B)=P(A)+P(B)-P(A且B)其中,P(A或B)表示事件A或事件B发生的概率,P(A且B)表示事件A和事件B同时发生的概率。
3.乘法公式:P(A且B)=P(A)×P(B,A)其中,P(B,A)表示在事件A发生的条件下,事件B发生的概率。
4.条件概率公式:P(A,B)=P(A且B)/P(B)其中,P(A,B)表示在事件B发生的条件下,事件A发生的概率。
5.全概率公式:P(A)=Σ(P(A,Bi)×P(Bi))其中,P(A)表示事件A的概率,Bi表示S的一个划分,P(A,Bi)表示在事件Bi发生的条件下,事件A发生的概率,P(Bi)表示事件Bi的概率。
6.贝叶斯公式:P(Bi,A)=(P(A,Bi)×P(Bi))/Σ(P(A,Bj)×P(Bj))其中,P(Bi,A)表示在事件A发生的条件下,事件Bi发生的概率,P(A,Bi)表示在事件Bi发生的条件下,事件A发生的概率,P(Bi)表示事件Bi的概率。
7.期望值公式:E(X)=Σ(Xi×P(Xi))其中,E(X)表示随机变量X的期望值,Xi表示X的取值,P(Xi)表示X取值为Xi的概率。
8.方差公式:Var(X) = Σ((Xi - E(X))^2 × P(Xi))其中,Var(X)表示随机变量X的方差,Xi表示X的取值,E(X)表示X 的期望值,P(Xi)表示X取值为Xi的概率。
9.标准差公式:SD(X) = √Var(X)其中,SD(X)表示随机变量X的标准差,Var(X)表示X的方差。
10.二项分布的概率公式:P(X=k)=C(n,k)×p^k×(1-p)^(n-k)其中,P(X=k)表示X取值为k的概率,C(n,k)表示组合数,p表示单次实验成功的概率,n表示试验重复的次数,k表示成功发生的次数。
第四讲古典概型概率的一般加法公式[新知初探]1.古典概型的概念(1)定义:如果一个概率模型满足:①试验中所有可能出现的基本事件只有有限个;②每个基本事件发生的可能性是均等的.那么这样的概率模型称为古典概率模型,简称古典概型.(2)计算公式:对于古典概型,任何事件A的概率P(A)=事件A包含的基本事件数试验的基本事件总数.注意事项:基本事件的三个探求方法(1)列举法:把试验的全部结果一一列举出来.此方法适合于较为简单的试验问题.(2)树状图法:树状图法是使用树状的图形把基本事件列举出来的一种方法,树状图法便于分析基本事件间的结构关系,对于较复杂的问题,可以作为一种分析问题的主要手段,树状图法适用于较复杂的试验的题目.求解古典概型的概率“四步”法2.概率的一般加法公式(1)事件A与B的交(或积):由事件A和B同时发生所构成的事件D,称为事件A与B的交(或积),记作D=A∩B(或D=AB).(2)概率的一般加法公式:设A,B是Ω的两个事件,则有P(A∪B)=P(A)+P(B)-P(A∩B).[小试身手]1.下列关于古典概型的说法中正确的是( )①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③每个基本事件出现的可能性相等;④基本事件的总数为n,随机事件A若包含k个基本事件,则P(A)=k n .A.②④B.①③④C.①④D.③④解析:选B 根据古典概型的特征与公式进行判断,①③④正确,②不正确,故选B.2.下列试验是古典概型的是( )A.口袋中有2个白球和3个黑球,从中任取一球,基本事件为{}取中白球和{}取中黑球B.在区间[-1,5]上任取一个实数x,使x2-3x+2>0C.抛一枚质地均匀的硬币,观察其出现正面或反面D.某人射击中靶或不中靶解析:选C A中两个基本事件不是等可能的;B中基本事件的个数是无限的;D中“中靶”与“不中靶”不是等可能的;C符合古典概型的两个特征,故选C.3.从甲、乙、丙三人中任选两人担任课代表,甲被选中的概率为( )A.12B.13C.23D.1解析:选C 从甲、乙、丙三人中任选两人有:(甲、乙)、(甲、丙)、(乙、丙)共3种情况,其中,甲被选中的情况有2种,故甲被选中的概率为P =23.4.两个骰子的点数分别为b ,c ,则方程x 2+bx +c =0有两个实根的概率为( )A.12B.1536C.1936D.56解析:选C (b ,c )共有36个结果,方程有解,则Δ=b 2-4c ≥0,∴b 2≥4c ,满足条件的数记为(b 2,4c ),共有(4,4),(9,4),(9,8),(16,4),(16,8),(16,12),(16,16),(25,4),(25,8),(25,12),(25,16),(25,20),(25,24),(36,4),(36,8),(36,12),(36,16),(36,20),(36,24),19个结果,P =1936.典型例题[典例] (1)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的所有基本事件数为( )A .2B .3C .4D .6(2)连续掷3枚硬币,观察这3枚硬币落在地面上时是正面朝上还是反面朝上.①写出这个试验的所有基本事件; ②求这个试验的基本事件的总数;③“恰有两枚硬币正面朝上”这一事件包含哪些基本事件?[解析] (1)用列举法列举出“数字之和为奇数”的可能结果为:(1,2),(1,4),(2,3),(3,4),共4种可能.[答案] C(2)解:①这个试验包含的基本事件有:(正,正,正),(正,正,反),(正,反,正)(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反).②这个试验包含的基本事件的总数是8;③“恰有两枚硬币正面朝上”这一事件包含以下3个基本事件:(正,正,反),(正,反,正),(反,正,正).[活学活用]将一枚骰子先后抛掷两次,则:(1)一共有几个基本事件?(2)“出现的点数之和大于8”包含几个基本事件?解:(树状图法):一枚骰子先后抛掷两次的所有可能结果用树状图表示.如图所示:(1)由图知,共36个基本事件.(2)“点数之和大于8”包含10个基本事件(已用“√”标出).[典例] 袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:(1)A:取出的两球都是白球;(2)B:取出的两球1个是白球,另1个是红球.[解] 设4个白球的编号为1,2,3,4,2个红球的编号为5,6.从袋中的6个小球中任取2个球的取法有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种.(1)从袋中的6个球中任取两个,所取的两球全是白球的取法总数有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个.∴取出的两个球全是白球的概率为P(A)=615=25.(2)从袋中的6个球中任取两个,其中一个是红球,而另一个是白球,其取法包括(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)共8种.∴取出的两个球1个是白球,1个是红球的概率为P(B)=8 15 .[活学活用]某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,①列出所有可能的抽取结果;②求抽取的2所学校均为小学的概率.解:(1)从小学、中学、大学中分别抽取的学校数目为3,2,1.(2)①在抽取到的6所学校中,3所小学分别记为A1,A2,A3,2所中学分别记为A4,A5,1所大学记为A6,则抽取2所学校的所有可能结果为(A1,A2),(A1,A3),(A1,A4),(A1,A5),(A1,A6),(A2,A3),(A2,A4),(A2,A5),(A2,A6),(A3,A4),(A3,A5),(A3,A6),(A4,A5),(A4,A6),(A5,A6),共15种.②从这6所学校中抽取的2所学校均为小学(记为事件B)的所有可能结果为(A1,A2),(A1,A3),(A2,A3),共3种,所以P(B)=315=15.[典例] 有A,B,C,D四位贵宾,应分别坐在a,b,c,d四个席位上,现在这四人均未留意,在四个席位上随便就座.(1)求这四人恰好都坐在自己的席位上的概率;(2)求这四人恰好都没坐在自己的席位上的概率;(3)求这四人恰有一位坐在自己的席位上的概率.[解] 将A,B,C,D四位贵宾就座情况用如图所示的图形表示出来.a 席位b 席位c 席位d 席位 a 席位b 席位c 席位d 席位a 席位b 席位c 席位d 席位 a 席位b 席位c 席位d 席位 由图可知,所有的等可能基本事件共有24个.(1)设事件A 为“这四人恰好都坐在自己的席位上”,则事件A 只包含1个基本事件,所以P (A )=124. (2)设事件B 为“这四人恰好都没坐自己的席位上”,则事件B 包含9个基本事件,所以P (B )=924=38. (3)设事件C 为“这四人恰有一位坐在自己的席位上”,则事件C 包含8个基本事件,所以P (C )=824=13. [活学活用]把一枚骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b ,试就方程组⎩⎨⎧ax +by =3,x +2y =2解的情况,解答下列各题:(1)求方程组只有一个解的概率;(2)求方程组只有正数解的概率.解:若第一次出现的点数为a ,第二次出现的点数为b 记为有序数值组(a ,b ),则所有可能出现的结果有:(1,1)(1,2)(1,3)(1,4)(1,5)(1,6), (2,1)(2,2)(2,3)(2,4)(2,5)(2,6), (3,1)(3,2)(3,3)(3,4)(3,5)(3,6), (4,1)(4,2)(4,3)(4,4)(4,5)(4,6), (5,1)(5,2)(5,3)(5,4)(5,5)(5,6), (6,1)(6,2)(6,3)(6,4)(6,5)(6,6), 共36种.由方程组⎩⎨⎧ax +by =3,x +2y =2,可得⎩⎨⎧2a -b x =6-2b ,2a -by =2a -3,(1)若方程组只有一个解,则b ≠2a ,满足b =2a 的有(1,2),(2,4),(3,6),故适合b ≠2a 的有36-3=33个.其概率为:P 1=3336=1112. (2)方程组只有正数解,需满足b -2a ≠0且⎩⎪⎨⎪⎧x =6-2b 2a -b >0,y =2a -32a -b >0.分两种情况:当2a >b 时,得⎩⎨⎧a >32,b <3,当2a <b 时,得⎩⎨⎧a <32,b >3.易得包含的基本事件有13个:(2,1),(3,1),(4,1),(5,1),(6,1),(2,2),(3,2),(4,2),(5,2),(6,2),(1,4),(1,5),(1,6),因此所求的概率P 2=1336.[层级一 学业水平达标]1.若连续抛掷两次骰子得到的点数分别为m ,n ,则点P (m ,n )在直线x +y =4上的概率是( )A.13 B.14 C.16D.112解析:选D 由题意(m ,n )的取值情况有(1,1),(1,2),…,(1,6);(2,1),(2,2),…,(2,6);…;(6,1),(6,2),…,(6,6),共36种,而满足点P (m ,n )在直线x +y =4上的取值情况有(1,3),(2,2),(3,1),共3种.故所求概率为336=112,故选D. 2.从1,2,3,4这四个数字中,任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为( )A.12B.13C.14D.15解析:选A 从1,2,3,4这四个数字中,任取两个不同的数字,可构成12个两位数:12,13,14,21,23,24,31,32,34,41,42,43,其中大于30的有:31,32,34,41,42,43共6个,所以所得两位数大于30的概率为P =612=12. 3.设a 是从集合{}1,2,3,4中随机取出的一个数,b 是从集合{}1,2,3中随机取出的一个数,构成一个基本事件(a ,b ).记“这些基本事件中,满足log b a ≥1”为事件E ,则E 发生的概率是( )A.12B.512C.13D.14解析:选B 试验发生包含的事件是分别从两个集合中取1个数字,共有4×3=12种结果,满足条件的事件是满足log b a≥1,可以列举出所有的事件,当b=2时,a=2,3,4,当b=3时,a=3,4,共有3+2=5个,∴根据古典概型的概率公式得到概率是5 12 .4.一个袋子中装有编号分别为1,2,3,4的4个小球,现有放回地摸球,规定每次只能摸一个球,若第一次摸到的球的编号为x,第二次摸到的球的编号为y,构成数对(x,y),则所有数对(x,y)中满足xy=4的概率为( )A.316B.18C.118D.16解析:选A 由题意可知两次摸球得到的所有数对(x,y)有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个,其中满足xy=4的数对有(1,4),(2,2),(4,1),共3个.故所求事件的概率为3 16 .5.为迎接2016奥运会,某班开展了一次“体育知识竞赛”,竞赛分初赛和决赛两个阶段进行,在初赛后,把成绩(满分为100分,分数均为整数)进行统计,制成如下的频率分布表:(1)求a,(2)若得分在[90,100]之间的有机会进入决赛,已知其中男女比例为2∶3,如果一等奖只有两名,求获得一等奖的全部为女生的概率.解:(1)a =50×0.1=5,b =2550=0.5,c =50-5-15-25=5,d =1-0.1-0.3-0.5=0.1.(2)把得分在[90,100]之间的五名学生分别记为男1,男2,女1,女2,女3. 事件“一等奖只有两名”包含的所有事件为(男1,男2),(男1,女1),(男1,女2),(男1,女3),(男2,女1),(男2,女2),(男2,女3),(女1,女2),(女1,女3),(女2,女3),共10个基本事件;事件“获得一等奖的全部为女生”包含(女1,女2),(女1,女3),(女2,女3),共3个基本事件.所以,获得一等奖的全部为女生的概率为P =310. [层级二 应试能力达标]1.某部三册的小说,任意排放在书架的同一层上,则各册从左到右或从右到左恰好为第1,2,3册的概率为( )A.16 B.13 C.12D.23解析:选B 所有基本事件为:123,132,213,231,312,321.其中从左到右或从右到左恰好为第1,2,3册包含2个基本事件,∴P =26=13.故选B.2.袋中有大小相同的黄、红、白球各一个,每次任取一个,有放回地取3次,则89是下列哪个事件的概率( )A .颜色全同B .颜色不全同C .颜色全不同D .无红球解析:选B 有放回地取球3次,共27种可能结果,其中颜色全相同的结果有3种,其概率为327=19;颜色不全相同的结果有24种,其概率为2427=89;颜色全不同的结果有3种,其概率为327=19;无红球的情况有8种,其概率为827,故选B.3.电子钟一天显示的时间是从00:00到23:59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为( )A.1180 B.1288 C.1360 D.1480解析:选C 当“时”的两位数字的和小于9时,则“分”的那两位数字和要求超过14,这是不可能的.所以只有“时”的和为9(即“09”或“18”),“分”的和为14(“59”);或者“时”的和为10(即“19”),“分”的和为13(“49”或“58”).共计有4种情况.因一天24小时共有24×60分钟,所以概率P =424×60=1360.故选C. 4.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木、木克土、土克水、水克火、火克金.”从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为( )A.310B.25C.12D.35 解析:选 C 从五种不同属性的物质中随机抽取两种,有(金,木)、(金,水)、(金,火)、(金,土)、(木,水)、(木,火)、(木,土)、(水,火)、(水,土)、(火,土),共10种等可能发生的结果.其中金克木,木克土,土克水,水克火,火克金,即相克的有5种,则不相克的也是5种,所以抽取的两种物质不相克的概率为12. 5.有四个大小、形状完全相同的小球,分别编号为1,2,3,4,现从中任取两个,则取出的小球中至少有一个号码为奇数的概率为________.解析:从四个小球中任取两个,有6种取法,其中两个号码都为偶数只有(2,4)这一种取法,故其对立事件,即至少有一个号码为奇数的概率为1-16=56.答案:5 66.在5瓶饮料中,有2瓶已过了保质期,从中任取2瓶,取到的全是已过保质期的饮料的概率为________.解析:设过保质期的2瓶记为a,b,没过保质期的3瓶用1,2,3表示,试验的结果为:(1,2),(1,3),(1,a),(1,b),(2,3),(2,a),(2,b),(3,a),(3,b),(a,b)共10种结果,2瓶都过保质期的结果只有1个,∴P=1 10.答案:1 107.设a,b随机取自集合{1,2,3},则直线ax+by+3=0与圆x2+y2=1有公共点的概率是________.解析:将a,b的取值记为(a,b),则有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共9种可能.当直线与圆有公共点时,可得3a2+b2≤1,从而符合条件的有(1,3),(2,3),(3,1),(3,2),(3,3),共5种可能,故所求概率为5 9 .答案:5 98.小李在做一份调查问卷,共有5道题,其中有两种题型,一种是选择题,共3道,另一种是填空题,共2道.(1)小李从中任选2道题解答,每一次选1题(不放回),求所选的题不是同一种题型的概率;(2)小李从中任选2道题解答,每一次选1题(有放回),求所选的题不是同一种题型的概率.解:将3道选择题依次编号为1,2,3;2道填空题依次编号为4,5.(1)从5道题中任选2道题解答,每一次选1题(不放回),则所有基本事件为(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,2),(3,4),(3,5),(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4),共20种,而且这些基本事件发生的可能性是相等的.设事件A为“所选的题不是同一种题型”,则事件A包含的基本事件有(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),共12种,所以P(A)=1220=0.6.(2)从5道题中任选2道题解答,每一次选1题(有放回),则所有基本事件为(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),共25种,而且这些基本事件发生的可能性是相等的.设事件B为“所选的题不是同一种题型”,由(1)知所选题不是同一种题型的基本事件共12种,所以P(B)=1225=0.48.9.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.解:(1)标号为1,2,3的三张红色卡片分别记为A,B,C,标号为1,2的两张蓝色卡片分别记为D,E,从五张卡片中任取两张的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共10种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从五张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A,D),(A,E),(B,D),共3种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为3 10 .(2)记F为标号为0的绿色卡片,从六张卡片中任取两张的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从六张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A,D),(A,E),(B,D),(A,F),(B,F),(C,F),(D,F),(E,F),共8种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为8 15 .。
概率的加法公式范文一、定义P(A∪B)=P(A)+P(B)-P(A∩B)其中,P(A)表示事件A发生的概率,P(B)表示事件B发生的概率,P(A∪B)表示事件A和事件B同时发生的概率,P(A∩B)表示事件A和事件B的交集发生的概率。
二、数学表达概率的加法公式可以通过一个简单的例子来解释。
假设有一个袋子里有10个红球和10个蓝球,从中随机抽取一个球。
事件A表示抽到红球,事件B表示抽到蓝球。
我们想要计算抽到红球或抽到蓝球的概率。
根据概率的加法公式,我们有:P(A∪B)=P(A)+P(B)-P(A∩B)=P(A)+P(B)-0=P(A)+P(B)因为事件A和事件B是互斥事件(即事件A和B不可能同时发生),所以它们的交集概率为0。
三、应用1.投掷一枚硬币,事件A表示正面朝上,事件B表示反面朝上。
根据概率的加法公式,P(A∪B)=P(A)+P(B)=1/2+1/2=1、因为硬币必定会正面或反面朝上,所以这两个事件的联合概率为12.商品的退货率为5%,其中1%是因为质量问题而退货,4%是因为其他原因而退货。
事件A表示退货,事件B表示退货原因是因为质量问题。
根据概率的加法公式,P(A∪B)=P(A)+P(B)-P(A∩B)=0.05+0.01-0.01=0.05、因为退货率是5%,所以退货的概率为0.053.甲、乙、丙三个人分别参加了一场考试,考试合格率分别为50%,60%和70%。
事件A表示甲合格,事件B表示乙合格。
根据概率的加法公式,P(A∪B)=P(A)+P(B)-P(A∩B)=0.5+0.6-0.3=0.8、因为甲和乙的合格率加起来大于1,所以两个人中至少有一个合格的概率为0.8概率的加法公式的应用不仅仅局限于以上几个例子,它可以帮助我们计算更复杂的事件概率。
在进行概率计算时,我们可以利用概率的加法公式将问题拆解成多个简单事件,然后分别计算每个事件的概率,最后再进行求和运算,得到所求的概率。
因此,熟练掌握和灵活运用概率的加法公式对于理解和解决概率问题非常重要。
概率论与数理统计公式1.概率公式:
1.1概率加法公式:
P(A∪B)=P(A)+P(B)-P(A∩B)
1.2条件概率公式:
P(A,B)=P(A∩B)/P(B)
P(B,A)=P(A∩B)/P(A)
1.3乘法公式:
P(A∩B)=P(A)*P(B,A)
P(A∩B)=P(B)*P(A,B)
1.4全概率公式:
P(A)=ΣP(A,B_i)*P(B_i)
1.5贝叶斯公式:
P(B,A)=P(A,B)*P(B)/P(A)
2.数理统计中的基本概念和公式:
2.1样本均值:
样本均值 = (x1 + x2 + ... + xn) / n
2.2总体均值:
总体均值=(样本均值*n-x)/(n-1)
2.3样本方差:
样本方差 = Σ(xi - x̄)² / (n-1)
2.4总体方差:
总体方差= Σ(xi - µ)² / N
2.5样本标准差:
样本标准差=√(样本方差)
2.6总体标准差:
总体标准差=√(总体方差)
2.7样本中位数:
样本中位数=(x[n/2]+x[(n+1)/2])/2(当n为偶数时)
2.8样本四分位数:
样本四分位数Q1=x[(n+3)/4]
样本四分位数Q3=x[(3n+1)/4]
2.9标准正态分布的累积分布函数的逆函数:
Zα=Φ^(-1)(α),其中Φ(z)表示标准正态分布的累积分布函数。
2.10卡方分布的累积分布函数的逆函数:
x^2α=χ^2^(-1)(α),其中χ^2(x)表示卡方分布的累积分布函数。
概率论的加法公式摘要:1.引言2.加法公式的定义3.加法公式的性质4.加法公式的证明5.加法公式的应用6.结论正文:1.引言概率论是研究随机现象的理论,它为我们提供了一种量化和描述不确定性的方法。
在概率论中,加法公式是一个非常重要的公式,它可以帮助我们计算多个事件同时发生的概率。
本文将介绍概率论的加法公式,包括其定义、性质、证明以及应用。
2.加法公式的定义加法公式是指,对于任意两个事件A 和B,它们的联合概率可以表示为P(A∪B)=P(A)+P(B)-P(A∩B)。
其中,P(A) 表示事件A 的概率,P(B) 表示事件B 的概率,P(A∩B) 表示事件A 和B 的交集概率。
3.加法公式的性质加法公式具有以下几个性质:(1) 完备性:对于任意事件A,有P(A)=P(A∪Φ),其中Φ表示全集。
(2) 可数性:对于任意可数个事件A1,A2,…,An,有P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An)。
(3) 分配律:对于任意事件A、B、C,有P(A∪B∪C)=P(A∪B)+P(A∪C)+P(B∪C)。
4.加法公式的证明为了证明加法公式,我们需要引入一个重要的概念——事件的和事件。
设A 和B 是两个事件,A∪B 表示事件A 和事件B 的和事件,即包含在事件A 中或者包含在事件B 中的所有可能结果的集合。
我们可以通过以下步骤证明加法公式:(1) 证明P(A∪B)A∪B(2) 证明P(A∪B)A∩B(3) 证明P(A∩B)A∪B(4) 得出P(A∪B)=P(A)+P(B)-P(A∩B)5.加法公式的应用加法公式在实际应用中有很多重要作用,例如在概率论的计算、风险管理、数据分析等领域都有广泛的应用。
通过加法公式,我们可以更方便地计算多个事件同时发生的概率,从而更好地描述和分析随机现象。
6.结论概率论的加法公式是一个非常重要的公式,它可以帮助我们计算多个事件同时发生的概率。
《概率的一般加法公式(选学)》教案目标导航了解两个互斥事件的概率加法公式.重难点突破重点:了解两个互斥事件的概率加法公式.难点:学会怎样计算互斥事件的概率.每课一记1.一般的,如果n个事件A1、A2、……An彼此互斥,那么事件“A1+A2+……+An”发生的概率,等于这n个事件分别发生的概率之和,即P(A1+A2+……+An)=P(A1)+P(A2)+……+P(An)2.对立事件:其中必有一个发生的两个互斥事件.对立事件性质:P(A)+P(A)=1或P(A)=1-P(A)经典例题[例1]今有标号为1、2、3、4、5的五封信,另有同样标号的五个信封,现将五封信任意地装入五个信封中,每个信封一封信,试求至少有两封信与信封标号一致的概率.[解析]至少有两封信与信封的标号配对,包含了下面两种类型:两封信与信封标号配对;3封信与信封标号配对;4封信与信封标号配对,注意:4封信配对与5封信配对是同一类型.现在我们把上述三种类型依次记为事件A1、A2、A3,可以看出A1、A2、A3两两互斥,记“至少有两封信与信封标号配对”为事件A,事A发生相当于A1、A2、A3有一个发生,所以用公式P(A)=P(A1)+P(A2)+P(A3)可以计算P(A).[答案]设至少有两封信配对为事件A,恰好有两封信配对为事件A1,恰有3封信配对为事件A2,恰有4封信(也就是5封信)配对为事件A3,则事件A 等于事件A1+A2+A3,且A1、A2、A3事件为两两互斥事件,所以P(A)=P(A1)+P(A2)+P(A3).5封信放入5个不同信封的所有放法种数为,其中正好有2封信配对的不同结果总数为;正好有3封信配对的不同结果总数为;正好有4封信(5封信)全配对的不同结果总数为1;而且出现各种结果的可能性相同所以:P(A1)=(C25 2)÷A55=61,P(A2)=C 25÷A 55=121 P(A3)=1201,所以:P(A)=P(A1)+P(A2)+P(A3)=12031. 教学任务1.巩固经典习题,牢记本节重要知识点.2.完成课后习题.。
概率计算公式解释
概率计算公式是一种数学工具,用于计算事件发生的可能性。
在概率论中,常用的概率计算公式有三个:加法法则、乘法法则和条件概率。
1.加法法则:加法法则用于计算两个事件中至少发生一个的概率。
如果事件A和事件B是互斥的(即不能同时发生),那么加法法则可以表示为:
P(A或B)=P(A)+P(B)
其中,P(A)表示事件A发生的概率,P(B)表示事件B发生的概率。
2.乘法法则:乘法法则用于计算两个事件同时发生的概率。
如果事件A和事件B是独立事件(即一个事件的发生不受另一个事件的影响),那么乘法法则可以表示为:P(A且B)=P(A)*P(B)
其中,P(A)表示事件A发生的概率,P(B)表示事件B发生的概率。
3.条件概率:条件概率用于计算在已知某个事件发生的条件下,另一个事件发生的概率。
条件概率可以表示为:
P(A|B)=P(A且B)/P(B)
其中,P(A|B)表示在事件B发生的条件下事件A发生的概率,P(A且B)表示事件A 和事件B同时发生的概率,P(B)表示事件B发生的概率。
以上是概率计算中常用的三个公式,它们可以帮助我们计算事件发生的可能性。
1。
概率论的加法公式
摘要:
1.概率论的加法公式的概述
2.加法公式的数学表达式
3.加法公式的实际应用
4.结论
正文:
【1.概率论的加法公式的概述】
概率论的加法公式是概率论中的一种基本公式,用于计算多个事件同时发生的概率。
它是概率论中一个重要的理论工具,被广泛应用于各种实际问题的解决中。
【2.加法公式的数学表达式】
加法公式的数学表达式为:P(A∪B) = P(A) + P(B) - P(A∩B)。
其中,P(A ∪B) 表示事件A 和事件B 同时发生的概率,P(A) 和P(B) 分别表示事件A 和事件B 单独发生的概率,P(A∩B) 表示事件A 和事件B 同时发生的概率。
【3.加法公式的实际应用】
加法公式在实际应用中具有很大的价值。
例如,在保险领域,可以用加法公式计算出各种保险事故发生的概率,从而为保险公司提供决策依据。
在计算机科学中,加法公式可以用于计算各种算法的概率复杂度,从而为算法的设计和优化提供理论依据。