轴对称及中心对称变换、平移及旋转变换
- 格式:doc
- 大小:84.00 KB
- 文档页数:4
关于“平移、旋转、轴对称”学习价值的思考引言在数学学科中,平移、旋转和轴对称是三个基本的几何变换方法。
学习这些变换方法不仅可以提升学生的空间想象能力,还能培养他们的逻辑思维和问题解决能力。
本文将从学习这些变换方法的意义、方法及应用等方面进行探讨,并分析其在实际生活和职业发展中的价值。
一、学习平移、旋转、轴对称的意义1.1 提升空间想象能力平移、旋转和轴对称是几何变换中最基本的三种变换方法。
通过学习这些方法,学生可以在脑海中形成对空间的直观想象,从而更好地理解和描述几何形状的移动、旋转和对称性。
1.2 培养逻辑思维和问题解决能力学习平移、旋转、轴对称需要学生进行推理和抽象思维,培养他们的逻辑思维和问题解决能力。
通过分析和解决与这些变换相关的问题,学生可以锻炼自己的思维能力,并培养解决问题的方法和策略。
1.3 基础建设与后续学习平移、旋转、轴对称是几何学习的基础,掌握这些基本变换方法对学习后续内容,如相似性、对称图形等有着重要的作用。
只有牢固掌握了这些基本内容,才能更好地理解和应用更复杂的几何概念和方法。
二、学习平移、旋转、轴对称的方法2.1 平移平移是指在平面上将一个图形沿着某个方向移动一段距离,但其形状和大小保持不变。
学习平移的方法可以通过探索物体的位置关系和移动规律,培养学生观察和分析的能力,并通过解决与平移相关的问题来巩固知识。
2.2 旋转旋转是指将一个图形绕着某个中心点旋转一定角度,使其形状和大小保持不变。
学习旋转的方法可以通过观察和分析旋转后图形的特点和规律,培养学生旋转变换的感性认识,并通过解决相关的旋转问题来巩固知识。
2.3 轴对称轴对称是指图形绕着某个中心轴进行对称,两侧的部分完全相同。
学习轴对称的方法可以通过观察和分析轴对称图形的特点和规律,培养学生对对称性的理解,并通过解决相关的轴对称问题来巩固知识。
三、平移、旋转、轴对称的应用3.1 实际生活中的应用平移、旋转和轴对称在实际生活中有着广泛的应用。
初中阶段的五种图形变换初中阶段,我们学习了五种图形变换:平移变换、轴对称变换、中心对称变换、旋转变换、位似变换。
这些变换都不改变图形的形状,只是改变了其位置。
其中前四种变换还不改变图形的大小。
下面,让我们逐一回顾与归纳。
一、平移1.平移的定义:在平面内,将一个图形沿某一方向移动一定的距离,这样的图形变换称为平移。
(提示:决定平移的两个要素:平移方向和平移距离。
)2.平移的性质:(1)平移前后,对应线段平行(或共线)且相等;(2)平移前后,对应点所连线段平行(或共线)且相等;(3)平移前后的图形是全等形。
(提示:平移的性质也是平移作图的依据。
)3.用坐标表示平移:在平面直角坐标系中,将点(x,y)向右或向左平移a (a>0)个单位,可以得到对应点(x+a,y)或(x-a,y);向上或向下平移b (b>0)个单位,可以得到对应点(x,y+b)或(x,y-b)。
二、轴对称变换1.轴对称图形:(1)定义:把一个图形沿一条直线对折,如果直线两旁的部分能够完全重合,那么就称这个图形为轴对称图形,这条直线就是它的对称轴。
(提示:对称轴是一条直线,而不是射线或线段,对称轴不一定只有一条。
)(2)性质:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;②轴对称图形对称轴两旁的图形是全等形。
2.轴对称:(1)定义:把一个图形沿一条直线翻折,如果它能与另一个图形重合,那么这两个图形关于这条直线(成轴)对称,这条直线就是它们的对称轴,两个图形中的对应点叫做对称点。
(2)性质:①关于某直线对称的两个图形是全等形;②如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某直线对称,如果它们的对应线段或延长线相交,则交点必在对称轴上。
(3)判定:①根据定义(提示:成轴对称的两个图形必全等,但全等的两个图形不一定对称);②如果两个图形对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
平移旋转与对称平移旋转与对称的定义与性质平移、旋转和对称是几何学中重要的概念和操作。
它们是描述和变换图形位置和形状的基本工具。
本文将详细介绍平移、旋转和对称的定义及其性质。
一、平移的定义与性质平移是指将一个图形沿着一定方向移动一定距离,而不改变其形状和方向。
下面是平移的定义与性质:定义:平移是指将一个图形中的所有点,按照同样的方向和距离,同时保持相对位置的变换操作。
性质:1. 平移不改变图形的大小、形状和方向。
2. 平移后的图形与原图形之间的对应关系保持不变。
3. 平移是一个向量运算,可以用向量表示平移的方向和距离。
4. 任意两个平移可以合成为一个平移。
二、旋转的定义与性质旋转是指将一个图形绕着某个固定点旋转一定角度,使得旋转后的图形与原图形相似但方向和位置发生变化。
下面是旋转的定义与性质:定义:旋转是指将一个图形绕着固定点旋转一定角度,使得旋转前后图形中的对应点的距离保持不变。
性质:1. 旋转不改变图形的大小、形状和方向。
2. 旋转后的图形与原图形之间的对应关系保持不变。
3. 旋转可以按顺时针或逆时针方向进行。
4. 旋转是一个变换操作,可以用旋转中心和旋转角度来描述。
三、对称的定义与性质对称是指将一个图形分割成两个部分,使得两个部分关于某条直线、点或中心对称。
下面是对称的定义与性质:定义:对称是指将一个图形按照某个轴线或点进行折叠或旋转,使得折叠或旋转后的图形与原图形重合。
性质:1. 对称不改变图形的大小、形状和方向。
2. 对称后的图形与原图形之间的对应关系保持不变。
3. 图形关于对称轴对称时,对称轴上的点不动;图形关于对称中心对称时,对称中心不动。
4. 对称操作是可逆的,即对称两次会得到原来的图形。
综上所述,平移、旋转和对称是几何学中常用的图形变换操作。
它们各自有着特定的定义和性质,可以描述和变换图形的位置和形状。
理解和掌握平移、旋转和对称的定义与性质,将有助于我们在解决几何问题和应用几何知识时进行准确的操作和分析。
初中数学知识归纳旋转平移与对称的性质初中数学知识归纳—旋转、平移与对称的性质学习数学是培养学生逻辑思维和解决问题的能力的重要途径之一。
在初中数学中,旋转、平移和对称是三个基本的几何变换,它们具有广泛的应用价值。
本文将对旋转、平移和对称的性质进行归纳总结,以帮助初中生更好地理解和运用这些知识。
一、旋转的性质旋转是指物体绕着某个轴心或点旋转一定角度后,其位置和形状发生改变。
旋转变换可以分为顺时针和逆时针两种方式。
下面我们来总结旋转的一些性质:1. 旋转不改变物体的大小和形状,只改变其位置和方向。
2. 旋转有叠加效应,即多次旋转等价于一次旋转,旋转次数的奇偶性决定了旋转后物体是否“回到原位”。
3. 绕一个中心点旋转180°,相当于进行一次对称变换。
4. 绕一个中心点旋转360°,相当于保持不变。
5. 旋转操作可以用角度、弧度制或单位圆来描述。
二、平移的性质平移是指物体在平面上沿着某个方向保持形状和大小不变地移动一定的距离。
平移变换的重要性在于可以帮助我们描述物体在坐标平面上的位置变化。
以下是平移的一些性质:1. 平移保持物体的大小、形状和方向不变,只改变其位置。
2. 不同的平移方式可以组合,得到新的平移操作。
3. 平移操作可以使用向量来表示,向量的模表示平移的距离,方向表示平移的方向。
4. 在平面上,任何平行线上的两个点经过平移后,仍然保持平行。
5. 平移的逆操作是将物体向相反的方向移动相同的距离。
三、对称的性质对称是指物体按照某条直线或某个点的位置关系呈现镜像对称。
对称变换在初中数学中被广泛应用于图形的构造和性质的证明。
以下是对称的一些性质:1. 镜面对称:物体按照一条直线呈现镜像对称,此直线称为对称轴。
对称轴把物体分成两个部分,其中一个部分关于对称轴对称复制得到另一个部分。
2. 点对称:物体按照一个点呈现镜像对称,此点称为对称中心。
对称中心把物体分成两个部分,其中一个部分关于对称中心对称复制得到另一个部分。
轴对称平移与旋转中心对称汇报人:日期:CATALOGUE 目录•轴对称平移•旋转中心对称•对比与联系•实例分析与应用•总结与展望01轴对称平移定义将图形沿着一条直线进行翻转,使得图形两侧的部分能够完全重合,这条直线就被称为对称轴。
性质轴对称平移具有方向性,翻转前后的两个图形是全等形,即它们的形状和大小完全相同。
定义与性质分类与举例水平轴对称、垂直轴对称、斜轴对称。
分类将图形沿着水平直线进行翻转,得到的图形与原图形在水平方向上对称。
例如,人的左右两侧在水平方向上是对称的。
1. 水平轴对称将图形沿着垂直直线进行翻转,得到的图形与原图形在垂直方向上对称。
例如,人的上下两侧在垂直方向上是对称的。
2. 垂直轴对称将图形沿着斜直线进行翻转,得到的图形与原图形在斜方向上对称。
例如,蝴蝶的翅膀在斜方向上是对称的。
3. 斜轴对称在几何学、物理学、工程学等领域中,轴对称平移被广泛应用于各种形状和结构的建模和分析。
例如,在建筑学中,许多建筑物都采用了轴对称的设计,如天安门、故宫等。
应用在自然界中,许多物体也具有轴对称的特性,如雪花、蝴蝶等。
此外,在电路板设计、机械零件设计等领域中,轴对称平移也是非常重要的概念。
实例应用与实例02旋转中心对称定义旋转中心对称是指一个图形围绕某一点旋转180度后与原来的图形重合。
性质旋转中心对称具有旋转不变性,即图形上任意一点到旋转中心的距离相等,并且旋转角度为180度。
定义与性质分类旋转中心对称分为两类,一类是关于一个点的旋转,另一类是关于一条直线的旋转。
举例圆形和正方形都是关于中心的旋转中心对称图形,而矩形则是关于对边中点的旋转中心对称图形。
应用旋转中心对称在现实生活中有着广泛的应用,如建筑设计、艺术造型、机械制造等领域。
实例例如,摩天大楼、旋转木马、汽车轮子等都利用了旋转中心对称的原理。
03对比与联系03旋转中心对称将图形围绕某个点进行旋转,这种变换通常用于描述图形在空间中的旋转对称性。
二次函数专题训练(平移、旋转、轴对称变换)一、二次函数图象的平移、旋转(只研究中心对称)、轴对称变换 1、抛物线的平移变换:一般都是在顶点式的情况下进行的。
y=a(x-h)²+k y=a(x-h)²+k ±my=a(x-h)² y=a(x-h ±m)²+k 练习:(1)函数图象沿y 轴向下平移2个单位,再沿x 轴向右平移3个单位,得到函数__________________的图象。
(2)抛物线225y x x =-+向左平移3个单位,再向下平移6个单位,所得抛物线的解析式是 。
2、抛物线的旋转变换(只研究中心对称):一般都是在顶点式的情况下进行的。
(1)将抛物线绕其顶点旋转180︒(即两条抛物线关于其顶点成中心对称) ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+。
(2)将抛物线绕原点旋转180︒(即两条抛物线关于原点成中心对称)()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-。
练习:(1)抛物线2246y x x =-+绕其顶点旋转180︒后,所得抛物线的解析式是 (2)将抛物线y =x 2+1绕原点O 旋转180°,则旋转后抛物线的解析式为( ) A .y =-x 2 B .y =-x 2+1 C .y =x 2-1 D .y =-x 2-1 3、抛物线的轴对称变换: 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;练习:已知抛物线C 1:2(2)3y x =-+(1)抛物线C 2与抛物线C 1关于y 轴对称,则抛物线C 2的解析式为 (2)抛物线C 3与抛物线C 1关于x 轴对称,则抛物线C 3的解析式为 总结:根据平移、旋转、轴对称的性质,显然无论作何种变换,抛物线的形状一定不会发生变化,因此a 永远不变。
对称、平移和旋转变换在平面几何的解证题中,往往由条件的隐蔽和分散,以至找不到解证题的途径,而恰当地运用几何变换,就可以使“分散”变为“集中”,“隐蔽”变为“明显”,使解证题思路清晰起来。
这一讲我们着重学习三种主要的合同变换——对称变换、平移变换、旋转变换及其在解证几何题中的运用。
一、对称变换对称变换包括轴对称变换和中心对称变换。
将一个图形以一条定直线为轴作对称图形,这种变换是轴对称变换。
将一个图形以一个定点为中心作对称图形,这种变换是中心对称变换(也是旋转变换的特殊情况)。
对称变换的特点是不改变图形的形状和大小,只是改变了图形的位置。
一条直线或一个点就确定了一个对称变换。
例1:试证:等腰三角形的底角相等。
已知:如图(1),在△ABC 中,AB=AC ,求:∠B=∠C分析:(1)由于等腰三角形是一个轴对称图形,则可添加对称轴证之,如作AD ⊥BC 于D ,再证△ABD ≌△ACD 即可。
(2)更妙的是,把△ABC 看作是以AD 为轴的两个重叠在一起的三角形由△ABC ≌△ACB 换出∠B=∠C 。
例2:如图(2),四边形ABCD 中,AB ∥CD ,且有AB=AC=AD=213cm ,BC=5cm ,求BD 的长。
分析:由于△ACD 是等腰三角形,以底边CD 中垂线NM 为轴补全图形,做出△ABC 关于MN 的对称△AED ,则AB=AD=AE=213,所以∠BDE=Rt ∠,而DE=BC=5,所以BD=12。
例3:如图(3),在梯形ABCD 中,AD ∥BC ,点E 是CD 的中点,EF ⊥A B 于F ,则S ABCD 梯形=AB •EF 。
分析:由于DE=EC ,因此,以E 为定点作A 的对称点G ,则△ADE 与△GCE 关于点E 对称,且B ,C ,G 三点共线,所以S BEG ∆=S ABE ∆=21AB •EF ,故S ABCD 梯形= AB •EF 。
二、平移变换平移变换是将一个图形向某一个方向移动一个距离得到一个新的图形,其平移前后的线段保持相等且平行,角也保持相等。
二次函数专题训练(平移、旋转、轴对称变换)一、二次函数图象的平移、旋转(只研究中心对称)、轴对称变换1、抛物线的平移变换:一般都是在顶点式的情况下进行的。
抛物线的上下平移:________________________y=a(x-h)²+k y=a(x-h)²+k ±m抛物线的左右平移:________________________y=a(x-h)²+k y=a(x-h ±m)²+k练习:(1)函数图象沿y 轴向下平移2个单位,再沿x 轴向右平移3个单位,得到函数__________________的图象。
(2)抛物线225y x x =-+向左平移3个单位,再向下平移6个单位,所得抛物线的解析式是 。
2、抛物线的旋转变换(只研究中心对称):一般都是在顶点式的情况下进行的。
(1)将抛物线绕其顶点旋转180︒(即两条抛物线关于其顶点成中心对称)()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+。
(2)将抛物线绕原点旋转180︒(即两条抛物线关于原点成中心对称)()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-。
练习:(1)抛物线2246y x x =-+绕其顶点旋转180︒后,所得抛物线的解析式是(2)将抛物线y =x 2+1绕原点O 旋转180°,则旋转后抛物线的解析式为( )A .y =-x 2B .y =-x 2+1C .y =x 2-1D .y =-x 2-13、抛物线的轴对称变换:关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 练习:已知抛物线C 1:2(2)3y x =-+(1)抛物线C 2与抛物线C 1关于y 轴对称,则抛物线C 2的解析式为(2)抛物线C 3与抛物线C 1关于x 轴对称,则抛物线C 3的解析式为总结:根据平移、旋转、轴对称的性质,显然无论作何种变换,抛物线的形状一定不会发生变化,因此a 永远不变。
中考数学复习专项知识总结—图形的变换(中考必备)1、平移(1)定义:把一个图形沿着某一直线方向移动,这种图形的平行移动,简称为平移。
(2)平移的性质:平移后的图形与原图形全等;对应角相等;对应点所连的线段平行(或在同一条直线上)且相等。
(3)坐标的平移:点(x,y)向右平移a个单位长度后的坐标变为(x+a,y);点(x,y)向左平移a个单位长度后的坐标变为(x-a,y);点(x,y)向上平移a个单位长度后的坐标变为(x,y+a);点(x,y)向下平移a个单位长度后的坐标变为(x,y-a)。
2、轴对称(1)轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称。
这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
(2)轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形。
这条直线叫做它的对称轴。
(3)轴对称的性质:关于某条直线对称的图形是全等形。
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(4)线段垂直平分线的性质线段垂直平分线上的点到这条线段两个端点的距离相等;与一条线段两个端点距离相等的点,在线段的垂直平分线上。
(5)坐标与轴对称:点(x,y)关于x轴对称的点的坐标是(x,-y);点(x,y)关于y轴对称的点的坐标是(-x,y);3、旋转(1)旋转定义:把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转。
点O叫做旋转中心,转动的角叫做旋转角。
如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。
旋转的性质:①对应点到旋转中心的距离相等;①对应点与旋转中心所连线段的夹角等于旋转角;①旋转前后的图形全等。
(2)中心对称定义:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称。
轴对称及中心对称变换、平移及旋转变换
变换是极为重要的数学思维方法,利用几何变换解题在数学竞赛中经常用到,本文介绍几何变换中的基本变换:轴对称及中心对称变换、平移及旋转变换。
一、轴对称变换
把一个图形F沿着一直线l折过来,如果它能够与另一个图形F'重合,我们就说图形F 和F'关于这条直线l对称。
两个图形中的对应点叫做关于这条直线l的对称点,这条直线l叫做对称轴,如右图。
轴对称图形有以下两条性质:
1.对应点的连线被对称轴垂直平分;
2.对应点到对称轴上任一点的距离相等。
例1 凸四边形ABCD的对角线AC、BD相交于O,且AC⊥BD,已知OA>OC,OB>OD,求证:BC+AD>AB+CD。
分析:题中条件比较分散,故考虑“通过反射使条件相对集中”,注意到AC⊥BD,于是以BD(AC)为对称轴,将BC(AD)反射到BC'(AD'),把有关线段集中到△ABO内,利用三角形中两边之和大于第三边易证得结果。
证明:∵AC⊥BD,且OA>OC,OB>OD,于是以BD为对称轴,作C点关于直线BD为对称点C',以AC为对称轴作D点关于AC 的对称点D'。
连结BC',AD'相交于E点,则BC= BC',AD=AD',CD=C'D'。
∴ BE+AE>AB ①
EC'+ED'>C'D' ②
①+②,得BC'+AD'>AB+C'D'。
∴BC+AD>AB+CD。
注:(1)本题的结论对于凹四边形仍然成立;
(2)还可将四边形推广成2n边形,也有类似结论。
其证明思路也完全相同,读者试自证。
二、中心对称变换
如果平面上使任意一对对应点A,A'的连线段都通过一个点O,且被这一点所平分,则这个变换叫做中心对称变换(亦称点反射或点对称),点O叫对称中心,点A和A'叫做关于对称中心的对称点,如果一个图形F在中心对称变换下保持不变(还是自身),则这个图形F 叫做中心对称图形。
中心对称变换有以下性质:
(1)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
这个性质的逆命题也成立,即“如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么两个图形关于这一点对称。
(2)关于中心对称的两个图形,对应线段平行(或在同一条直线上)且相等。
例3 如图所示,地面上有不在同一直线的A、B、C三点,一只青蛙位于地面异于A、B、C的P点,第一步青蛙从P跳到P关于A的对称点P1,第二步从P1跳到P1关于B的对称点
P2,第三步从P2跳到P2关于C的对称点P3,第四步从P3跳到关于A的对称点P4,……,以下跳法类推,问青蛙跳完第1992步,落在地面的什么位置?
解:青蛙每跳一次,就是完成一个中心对称变换,如图,根据中位线定理,有PP22AB
P3P5①
并且由P2C=CP3,P6C=CP5,可知P3P5P2P6是平行四边形。
∴P2P6P2P。
②
由①、②及平行公理可知P和P6重合,这表明青蛙每跳6步,都可以回到起点P,而1992是6的倍数,因此跳完第1992步青蛙应落在P点。
三、平移变换
把图形F上的所有的点都按一定方向移动一定距离d形成图形F',则由F到F'的变换叫做平移变换。
一般地,题设条件中有彼此平行的线段,或有造成平行的因素,又需要将有关线段与角由分散到相应集中,使图形中诸元素之间的联系变得明显,可以采用平移变换。
例4 设P是平行四边形ABCD内部的一点,∠PAB=∠PCB,求证:∠PBA=∠PDA。
证明:如图,∵AB CD,故可将△ABP沿AD方向平移至△DCP'处,∴AP DP',BP
CP'。
因此四边形APP'D,BCP'P都是平行四边形,
∴∠P'DC=∠PAB,∠P'CD=∠PBA,
∠BCP=∠CPP',∠PDA=∠DPP',
又∠PAB=∠PCB,∴∠CPP'=∠P'DC,
∴C、P'、D、P四点共圆,
∠DPP'=∠P'CD,
∴∠PBA=∠PDA。
例5 由平行四边形ABCD的顶点作它的高AE和AF,已知EF=a,AC=b,求点A到△AEF 的三条高的交点H的距离。
解:∵AD∥BC,AE⊥BC,过C作CG⊥AD垂足为G,(即将AE平移到CG),得矩形AECG,连结FG,EG,CG,得EG=AC=b,AG EC。
∵EH⊥AF,CF⊥AF,FH⊥AE,CE⊥AE。
∴EH∥CF,EC∥HF,ECFH为平行四边形,因此EC HF。
又AGEC,∴AG HF,AH FG是平行四边形,∴AH GF
又∵AH⊥EF,∵GF⊥EF,因此△EFG是直角三角形。
注:本题是经过若干平移而获得解决的。
四、旋转变换
将平面图形F绕这平面内的一个定点O旋转一个定角α而形成的图形F',由F到F'这种变换称旋转变换。
点O称旋转中心,旋转中心是旋转变换下唯一位置不变点,α称旋转角。
运用旋转变换的关键在于选好旋转中心和旋转角。
旋转变换在解题中的主要应用有以下两个方面:
(1)在题设条件与结论间联系不易沟通或条件分散不易集中利用的情形下,通过旋转变换起到铺路架桥作用。
(2)图形错综复杂,但图形中等量关系多,可通过旋转变换,移动部分图形,使题设中隐蔽着的关系明朗起来,从而找到解题途径。
例6 设O是等边三角形ABC内一点,已知∠AOB=115°,∠BOC=125°,求以线段OA、OB、OC为边构成的三角形的各角。
解:以B为中心,将△BOA逆时针方向旋转60°,则点A落在点C,点O落在点D,连结OD,CD,∵OB=BD,∠OBD=60°,
∴△BOD是等边三角形;则OD=OB,
又CD=OA,
∴△COD是以OA,OB,OC为边构成一个三角形。
∴∠BOC=125°,∠BOD=60°。
∴∠COD=65°。
又∵∠BDC=∠AOB=115°,而∠ODB=60°,
∴∠ODC=55°,从而∠OCD=180°-65°-55°= 60°。
故求得以线段OA,OB,OC为边构成三角形的各角为65°,55°,60°。
注:在有等边三角形的条件下考虑旋转变换,常常把旋转角度选为60°;在有正方形的条件下,考虑旋转变换,常常把旋转角度选为90°,以达到目的。