圆与圆之间的位置关系
- 格式:ppt
- 大小:1.33 MB
- 文档页数:15
圆与圆的位置关系的判断方法一、圆与圆的位置关系的判断方法有两种,一种是~d r 法,另一种是判别式法.以下详解这两种方法. 1、~d r 法根据两圆心距与两圆径的大小关系来判断:①外离d R r ; ②外切d R r ; ③相交R r dR r ;④内切dR r ; ⑤内含dR r .其中,R 是大圆的半径,r 是小圆的半径,12||d C C .如果是等圆,那么两圆就没有内切和内含这种位置关系,而有个重合的情况.如果两圆是等圆,那么两圆的位置关系只有外离,外切,相交和重合四种. 2、判别式法已知22111:0C xy D x E y F 1⊙,半径为r 和222222:0C xy D x E y F ⊙,半径为R ,且R r 判断两圆的位置关系:两圆的方程相减,得 121212()()()0D D x E E y F F简记为 0AxBy C其中220A B (1)将(1)式代入其中一个圆的方程中,消去x 或y ,可得一个关于y 或x 一元二次方程,记为20ay by c 或20ax bx c,其中0a①0两圆有两个公共点(相交); ②0两圆有一个公共点(内切或外切); ③0两圆无公共点(内含或外离); 以上②③中,如何区分内切和外切,内含和外离呢?请看以下数学思想方法: 将问题转化为小圆的圆心与大圆的位置关系(亦即点圆位置关系)来判断! 如果圆心1C 在圆2C 的外面,即dR ,那么两圆外切或外离;如果圆心1C 在圆2C 的内部,即d R ,那么两圆内切或内含. 二、两圆方程作差的意义 两圆作差后得到的方程:121212()()()0D D x E E y F F简记为 0AxBy C其中220A B (1)其意义为①当两圆相交时,方程(1)是相交弦所在的直线方程; ②当两圆相切时,方程(1)是过切点的公切线的方程; ③当两圆没有公共点时,方程(1)没有特别的含义. 三、应用举例 例题1 已知22:2440C xy x y 1⊙和222:1090C x y x ⊙,判断两圆的位置关系,若两圆相交,则求出相交弦所在直线的方程.【解析】方法一:~d r 法 圆心1(1,2)C ,半径3r ,圆心2(5,0)C ,半径4R ,则1,7R r R r两圆圆心距为22(15)(20)210(1,7)d所以,两圆相交,将两圆的方程相减可得 124130x y 即为相交弦的方程.方法二:判别式法将两圆的方程相减,得 124130x y 即 1334y x(2) 将(2)式代入222:1090C xy x ⊙得21604723130x x 24724160313224640所以,两圆相交,相交弦所在直线的方程是124130x y .【变式训练】 已知22:650C xy y 1⊙和222:870C x y x ⊙,判断两圆的位置关系,若两圆相交,则求出相交弦所在直线的方程;若两圆相切,则求出过切点的公切线的方程.例题2 已知22:4210C xy x y 1⊙和222:142410C x y x y ⊙,判断两圆的位置关系,若两圆相交,则求出相交弦所在直线的方程;若两圆相切,则求出过切点的公切线的方程.【解析】方法一:~d r 法 圆心1(2,1)C ,半径2r ,圆心2(7,1)C ,半径3R ,则1,5R r R r两圆圆心距为 22(72)(11)5dR r所以,两圆外切,将两圆的方程相减可得 4x 即为所求公切线的方程.方法二:判别式法将两圆的方程相减,得 4x (3)将(3)式代入222:142410C xy x y ⊙得2210y y 2(2)4110所以,两圆相切.小圆圆心1(2,1)C ,坐标代入222:142410C xy x y ⊙中,有222214241211422141170x y x y所以,两圆是外切关系,所求公切线的方程4x .【变式训练】 1.已知22:1C xy 1⊙和222:6890C x y x y ⊙,判断两圆的位置关系,若两圆相交,则求出相交弦所在直线的方程;若两圆相切,则求出过切点的公切线的方程. 2.已知22:46120C x y x y 1⊙和222:680C x y x y⊙,判断两圆的位置关系.。
圆与圆位置关系知识点
在几何学中,圆与圆之间的位置关系涉及到它们的相对位置和相交情况。
以下
是一些关于圆与圆位置关系的重要知识点。
1. 内切:当一个圆完全位于另一个圆内部,并且两个圆的边界相切于一个点时,我们称这两个圆为内切圆。
内切圆的半径小于外切圆的半径。
2. 外切:当一个圆完全位于另一个圆外部,并且两个圆的边界相切于一个点时,我们称这两个圆为外切圆。
外切圆的半径大于内切圆的半径。
3. 相离:当两个圆没有任何交点且没有相切点时,我们称这两个圆为相离圆。
4. 相交:当两个圆有交点时,我们称这两个圆为相交圆。
a. 两个圆相交于两个不同的点时,我们称这种相交为普通相交。
b. 当两个圆的圆心重合且半径相等时,这两个圆相交于一条直径线,我们称
这种相交为重合相交。
5. 同心圆:当两个圆的圆心重合但半径不相等时,我们称这两个圆为同心圆。
这些是圆与圆位置关系的基本知识点,它们帮助我们理解圆的排列方式并解决
与圆相关的几何问题。
了解这些知识点可以为我们进一步学习和应用几何学提供基础。
图1扇形、圆与圆的位置关系一、圆和圆的位置关系.1、外离、外切、相交、内切、内含(包括同心圆)这五种位置关系的定义.(1)外离: 两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.(2)外切: 两个圆有惟一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时, 叫做这两个圆外切.这个惟一的公共点叫做切点.(3)相交: 两个圆有两个公共点,此时叫做这个两个圆相交.(4)内切: 两个圆有惟一的公共点,并且除了这个公共点以外,一个圆上的都在另一个圆的内部时,叫做这两个圆内切.这个惟一的公共点叫做切点.(5)内含: 两个圆没有公共点, 并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含.两圆同心是两圆内的一个特例. 2、相切两圆的性质:如果两个圆相切,那么切点一定在连心线上. 3、 相交两圆的性质:相交两圆的连心线垂直平分公共弦. 二、弧长及扇形的面积1、圆周长公式: 圆周长C=2πR (R 表示圆的半径)2. 弧长公式: 弧长180R n l π= (R 表示圆的半径, n 表示弧所对的圆心角的度数)3、扇形定义:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形.4、弓形定义:由弦及其所对的弧组成的图形叫做弓形. 弓形弧的中点到弦的距离叫做弓形高. 5、圆的面积公式.2R S π= (R 表示圆的半径) 6、扇形的面积公式:扇形的面积3602R n S π=扇形 (R 表示圆的半径, n 表示弧所对的圆心角的度数)※弓形的面积公式:(如图5) (1)当弓形所含的弧是劣弧时, 三角形扇形弓形S S S -= (2)当弓形所含的弧是优弧时, 三角形扇形弓形S S S += (3)当弓形所含的弧是半圆时, 扇形弓形S R S ==221π提高试题1、如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为( )A. (4+cm B. 9 cmC. D.cm第1题 第2题2、如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,B 为AN 弧的中点,点P 是直径MN 上一个动点,则PA+PB 的最小值为( )A .22B .2C .1D .23、已知两圆的半径为R,r 分别是方程X 2-5X+6=0两根,两圆的圆心距为1,两圆的位置关系是( ) A.外离 B.外切 C.内切 D.相交4、已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于 ( )A .8πB .9πC .10πD .11π 5、一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是 ( ).A .1B .34C .12D .136、 现有一个圆心角为,半径为的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).该圆锥底面圆的半径为( )A .B .C .D .7、如图,正方形ABCD 内接于⊙O ,点P 在劣弧AB 上,连接DP ,DP 交AC 于点Q .若QO=PQ ,则QA QC的值为( ) (A )132-(B )32(C )23+(D )23+8、已知锐角△ABC 的顶点A 到垂心H 的距离等于它的外接圆的半径,则∠A 的度数是( ) (A )30° (B )45° (C )60° (D )75°9、如图,已知平行四边形ABCD ,过A 、B 、C 三点的圆交AD 于E ,且与CD 相切。
圆与圆的位置关系知识要点:1.圆与圆的位置关系设两圆半径为R和r,圆心距为d,则两圆的位置关系如下:2.分切线定义:和两个圆都相切的直线叫做两圆的公切线。
当两圆在公切线同旁时,这样的公切线叫做外公切线;当两圆在公切线两旁时,这样的公切线叫做内公切线。
公切线长:公切线上的两个切点间的距离叫做公切线的长。
定理:两圆的两条外分切线长相等,两圆的两条内公切线长也相等。
外公切线的长为;内公切线的长为。
3.相交两圆的性质定理:相交两圆的连心线垂直平分两圆的公共弦。
4.相切两圆的性质定理:相切两圆的连心线经过切点。
1.圆和圆的位置关系(设两圆半径分别为R和r,同心距为d)(1)两圆外离d>R+r;(2)两圆外切d=R+r;(3)两圆相交R-r<d<R+r;(4)两圆内切d=R-r;(5)两圆内含d<R-r。
(同心圆(6)是一种内含的特例)2.有关性质:(1)连心线:通过两圆圆心的直线。
如果两个圆相切,那么切点一定在连心线上。
(2)公共弦:相交两圆的连心线垂直平分两圆的公共弦。
(3)公切线:和两个圆都相切的直线,叫做两圆的公切线。
两个圆在公切线同旁两个圆在公切线两旁3.已知两圆半径分别为R、r,同心距为d,填定下表:名称公共点数圆心距半径关系公切线条数内外外离d=R+r相交d=R-r内含一星级题:1.如果两圆有且只有两条公切线,那么这两圆的位置关系是()A.外离 B.外切 C.相交 D.内含2.如果两圆半径分别为3㎝和5㎝,圆心距为2㎝,则两个圆的位置关系为()。
A.外离 B.外切 C.相交 D.内切3.已知⊙O1和⊙O2内切,它们的半径分别为2㎝和3㎝,则两圆圆心距O1O2= ㎝。
4.半径分别为3㎝和4㎝的两圆外切,那么这两圆的圆心距为㎝。
5.已知半径为R的两个等圆的圆心距为d,那么当两圆外切时,d与R满足的关系式是。
6.已知两圆半径分别为5㎝和2㎝,它们的圆心距为7㎝,则两圆位置关系为。
7.已知:两圆⊙O1与⊙O2的圆心距O1O2=5㎝,两圆的半径分别为㎝和㎝,则这两圆的位置关系是。
圆与圆的位置关系【基础知识点】12例题1、如图 ,⊙A与⊙B内切,⊙A与⊙C外切,⊙A、⊙B、⊙C的半径分别是,2+,∠BAC=60°,求BC的长。
2-62,2623、两圆的公切线:和两个圆都想切的直线叫做两圆的公切线,包括外公切线、内公切线。
(1)外公切线:两个圆在公切线同旁时,这样的公切线叫做外公切线。
(2)内公切线:两个圆在公切线两旁时,这样的公切线叫做内公切线。
(3)公切线的长:公切线上两个切点间的距离叫做公切线的长。
4、两圆相交的重要定理:相交两圆的连心线垂直平分公共弦。
例题2、已知⊙1和⊙2的半径分别为8cm和5cm,它们相交于A、B,且AB=6cm,求圆心距O1O2.(自己作图,考虑两种情况,分类讨论:圆心在AB同侧或者异侧)例题3、如图,已知直角三角形ABC的斜边AB为4,内切圆半径为26 ,求三角形ABC的面积。
例题4、(2011•南京)如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.P为BC的中点,动点Q从点P出发,沿射线PC方向以2cm/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t s.(1)当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;(2)已知⊙O为△ABC的外接圆.若⊙P与⊙O相切,求t的值.例题5、(2008•威海)如图,点A,B在直线MN上,AB=11厘米,⊙A,⊙B的半径均为1厘米.⊙A 以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r=1+t(t≥0).(1)试写出点A,B之间的距离d(厘米)与时间t(秒)之间的函数表达式;(2)问点A出发后多少秒两圆相切?例题6、(2011•绵阳)如图,在梯形ABCD中,AB∥CD,∠BAD=90°,以AD为直径的半圆O与BC 相切.(1)求证:OB⊥OC;(2)若AD=12,∠BCD=60°,⊙O1与半⊙O外切,并与BC、CD相切,求⊙O1的面积.例题7、(2007•南充)如图是某城市一个主题雕塑的平面示意图,它由置放于地面l上两个半径均为2米的半圆与半径为4米的⊙A构成.点B、C分别是两个半圆的圆心,⊙A分别与两个半圆相切于点E、F,BC长为8米.求EF的长.例题8(2011•黄石)已知⊙O1与⊙O2相交于A、B两点,点O1在⊙O2上,C为⊙O2上一点(不与A,B,O1重合),直线CB与⊙O1交于另一点D.(1)如图(1),若AD是⊙O1的直径,AC是⊙O2的直径,求证:AC=CD;(2)如图(2),若C是⊙O1外一点,求证:O1C丄AD;(3)如图(3),若C是⊙O1内的一点,判断(2)中的结论足否成立.例题9、(2006•成都)已知:如图,⊙O与⊙A相交于C,D两点,A,O分别是两圆的圆心,△ABC内接于⊙O,弦CD交AB于点G,交⊙O的直径AE于点△CDE,连接BD.(1)求证:△ACG∽△DBG;(2)求证:AC2=AG•AB;6,15,且CG:CD=1:4,求AB和BD的长(3)若⊙A,⊙O的直径分别为5【课堂练习】一、填空与选择1、(2010•宁夏)如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是__米.2、(2010•菏泽)如图,在正方形ABCD中,O是CD边上的一点,以O为圆心,OD为半径的半圆恰好与以B为圆心,BC为半径的扇形的弧外切,则∠OBC的正弦值为________3、(2008•绍兴)如图中的圆均为等圆,且相邻两圆外切,圆心连线构成正三角形,记各阴影部分面积从左到右依次为S1,Ss,S3,…,Sn,则S12:S4的值等于__________。