第九章细菌感染的分子生物学检验
- 格式:ppt
- 大小:539.00 KB
- 文档页数:12
是的,要做PCR。
首先你要提出细菌的DNA。
方法如下:1、液体培养及保种:从斜面上挑取菌苔于液体培养基中放摇床上震荡(转速160r/min)培养16小时。
吸取菌液于1.5ml的经过灭菌的EP 管中,再加甘油(30-40%)进行保种。
(-80摄氏度保藏2年)2、提取DNA(CTAB法):(1)取1.5ml菌液于1. 5ml离心管中,12000r/min离心2min,弃上清。
(2)向沉淀物中加入350ul双蒸水,重新悬浮沉淀。
(3)加入20ul10%SDS和3ul的蛋白酶K(20mg/ml),溶菌酶3ul,混匀,于50℃温育1h。
(4)加入50ul 5mol/L NaCl溶液,充分混匀,再加入50ul CTAB/NaCl 溶液,混合后再65℃温育30min。
(6)冷却后加入等体积的酚(沉淀蛋白质):氯仿:异戊醇(增强酚的作用)(25:24:1),小心上下颠倒混匀,12000r/min离心5min,将上清液转移到新的EP管,重复此步骤2-3次,直至分层界面无白色沉淀。
(7)加入等体积的氯仿:异戊醇(24:1),小心颠倒混匀,12000r/min 离心5min将上清液转移到新的EP管。
(纯化作用)(8)加入0.6倍体积的异丙醇,轻轻混合直到DNA沉淀下来,12000r/min离心15min弃上清。
(9)向离心管中加入75%乙醇,12000r/min离心5min洗涤DNA沉淀,小心弃上清,重复洗涤1次,弃上清将离心管倒置于吸水纸上,晾干。
(10)加入50ul(双蒸水)/ TE Buffer溶解DNA于4℃保存。
(11)电泳检测6、PCR扩增:(细菌的通用引物为27F和1492R)将提取得到的DNA 进行PCR扩增,电泳检测扩增得到的16S rDNA(如果菌类分明,条带清晰,PCR原液可直接送去测序,双向测通,得到测序序列后到NCBI的BLAST页面比对,得出鉴定结果)7、酶切带型分型确定操作单元:将扩增产物用HhaI和HaeIII两种限制性内切酶进行酶切,电泳检测酶切产物,酶切带型相同的分为一个操作单元。
16S rDNA鉴定细菌的方法细菌16S rDNA鉴定主要分为7个部分:1.提取细菌基因组DNA,2.设计/选择引物进行PCR扩增,电泳检测纯度与大小。
3.琼脂糖凝胶电泳分离4.胶回收目的片段5.目的片段测序。
6.BLAST比对获取相似片段。
7.构建系统进化树试剂:1、培养基:通常选择组分简单且细菌生长良好的培养基(培养基组分过于复杂会影响DNA 的提取效果,也可以在裂解细菌前用TE缓冲液对菌体进行洗涤。
)。
2、1M Tris-HCl (pH7.4, 7.6, 8.0)(1L):121.1g Tris,加浓盐酸约(70ml, 60ml, 42ml),高温高盐灭菌后,室温保存。
冷却到室温后调pH,每升高1℃,pH大约下降0.03个单位。
3、0.5M EDTA(pH8.0)(1L):186.1g Na2EDTA•2H2O,用NaOH调pH至8.0(约20g),高温高压灭菌,室温保存。
4、10×TE Buffer(pH7.4,7.6,8.0)(1L):组分:100 mM Tris-HCl,10 mM EDTA。
1M Tris-HCl (pH7.4,7.6,8.0)取100ml,0.5M EDTA(pH8.0)取20ml。
高温高压灭菌,室温保存。
1×TE Buffer用10×TE Buffer稀释10倍即可。
5、10%SDS(W/V):称10g,68℃加热溶解,用浓盐酸调pH至7.2。
室温保存。
用之前在65℃溶解。
配置时要戴口罩。
6、5M NaCl:称292.2gNaCl,高温高压灭菌,4℃保存。
7、CTAB/NaCl(10%CTAB,0.7M NaCl):溶解4.1g NaCl,加10g CTAB(十六烷基三甲基溴化铵),加热搅拌。
用之前在65℃溶解。
8、氯仿/异戊醇:按氯仿:异戊醇=24:1(V/V)的比例加入异戊醇。
9、酚/氯仿/异戊醇(25:24:1):按苯酚与氯仿/异戊醇=1:1的比例混合Tris-HCl平衡苯酚与氯仿/异戊醇。
16S rDNA鉴定细菌的方法细菌16S rDNA鉴定主要分为7个部分:1.提取细菌基因组DNA,2.设计/选择引物进行PCR扩增,电泳检测纯度与大小。
3.琼脂糖凝胶电泳分离4.胶回收目的片段5.目的片段测序。
6.BLAST比对获取相似片段。
7.构建系统进化树试剂:1、培养基:通常选择组分简单且细菌生长良好的培养基(培养基组分过于复杂会影响DNA 的提取效果,也可以在裂解细菌前用TE缓冲液对菌体进行洗涤。
)。
2、1M Tris-HCl (pH7.4, 7.6, 8.0)(1L):121.1g Tris,加浓盐酸约(70ml, 60ml, 42ml),高温高盐灭菌后,室温保存。
冷却到室温后调pH,每升高1℃,pH大约下降0.03个单位。
3、0.5M EDTA(pH8.0)(1L):186.1g Na2EDTA•2H2O,用NaOH调pH至8.0(约20g),高温高压灭菌,室温保存。
4、10×TE Buffer(pH7.4,7.6,8.0)(1L):组分:100 mM Tris-HCl,10 mM EDTA。
1M Tris-HCl (pH7.4,7.6,8.0)取100ml,0.5M EDTA(pH8.0)取20ml。
高温高压灭菌,室温保存。
1×TE Buffer用10×TE Buffer稀释10倍即可。
5、10%SDS(W/V):称10g,68℃加热溶解,用浓盐酸调pH至7.2。
室温保存。
用之前在65℃溶解。
配置时要戴口罩。
6、5M NaCl:称292.2gNaCl,高温高压灭菌,4℃保存。
7、CTAB/NaCl(10%CTAB,0.7M NaCl):溶解4.1g NaCl,加10g CTAB(十六烷基三甲基溴化铵),加热搅拌。
用之前在65℃溶解。
8、氯仿/异戊醇:按氯仿:异戊醇=24:1(V/V)的比例加入异戊醇。
9、酚/氯仿/异戊醇(25:24:1):按苯酚与氯仿/异戊醇=1:1的比例混合Tris-HCl平衡苯酚与氯仿/异戊醇。
菌种鉴定的分子生物学方法——16S rDNA 测序鉴定菌种一. 原理细菌中包括有三种核糖体RNA ,分别为5S rRNA 、16S rRNA 、23S rRNA 。
5S rRNA 虽易分析,但核苷酸太少,没有足够的遗传信息用于分类研究;23S rRNA 含有的核苷酸数几乎是16S rRNA 的两倍,分析较困难。
而16S rRNA 相对分子量适中,又具有保守性和存在的普遍性等特点,序列变化与进化距离相适应,序列分析的重现性极高,因此,现在一般普遍采用16S rRNA 作为序列分析对象对微生物进行测序分析。
16S rRNA 对应于基因组DNA 上的一段基因序列称为16S rDNA ,rRNA 基因由保守区和可变区组成。
在细菌的16SrDNA 中有多个区段保守性,根据这些保守区可以设计出细菌通用物,可以扩增出所有细菌的16SrDNA 片段,并且这些引物仅对细菌是特异性的,也就是说这些引物不会与非细菌的DNA 互补,而细菌的16S rDNA 可变区的差异可以用来区分不同的菌。
因此,16SrDNA 可以作为细菌群落结构分析最常用的系统进化标记分子。
随着核酸测序技术的发展,越来越多的微生物的16S rDNA 序列被测定并收入国际基因数据库中,只要将基因序列放入基因数据库进行对比,便可快速的鉴定所测定的细菌种属,这样用16Sr DNA 作目的序列进行微生物群落结构分析更为快捷方便。
二. 技术路线该方法包括细菌基因组DNA 提取、16S rDNA 特异引物PCR 扩增、扩增产物纯化、DNA 测序、序列比对等步骤。
具体技术路线如下:三. 方法步骤(一)细菌基因组DNA 提取(酶解法)1. 挑取单菌落接种到10 mL LB 培养基中37℃振荡过夜培养。
细菌培养液基因组DNADNA 提取PCR 扩增16S rDNA 片段片段回收连接克隆载体阳性克隆鉴定 测序2. 取2 mL培养液到2 mLEP管中,8000 rpm离心2分钟后倒掉上清液。
分子生物学检验完整版分子生物学检验是一门在生命科学领域中具有重要地位的学科,它通过对生物大分子,如核酸和蛋白质的研究和分析,为疾病诊断、遗传咨询、法医学鉴定、农业和畜牧业的改良等众多领域提供了关键的技术支持和科学依据。
首先,让我们来了解一下分子生物学检验的基本原理。
其核心在于利用分子生物学的技术手段,对生物样本中的核酸(DNA 和 RNA)和蛋白质进行检测和分析。
DNA 是遗传信息的携带者,它的序列和结构变化能够反映出个体的遗传特征、疾病易感性以及疾病的发生发展过程。
RNA 则在基因表达调控中起着重要作用,对 RNA 的分析可以帮助我们了解基因的活性和表达水平。
而蛋白质作为生命活动的执行者,其种类、数量和结构的变化也与各种生理和病理过程密切相关。
在实际应用中,分子生物学检验涵盖了众多技术方法。
其中,聚合酶链式反应(PCR)技术是最为常见和重要的之一。
PCR 能够在体外快速扩增特定的 DNA 片段,使其数量达到可检测的水平。
通过设计针对特定基因或序列的引物,PCR 可以用于检测病原体的存在、基因突变的鉴定以及基因分型等。
实时荧光定量 PCR 技术则在 PCR 的基础上,实现了对扩增产物的实时定量监测,大大提高了检测的准确性和灵敏度。
另一个重要的技术是核酸杂交。
它基于核酸分子碱基互补配对的原理,通过将待测核酸与已知序列的探针进行杂交,从而检测待测样本中是否存在特定的核酸序列。
这种技术在基因诊断、病毒检测以及遗传性疾病的筛查中发挥着重要作用。
除了核酸检测,蛋白质的分析也是分子生物学检验的重要组成部分。
蛋白质免疫印迹(Western blotting)技术可以检测特定蛋白质的表达水平和分子量。
酶联免疫吸附测定(ELISA)则能够对蛋白质进行定量分析,广泛应用于疾病标志物的检测和药物研发等领域。
在疾病诊断方面,分子生物学检验展现出了巨大的优势。
例如,对于传染病的诊断,它可以快速准确地检测出病原体的核酸,如新型冠状病毒的核酸检测,为疫情防控提供了有力的支持。
分子生物学技术在细菌分子特征鉴定中的应用细菌是普遍存在于地球上的微生物,它们可以在环境中起着重要的作用。
但是,某些细菌可以引起疾病,导致健康问题。
鉴定细菌种类和特征对于诊断疾病和预防传染病至关重要。
近年来,分子生物学技术在细菌分子特征鉴定中的应用得到了长足的发展。
本文将探讨分子生物学技术在细菌分子特征鉴定中的应用,并介绍其在健康领域的重要性。
一、分子生物学技术介绍分子生物学技术是一系列基于分子水平的实验方法,用于探讨生命的分子基础。
其中,PCR(聚合酶链式反应)和DNA测序被广泛应用于检测和鉴定细菌种类和特征。
PCR是一种快速、高灵敏度和高特异性的DNA扩增技术,可以在短时间内扩增极少数量的DNA模板。
DNA测序技术可以解读DNA序列,进一步了解DNA之间的相互作用和功能。
二、PCR在细菌鉴定中的应用PCR技术特别适用于细菌鉴定。
目前,常用的PCR技术有16S rRNA PCR、18S rRNA PCR、ITS PCR、gyrB PCR和groEL PCR等。
其中,16S rRNA PCR被广泛应用于细菌鉴定中,因为16S rRNA在细菌中存在着高度保守性。
此外,16S rRNA PCR还有以下优点:(1)细菌基因组中16S rRNA序列长度大约为1500 bp,便于PCR扩增;(2)细菌的16S rRNA序列在不同物种之间具有较大差异性,具有很强的特异性;(3)16S rRNA序列具有足够的变异性,可以用于构建系统发生树和分析细菌进化关系。
三、DNA测序在细菌鉴定中的应用除了PCR技术,DNA测序也被广泛应用于细菌鉴定。
DNA测序技术包括Sanger测序和高通量测序。
Sanger测序是一种传统的DNA测序方法,它可以测序较小的DNA材料。
高通量测序则是一种新的DNA测序方法,它可以同时快速测序数百万条DNA序列。
DNA测序技术可以用于鉴定细菌物种和检测细菌基因组中的不同。
例如,在细菌群体中检测特定基因、分析基因组结构和比较基因组表达的差异性。