人机工程之人机界面--战机机座舱
- 格式:ppt
- 大小:1.07 MB
- 文档页数:11
人机界面-人机界面的相关知识导语:人机界面(Human Machine Interaction,简称HMI),又称用户界面或使用者界面,是人与计算机之间传递、交换信息的媒介和对话接口,是计算机系统的重要组成部分。
人机界面(Human Machine Interaction,简称HMI),又称用户界面或使用者界面,是人与计算机之间传递、交换信息的媒介和对话接口,是计算机系统的重要组成部分。
是系统和用户之间进行交互和信息交换的媒介,它实现信息的内部形式与人类可以接受形式之间的转换。
凡参与人机信息交流的领域都存在着人机界面。
人机界面是指人和机器在信息交换和功能上接触或互相影响的领域或称界面所说人机结合面。
信息交换,功能接触或互相影响,指人和机器的硬接触和软触,此结合面不仅包括点线面的直接接触,还包括远距离的信息传递与控制的作用空间。
人机结合面是人机系统中的中心一环节,主要由安全工程学的分支学科安全人机工程学去研究和提出解决的依据,并过安全工程设备工程学,安全管理工程学以及安全系统工程学去研究具体的解决方法手段措施安全人机学。
它实现信息的内部形式与人类可以接受形式之间的转换。
凡参与人机信息交流的领域都存在着人机界面。
大量运用在工业与商业上,简单的区分为“输入”(Input)与“输出”(Output)两种,输入指的是由人来进行机械或设备的操作,如把手、开关、门、指令(命令)的下达或保养维护等,而输出指的是由机械或设备发出来的通知,如故障、警告、操作说明提示等,好的人机接口会帮助使用者更简单、更正确、更迅速的操作机械,也能使机械发挥最大的效能并延长使用寿命,而市面上所指的人机接口则多界狭义的指在软件人性化的操作接口上。
由于受传统观念的影响,很长一段时间里,人机界面一直不为软件开发人员所重视,认为这纯粹是为了取悦用户而进行的低级活动,没有任何实用价值。
评价一个应用软件质量高低的唯一标准,就是看它是否具有强大的功能,能否顺利帮助用户完成他们的任务。
科普文:战斗机座舱演觔战斗机座舱是飞行员的工作场所,是人机系统的交联界面,是有人作战飞机的核心组成部分。
飞行员从座舱里的显示装置、音频信号和外景观察获得信息,经过判断,发出指令,驾驶飞机,执行任务,同时座舱又必须满足飞行员在各种条件下高效工作、维持身心健康和机能、应急救生等功能要求。
随着科学技术尤其是计算机科学和电子信息科学两大技术的迅猛发展,作为战斗机设计核心的座舱,其布局形式和设计理念也随科学技术的进步不断发展。
本文对喷气式战斗机座舱的发展进行简要介绍,总结各代战斗机座舱的设计特点,分析座舱布局和设计理念的发展趋势,并对未来战斗机座舱的设计提出展望。
战斗机发展历程按照西方的一种划分标准,将二战后出现的喷气式战斗机按照性能进行划分:第一代战斗机出现时间大概为1944~1953年,主要特点是能超声速飞行,采用尾随攻击,典型的代表为苏联的米格-15、米格-17以及美国的P-80和F-86等。
第二代战斗机主要是1950至1970研制的战斗机,主要特点是能全天候作战,采用导弹进行中距拦射,典型的代表为苏联的米格-19、米格-21以及美国的F-4、F-5等。
第三代战斗机主要是1970年后研制的飞机,主要特点是强调亚跨声速机动性,具备下视下射能力,典型的代表为苏联的米格-29、苏-27以及美国的F-15、F-16等。
1997年9月7日美国F-22首飞后,战斗机发展进入第四代,主要特点是具备高隐身性能、非常规机动及超声速巡航。
座舱布局演变战斗机座舱布局设计的焦点是仪表板布局,而仪表则是仪表板布局的物质基础。
第一代喷气式战斗机座舱内完全是机械操作装置和机电显示仪表,例如米格17座舱和F-86座舱。
中央驾驶杆以机械连杆的方式操纵飞机舵面控制俯仰和滚转,脚蹬也以机械连杆的方式操纵方向舵控制偏航。
座舱内基本采用第二代机电伺服仪表(螺旋桨战斗机使用第一代简单机械和电气仪表),仪表板布局采用标准的“盲目飞行仪表板”,即将地平仪、空速表、高度表、陀螺半罗盘、转弯仪和升降速度表这6个仪表装在仪表板中央,发动机仪表排列在两侧。
浅谈人机界面分析浅谈人机界面分析关键词:人机界面根据事故统计分析,人的因素是影响现代航空安全的重要因素。
全世界约有2 /3以上的飞行事故的直接原因是飞行机组的失误。
在我国16年民航飞行事故中,人的因素达64%,如果再考虑到空中交通管制和机务方面原因,这个比率约为80%~90%。
因此,人的因素不可替代地成为航空安全的关键因素。
人的因素(Human Factors),在我国民用航空界也称人为因素。
它是按照人的解剖学、生理学和心理学等方面的特性,设计“机”,并使之符合人的高效、健康、安全、舒适的各种要求;优化人—机—环境系统,使三者达到最佳配合,以最小的劳动代价,换取最大的经济效果。
现代飞机的自动化程度越来越高,自动控制系统已经达到了相当完善的程度。
同时,现代飞机也是应用人机工程学最充分的产品。
人们已经体验到现代飞机驾驶舱内宜人的环境和自动化带来的高效与舒适,以及相当高的安全可靠性。
技术的重大改善,使人的因素的重要作用更显得突出。
一、SHEL模型人处于特定的人机界面,可以用SHEL模型来描述。
人为失误容易产生于以人为中心的与硬件、软件、环境以及其他人之间的接点上。
这些接点也被称为SHEL模型的四个界面:L—S界面、L—H 界面、L—E界面、L—L界面。
其中S(Software)代表软件,H(Hardware)代表硬件,E(Envi ronment)代表环境,L(Liveware)代表人。
L—S界面是指人与软件之间的关系,研究合理的操作程序、检查单程序以及应急程序等问题,以便简化作业环节,减少人的劳动负荷和劳动强度。
L—H界面是指人与硬件之间的关系研究人与显示器、操纵器之间的相互适应问题,以及使人机界面设计更为适合人的要求。
L —E界面指人与其所处的环境的关系,研究特定环境中的噪声、振动、高低温、加速度、生物节律、时差等对人的影响,以及适应过程和反应规律。
L—L界面指人与人之间的关系,即工作中人与其相关的人之间的配合协调关系。
汽车座舱设计人机工程学的应用随着科技的进步和人们对舒适性的要求提高,汽车座舱设计在汽车工业中变得越来越重要。
一个好的座舱设计可以提升驾驶员的体验,增加驾驶的安全性和舒适性。
为了满足这一需求,人机工程学在汽车座舱设计中得到了广泛的应用。
一. 驾驶员座椅设计在汽车座舱设计中,驾驶员座椅是至关重要的组成部分。
人机工程学考虑了驾驶员的身体特点和行为习惯,以提供最佳的坐姿支撑和舒适性。
座椅的高度、角度、座垫的形状和硬度都需要根据驾驶员的身体特征进行调整,以减少驾驶过程中的疲劳和压力。
同时,座椅的可调节功能也可以满足不同驾驶员的需求,使得每个人都可以找到最适合自己的坐姿。
二. 控制台布局设计控制台是驾驶员和乘客与汽车各种功能的交互界面,人机工程学在控制台布局设计中发挥了重要作用。
科学合理的控制台布局可以提升驾驶员的操作效率和安全性。
例如,将常用的控制按钮和开关放置在驾驶员易于触及的位置,减少眼睛离开道路的时间,帮助驾驶员更加专注于驾驶。
此外,控制按钮的大小、颜色和标识符的清晰度也需要根据人眼的特点进行合理设计,以便驾驶员能够快速准确地识别和操作。
三. 仪表板设计仪表板在汽车座舱设计中起到了重要的信息传递和显示作用。
人机工程学在仪表板设计中考虑了驾驶员对信息的接受和理解能力,以及驾驶过程中对各种指示的需求。
仪表板的布局应该简洁明了,不同功能的指示灯和显示屏应该根据重要性和紧急性进行合理的排列。
此外,颜色和亮度的搭配也需要符合人眼的感知特点,以便驾驶员在各种光线条件下都能清晰地读取仪表板上的信息。
四. 控制手柄和按钮设计在汽车座舱设计中,控制手柄和按钮的设计也需要遵循人机工程学的原则。
手柄和按钮的形状、大小和摆放位置应该符合驾驶员的常规动作习惯,以便驾驶员能够迅速准确地控制汽车各种功能。
此外,手柄和按钮的力学特性也需要考虑,以保证驾驶员在操作时的舒适感和精确度。
五. 声音和声音控制设计汽车座舱设计中的声音设计也是人机工程学所关注的重要方面。
人机界面设计之人机工程人机界面设计是将人和计算机之间的交互过程通过界面进行实现的一种设计方法。
人机工程是指研究人与机器之间的交互和接口设计的学科,其目标是改进人类与机器间的交互,减轻人的工作负担,提高工作效率和工作质量。
人机界面设计的目标是设计出既符合人类认知原理,又适应计算机功能的界面系统,使人机交互更加高效、方便、准确。
人机界面设计的核心思想是以人为中心,设计一个适应人的认知和操作习惯的界面系统。
在进行人机界面设计时,需要掌握人的认知心理学、人机操作学等相关知识,了解用户的需求和习惯,注重用户体验,同时结合计算机的功能和技术特点,进行有效的设计和实现。
在进行人机界面设计时,首先需要确定用户群体和需求分析。
不同的用户群体有不同的需求和习惯,因此需要深入了解用户的背景和特点,进行准确的需求分析。
通过调查、访谈、问卷等方式收集用户反馈和意见,进一步明确用户的需求,并将其转化为设计的指导原则。
接下来,需要确定界面的布局和元素设计。
布局的设计要考虑到界面的美观和功能实现,可以使用网格布局、居中布局等方式,使界面结构紧凑、整齐。
元素的设计要注重细节,包括图标、按钮、文本框等各种交互元素的设计,要符合用户的直觉和预期,易于识别和理解。
此外,人机界面设计还需要考虑反馈和提醒机制。
当用户进行操作时,需要及时给出反馈,告知用户操作是否成功、有无错误等。
可以通过弹窗、提示文字、声音等方式进行反馈,提高用户的操作准确性和满意度。
同时,还可以设计提醒机制,当用户忽略其中一操作或有待处理的事项时,及时提醒用户,确保用户的任务不被遗漏或延误。
最后,人机界面设计要进行测试和优化。
设计完成后,需要进行用户测试,了解用户对界面的反馈和意见,发现潜在的问题和不足之处,并进行相应的改进和优化。
可以通过实验室测试、仿真测试、使用者调查等方式进行测试,不断改进界面的功能和性能,提高用户的满意度和使用效果。
总之,人机界面设计是一项综合性的工程,需要通过人机工程学的知识和方法,结合用户需求和计算机技术,设计出高效、便捷、用户友好的界面系统。
飞机座舱设计与人机交互界面优化飞机座舱设计与人机交互界面优化一直是飞机制造商和航空公司的重要关注领域。
随着科技的进步和乘客对舒适度和体验的追求不断增强,机舱设计和人机交互界面的优化显得尤为重要。
本文将从座舱设计和人机交互界面优化两个方面进行探讨。
一、座舱设计优化座舱设计是考虑乘客舒适度和安全性的关键因素之一。
一个好的座舱设计可以提供良好的舒适度和便利性,从而提高旅客的体验和航空公司的竞争力。
下面是几个座舱设计的优化方案:1. 舒适性与空间设计:座舱内部的座椅、脚踏板、头枕等设备的舒适性设计是提高乘客满意度的关键因素之一。
座椅应该具备良好的头部和腰部支撑,脚踏板应该能够提供足够的伸展空间。
此外,还可以提供个人空间和娱乐设施,如电视屏幕、音频设备和个人插座,以增加乘客的舒适度和乐趣。
2. 照明设计:舱内的照明设计对于提高乘客体验和舒适度也起着重要的作用。
合理的照明设计可以提供舒适的氛围和光线,同时也要考虑到航班的不同阶段,如起飞、巡航和降落等,来调节照明的亮度和颜色,以满足乘客在不同时间的需求。
3. 噪音和振动控制:飞机内部的噪音和振动对乘客的舒适度和疲劳程度有着直接的影响。
因此,飞机制造商需要通过减少噪音源和振动源、使用隔音材料等方法来控制噪音和振动。
此外,座舱内还可以安装噪音消除设备和舒适度增强装置,如噪音消除耳机和按摩椅等,以提供更好的舒适性。
4. 安全性设计:座舱的安全性设计是飞机制造商和航空公司始终关注的问题。
安全性设计包括座椅、安全带、防护网、氧气面罩等设备的设计和布局,以及火灾探测和灭火系统的安装。
保证乘客的生命安全和航空器的飞行安全是座舱设计的首要任务。
二、人机交互界面优化人机交互界面是指乘客和座舱系统之间的交互界面,包括显示屏、按钮和控制装置等。
一个好的人机交互界面可以提高乘客对座舱系统的理解和操作的便利性,从而提供更好的用户体验。
下面是几个人机交互界面优化的方案:1. 显示界面设计:显示界面是乘客获取信息和进行操作的关键界面。