KMP算法
- 格式:ppt
- 大小:681.00 KB
- 文档页数:32
kmp算法原理KMP算法(Knuth-Morris-Pratt算法)是一种用于快速搜索字符串中某个模式字符串出现位置的算法,由Knuth, Morris 和 Pratt于1977年提出。
KMP算法的工作方式如下:首先,给定一个主串S和一个模式串P,KMP算法的第一步就是先构造一个新的模式串P,其中的每一项存储着P中每一个字符前面由不同字符串组成的最长前缀和最长后缀相同的子串。
接着,在S中寻找P,它会从S的第一个字符开始,如果匹配上,就继续比较下一个字符,如果不匹配上,就根据P中相应位置上保存的信息跳到特定位置,接着再开始比较,如此不断循环下去,直到从S中找到P为止。
KMP算法的思路特别巧妙,比较效率很高,它的复杂度为O(m+n),其中m为主串的长度,n为模式串的长度。
它取代了以前的暴力搜索算法,极大地提高了程序的性能。
KMP算法的实现过程如下:(1)首先确定模式串P的每一个字符,构造模式串P的next数组:next[i]存储P中第i个字符之前最长相同前缀和后缀的长度(P中第i个字符之前最长相同前缀和后缀不包括第i个字符);(2)接着从S中的第一个字符开始比较P中的每一个字符,如果字符不匹配,则采用next数组中保存的信息跳到特定位置,而不是暴力比较,以此不断循环,直到从S中找到P为止。
KMP算法是由Don Knuth, Vaughan Pratt和James Morris在1977年提出的。
它的思想是利用之前遍历过的P的信息,跳过暴力比较,可以把字符串搜索时间从O(m×n)降低到O(m+n)。
KMP算法在很多领域有着重要的应用,如文本编辑,模式匹配,编译器设计与多项式字符串匹配等等,都是不可或缺的。
KMP算法实现及优化方法KMP算法(Knuth-Morris-Pratt算法)是一种字符串匹配算法,用于在一个主文本字符串S内查找一个模式字符串P的出现位置。
KMP算法利用模式字符串中前缀和后缀的信息来跳过不必要的比较,从而提高查找的效率。
KMP算法的基本思想是,当出现不匹配时,通过已经部分匹配的信息,可以确定一部分字符是匹配的,可以直接跳过这部分已经匹配的字符,继续进行比较。
这个部分匹配的信息,就是模式字符串P自身的前缀和后缀的最长共有元素的长度,也称为前缀函数或部分匹配表。
1.构建部分匹配表:对模式字符串P进行分析,计算出每个位置的最长共有元素的长度,存储在一个部分匹配表中。
2.在主文本字符串S中进行匹配:从主文本字符串的第一个位置开始,逐个字符与模式字符串进行比较,如果字符相等则继续比较下一个字符,如果字符不相等,则根据部分匹配表跳过一部分字符,继续比较,直到找到匹配的位置或者比较结束。
优化KMP算法可以从两方面进行:1.改进部分匹配表的构建:KMP算法中最耗时的部分是部分匹配表的构建,可以对其进行优化。
一种优化方法是使用动态规划思想,利用已计算的部分匹配值来计算新的部分匹配值,从而减少计算量。
2.改进模式字符串的跳过方式:KMP算法中,当在主文本字符串S中比较到一些位置时,如果字符不匹配,则根据部分匹配表来跳过一部分字符。
可以根据具体问题的特点,利用更加有效的跳过方式来提高算法的效率。
一种常见的跳过方式是使用好后缀和坏字符的信息,来决定向右移动的步数。
总结起来,KMP算法是一种高效的字符串匹配算法,通过部分匹配表的构建和优化,可以在O(n+m)的复杂度内完成匹配。
在实际应用中,根据具体问题的特点,可以进一步改进KMP算法来提高效率。
kmp算法概念KMP算法概念KMP算法是一种字符串匹配算法,它的全称是Knuth-Morris-Pratt 算法。
该算法通过预处理模式串,使得在匹配过程中避免重复比较已经比较过的字符,从而提高了匹配效率。
一、基本思想KMP算法的基本思想是:当模式串与文本串不匹配时,不需要回溯到文本串中已经比较过的位置重新开始匹配,而是利用已知信息跳过这些位置继续匹配。
这个已知信息就是模式串自身的特点。
二、next数组1.定义next数组是KMP算法中最核心的概念之一。
它表示在模式串中当前字符之前的子串中,有多大长度的相同前缀后缀。
2.求解方法通过观察模式串可以发现,在每个位置上出现了相同前缀和后缀。
例如,在模式串“ABCDABD”中,第一个字符“A”没有任何前缀和后缀;第二个字符“B”的前缀为空,后缀为“A”;第三个字符“C”的前缀为“AB”,后缀为“B”;第四个字符“D”的前缀为“ABC”,后缀为“AB”;第五个字符“A”的前缀为“ABCD”,后缀为“ABC”;第六个字符“B”的前缀为“ABCDA”,后缀为“ABCD”;第七个字符“D”的前缀为“ABCDAB”,后缀为“ABCDA”。
根据上述观察结果,可以得到一个求解next数组的方法:(1)next[0]=-1,next[1]=0。
(2)对于i=2,3,...,m-1,求解next[i]。
①如果p[j]=p[next[j]],则next[i]=next[j]+1。
②如果p[j]≠p[next[j]],则令j=next[j],继续比较p[i]和p[j]。
③重复执行步骤①和步骤②,直到找到满足条件的j或者j=-1。
(3)通过上述方法求解出所有的next值。
三、匹配过程在匹配过程中,文本串从左往右依次与模式串进行比较。
如果当前字符匹配成功,那么继续比较下一个字符;否则利用已知信息跳过一些位置继续进行匹配。
具体地:(1)如果当前字符匹配成功,则i和j都加1。
(2)如果当前字符匹配失败,则令j=next[j]。
KMP算法(改进的模式匹配算法)——next函数KMP算法简介KMP算法是在基础的模式匹配算法的基础上进⾏改进得到的算法,改进之处在于:每当匹配过程中出现相⽐较的字符不相等时,不需要回退主串的字符位置指针,⽽是利⽤已经得到的部分匹配结果将模式串向右“滑动”尽可能远的距离,再继续进⾏⽐较。
在KMP算法中,依据模式串的next函数值实现字串的滑动,本随笔介绍next函数值如何求解。
next[ j ]求解将 j-1 对应的串与next[ j-1 ]对应的串进⾏⽐较,若相等,则next[ j ]=next[ j-1 ]+1;若不相等,则将 j-1 对应的串与next[ next[ j-1 ]]对应的串进⾏⽐较,⼀直重复直到相等,若都不相等则为其他情况题1在字符串的KMP模式匹配算法中,需先求解模式串的函数值,期定义如下式所⽰,j表⽰模式串中字符的序号(从1开始)。
若模式串p 为“abaac”,则其next函数值为()。
解:j=1,由式⼦得出next[1]=0;j=2,由式⼦可知1<k<2,不存在k,所以为其他情况即next[2]=1;j=3,j-1=2 对应的串为b,next[2]=1,对应的串为a,b≠a,那么将与next[next[2]]=0对应的串进⾏⽐较,0没有对应的串,所以为其他情况,也即next[3]=1;j=4,j-1=3 对应的串为a,next[3]=1,对应的串为a,a=a,所以next[4]=next[3]+1=2;j=5,j-1=4 对应的串为a,next[4]=2,对应的串为b,a≠b,那么将与next[next[4]]=1对应的串进⾏⽐较,1对应的串为a,a=a,所以next[5]=next[2]+1=2;综上,next函数值为 01122。
题2在字符串的KMP模式匹配算法中,需先求解模式串的函数值,期定义如下式所⽰,j表⽰模式串中字符的序号(从1开始)。
若模式串p为“tttfttt”,则其next函数值为()。
KMP算法的时间复杂度KMP算法是一种字符串匹配算法,它可以在一个主串中高效地查找所有匹配某个模式串的位置。
在计算机科学中,算法的时间复杂度是衡量算法执行时间与输入规模之间关系的度量。
在本文中,我们将深入探讨KMP算法的时间复杂度。
KMP算法的时间复杂度可通过三个方面来分析:预处理阶段的时间复杂度、匹配阶段的时间复杂度以及总体时间复杂度。
1. 预处理阶段的时间复杂度在KMP算法中,要先对模式串进行预处理,生成部分匹配表(Partial Match Table),也称为最长公共前后缀表(Longest Proper Prefix which is also Sufix,简称为LPS表)。
这个过程的时间复杂度是O(m),其中m是模式串的长度。
在生成部分匹配表的过程中,KMP算法利用了前缀与后缀的性质,通过动态规划的方式计算每个位置的最长匹配长度。
虽然这个过程需要遍历整个模式串,但是每次计算的操作都具有重叠子问题的性质,因此可以通过状态转移方程高效地计算出来。
2. 匹配阶段的时间复杂度在匹配阶段,KMP算法将主串与模式串进行逐个字符的比较,并利用已经生成的部分匹配表来决定下一次比较的位置。
这个过程的时间复杂度是O(n),其中n是主串的长度。
在匹配过程中,KMP算法利用了部分匹配表的信息,根据当前位置的匹配长度来确定下一次比较的位置。
通过避免无效的比较,KMP 算法可以在最坏情况下实现线性的时间复杂度。
3. 总体时间复杂度KMP算法的总体时间复杂度是预处理阶段的时间复杂度与匹配阶段的时间复杂度之和。
即O(m) + O(n) = O(m + n)。
从总体时间复杂度可以看出,KMP算法的执行时间与主串和模式串的长度之和成正比。
相比于朴素的字符串匹配算法,KMP算法可以大大提高匹配的效率,尤其是在模式串较长的情况下。
总结:KMP算法的时间复杂度是O(m + n),其中m是模式串的长度,n是主串的长度。
通过对模式串进行预处理并利用部分匹配表的信息,KMP算法可以高效地在主串中查找所有匹配模式串的位置。
kmp算法next数组求解原理
KMP算法是一种字符串匹配算法,它的核心是求解next数组。
next数组是一个跳转数组,用于在匹配字符串时快速跳过已经匹配
过的部分,提高匹配效率。
求解next数组的原理是在模式串中找到最长的既是前缀又是后
缀的字符串,称之为最长公共前缀后缀(LPS),然后将模式串在该字符串后面的位置作为下一次比较的起点。
例如,对于模式串 'ABCDABD',它的next数组为
[0,0,0,0,1,2,0]。
其中,next[0]=-1,表示在第一个字符匹配失败时,模式串的下一次比较应该从文本串的下一个字符开始。
next[1]=0,表示在第二个字符匹配失败时,模式串的下一次比较应该从模式串的第一个字符开始。
next[2]=0,表示在第三个字符匹配失败时,模式
串的下一次比较应该从模式串的第一个字符开始。
next[3]=0,表示
在第四个字符匹配失败时,模式串的下一次比较应该从模式串的第一个字符开始。
next[4]=1,表示在第五个字符匹配失败时,模式串的
下一次比较应该从模式串的第二个字符开始。
next[5]=2,表示在第
六个字符匹配失败时,模式串的下一次比较应该从模式串的第三个字符开始。
next[6]=0,表示在第七个字符匹配失败时,模式串的下一
次比较应该从模式串的第一个字符开始。
通过求解next数组,KMP算法能够在时间复杂度为O(m+n)的情
况下完成字符串匹配,其中m和n分别为模式串和文本串的长度。
- 1 -。
KMP算法详解KMP 算法详解KMP 算法是⼀个⼗分⾼效的字符串查找算法,⽬的是在⼀个字符串 s 中,查询 s 是否包含⼦字符串 p,若包含,则返回 p 在 s 中起点的下标。
KMP 算法全称为 Knuth-Morris-Pratt 算法,由 Knuth 和 Pratt 在1974年构思,同年 Morris 也独⽴地设计出该算法,最终由三⼈于1977年联合发表。
举⼀个简单的例⼦,在字符串 s = ababcabababca 中查找⼦字符串 p = abababca,如果暴⼒查找,我们会遍历 s 中的每⼀个字符,若 s[i] = p[0],则向后查询p.length() 位是否都相等。
这种朴素的暴⼒的算法复杂度为O(m×n),其中m和n分别是 p 和 s 的长度。
KMP 算法可以⽅便地简化这⼀查询的时间复杂度,达到O(m+n)。
1. PMT 序列PMT 序列是 KMP 算法的核⼼,即 Partial Match Table(部分匹配表)。
举个例⼦:char a b a b a b c aindex01234567PMT00123401PMT 的值是字符串的前缀集合与后缀集合的交集中最长元素的长度。
PMT[0] = 0: 字符串 a 既没有前缀,也没有后缀;PMT[1] = 0: 字符串 ab 前缀集合为 {a},后缀集合为 {b},没有交集;PMT[2] = 1: 字符串 aba 前缀集合为 {a, ab},后缀集合为 {ba, a},交集为 {a},交集元素的最长长度为1;PMT[3] = 2: 字符串 abab 前缀集合为 {a, ab, aba},后缀集合为 {bab, ab, b},交集为 {ab},交集元素的最长长度为2;…… 以此类推。
2. 算法主体现在我们已经知道了 PMT 序列的含义,那么假设在 PMT 序列已经给定的情况下,如何加速字符串匹配算法?tar 存储 s 的下标,从 0 开始,若 tar > s.length() - 1,代表匹配失败;pos 存储 p 的下标,从 0 开始,若 s[tar] != p[pos],则 pos ⾛到下⼀个可能匹配的位置。
KMP模式匹配算法KMP算法是一种字符串匹配算法,用于在一个主串中查找一个模式串的出现位置。
该算法的核心思想是通过预处理模式串,构建一个部分匹配表,从而在匹配过程中尽量减少不必要的比较。
KMP算法的实现步骤如下:1.构建部分匹配表部分匹配表是一个数组,记录了模式串中每个位置的最长相等前后缀长度。
从模式串的第二个字符开始,依次计算每个位置的最长相等前后缀长度。
具体算法如下:-初始化部分匹配表的第一个位置为0,第二个位置为1- 从第三个位置开始,假设当前位置为i,则先找到i - 1位置的最长相等前后缀长度记为len,然后比较模式串中i位置的字符和模式串中len位置的字符是否相等。
- 如果相等,则i位置的最长相等前后缀长度为len + 1- 如果不相等,则继续判断len的最长相等前后缀长度,直到len为0或者找到相等的字符为止。
2.开始匹配在主串中从前往后依次查找模式串的出现位置。
设置两个指针i和j,分别指向主串和模式串的当前位置。
具体算法如下:-当主串和模式串的当前字符相等时,继续比较下一个字符,即i和j分别向后移动一个位置。
-当主串和模式串的当前字符不相等时,根据部分匹配表确定模式串指针j的下一个位置,即找到模式串中与主串当前字符相等的位置。
如果找到了相等的位置,则将j移动到相等位置的下一个位置,即j=部分匹配表[j];如果没有找到相等的位置,则将i移动到下一个位置,即i=i+13.检查匹配结果如果模式串指针j移动到了模式串的末尾,则说明匹配成功,返回主串中模式串的起始位置;如果主串指针i移动到了主串的末尾,则说明匹配失败,没有找到模式串。
KMP算法的时间复杂度为O(m+n),其中m为主串的长度,n为模式串的长度。
通过预处理模式串,KMP算法避免了在匹配过程中重复比较已经匹配过的字符,提高了匹配的效率。
总结:KMP算法通过构建部分匹配表,实现了在字符串匹配过程中快速定位模式串的位置,减少了不必要的比较操作。
kmp next算法KMP算法(Knuth-Morris-Pratt Algorithm)是一种字符串匹配算法,它的核心思想是利用已经得到的匹配结果,尽量减少字符的比较次数,提高匹配效率。
本文将详细介绍KMP算法的原理、实现方法以及应用场景。
一、KMP算法的原理KMP算法的核心是构建next数组,用于指导匹配过程中的回溯操作。
next数组的定义是:对于模式串中的每个字符,记录它前面的子串中相同前缀和后缀的最大长度。
next数组的长度等于模式串的长度。
具体来说,KMP算法的匹配过程如下:1. 初始化主串指针i和模式串指针j为0。
2. 逐个比较主串和模式串对应位置的字符:- 若主串和模式串的字符相等,i和j同时后移一位。
- 若主串和模式串的字符不相等,根据next数组的值,将模式串指针j回溯到合适的位置,继续匹配。
二、KMP算法的实现KMP算法的实现可以分为两个步骤:构建next数组和利用next数组进行匹配。
1. 构建next数组:- 首先,next[0]赋值为-1,next[1]赋值为0。
- 然后,从第2个位置开始依次计算next[i],根据前一个位置的next值和模式串的字符进行判断:- 若前一个位置的next值为-1或模式串的字符与前一个位置的字符相等,则next[i] = next[i-1] + 1。
- 若前一个位置的next值不为-1且模式串的字符与前一个位置的字符不相等,则通过next数组的回溯操作,将模式串指针j回溯到合适的位置,继续判断。
2. 利用next数组进行匹配:- 在匹配过程中,主串指针i和模式串指针j会同时后移:- 若主串和模式串的字符相等,i和j同时后移一位。
- 若主串和模式串的字符不相等,则根据next数组的值,将模式串指针j回溯到合适的位置,继续匹配。
三、KMP算法的应用场景KMP算法在字符串匹配中有广泛的应用,特别是在大规模文本中的模式匹配问题上具有明显的优势。
以下是KMP算法的几个应用场景:1. 子串匹配:判断一个字符串是否是另一个字符串的子串。