UG基础 第9章 高速铣与多轴铣简介
- 格式:ppt
- 大小:1.32 MB
- 文档页数:60
UG编程技巧如何实现CNC加工中的多轴加工随着科技的进步和制造业的发展,CNC(Computer Numerical Control)成为现代加工领域中不可或缺的一部分。
CNC加工以其高效、精准的特点,广泛应用于各种工业制造过程中。
而在CNC加工中,多轴加工技术的应用,可以进一步提高加工的质量和生产效率。
本文将介绍UG编程中的一些技巧和方法,帮助读者实现CNC加工中的多轴加工。
一、理解多轴加工的概念和优势多轴加工是指在CNC加工中同时控制多个工作轴进行联动加工的技术。
相比于传统的单轴加工,多轴加工具有以下几个优势:1. 提高加工效率:多轴加工可以在同一时间内同时进行多项加工操作,大大提高了加工效率。
例如,在雕刻复杂的曲面结构时,传统的单轴加工需要多次换刀和调整坐标,而多轴加工可以通过三、四、五轴联动,一次性完成较为复杂的加工任务。
2. 增加加工精度:通过多轴加工,可以更好地控制和调整零件在加工过程中的工作角度、刀具进给及其它参数,从而提高加工精度。
3. 扩展加工范围:多轴加工可以实现更多种类、更复杂形状的加工。
例如,在立式加工中,通过多轴加工可以实现各种角度的面加工,而传统的单轴加工则具有较大的限制。
二、UG编程中实现多轴加工的技巧1. 编辑正确的工作坐标系:在进行多轴加工之前,首先需要编辑合适的工作坐标系。
工作坐标系是CNC机床上各轴运动和加工的参考基准,它确定了工件在机床坐标系统中的位置和方向。
在使用UG软件进行编程时,可以通过新建和编辑坐标系来定义和调整工作坐标系。
根据加工任务的要求,合理选择和设置工作坐标系可以更好地实现多轴加工。
2. 设置刀具轨迹与夹具:在UG编程中,需要对刀具轨迹进行合理的设置和优化。
刀具轨迹的设定要考虑到多轴联动和刀具路径的光滑性,以保证加工过程的稳定和效果的质量。
此外,选择合适的夹具和夹具位置也是实现多轴加工的重要一环。
3. 选择合适的加工策略:在进行多轴加工时,选择合适的加工策略可以提高加工效率和质量。
ug多轴编程技巧UG多轴编程是一种在软件程序中使用多个坐标轴来控制机床运动的技术。
它可以实现复杂的加工操作,提高生产效率。
下面将介绍一些UG多轴编程的技巧。
首先,有效利用坐标轴。
在UG软件中,可以通过定义额外的坐标轴来控制机床的运动。
在编程时,可以根据具体的加工要求来合理选择使用哪些坐标轴。
例如,在五轴加工时,可以使用旋转轴来控制刀具的倾斜角度,以便实现更加复杂的加工操作。
其次,优化工具路径。
在UG软件中,可以通过优化工具路径来减少机床运动的距离和时间,从而提高加工效率。
例如,可以使用切削区域限制功能来定义加工区域,使刀具只在需要被加工的区域内运动,避免不必要的移动。
另外,可以使用快速移动功能来减少刀具的快速移动时间。
通过合理设置加工参数,可以在不影响加工质量的前提下提高加工效率。
另外,使用灵活的工作平面。
在UG软件中,可以使用多个工作平面来控制机床的运动。
在编程时,可以根据具体的加工要求来选择使用哪个工作平面。
例如,可以使用刀面上方的工作平面来实现更加精确的加工,使用刀面下方的工作平面来实现更大的加工速度。
通过合理选择工作平面,可以提高加工精度和效率。
此外,合理控制刀具路径。
在UG软件中,可以通过控制刀具路径来实现不同的加工要求。
例如,可以使用切向控制功能来控制刀具在切削时的运动方向,使加工表面更加光滑。
另外,可以使用渐进切削功能来逐渐加工深度,避免在一次切削中过大的力量对工件造成损坏。
通过合理控制刀具路径,可以提高加工质量和效率。
最后,合理选择切削工具。
在UG软件中,可以根据具体的加工要求选择合适的切削工具。
在编程时,可以根据工件的材料、形状和加工要求选择合适的切削工具。
例如,可以选择具有较小尺寸和较大切削能力的切削工具来提高加工质量和效率。
通过合理选择切削工具,可以有效减少加工时间和成本。
综上所述,UG多轴编程是一种在软件程序中使用多个坐标轴来控制机床运动的技术。
通过合理利用坐标轴、优化工具路径、使用灵活的工作平面、合理控制刀具路径和选择合适的切削工具,可以提高UG多轴编程的效率和质量。
一、概述:UG主要提供了四种基本加工操作类型,即平面铣、型腔铣、固定轴曲面铣以及点位加工。
平面铣:是用多层不同深度的平行刀轨切削材料,每一层刀轨是垂直于刀具轴的平面内的二轴刀轨,这些刀轨被称为一个个的切削层。
是用所选的各种边界来定义零件材料的,这些边界可以是由曲线、面或点来定义的临时边界或永久边界。
只能加工垂直的侧壁,不能加工出曲面。
适用于岛屿的顶面和槽腔的底面为平面的零件。
型腔铣:刀具轨迹与平面铣类似,可以加工平面铣无法加工的包含曲面的任何形状的零件,必须指定零件几何体和毛坯几何体,这样系统才知道在什么范围内生成刀轨。
零件几何体可以直接指定整个模型。
固定轴曲面轮廓铣:是沿着曲面轮廓的深度切削材料,刀具始终沿着几何体轮廓,同时有XYZ轴的运动,相当于三轴加工。
需要指定驱动几何和零件几何,驱动几何体是由用户根据加工对象自己设计和定义,可以是已存在的表面、边界、点、曲线或独立的曲面对象;零件几何体可以由整个实体零件,或者局部的曲面和曲线来定义。
零件几何体用来控制刀具在整个零件上运动的深度。
常用于复杂曲面的半精加工和精加工,常用于型腔铣后的精加工。
点位加工:用多个加工循环来不断加工工件,在每一个循环中刀具快速移动定位在被选择的加工点位上,以切削进给速度切入工件,并达到指定的切削深度,再以退刀速度返回工具。
用于钻孔、镗孔、绞孔以及攻螺纹等点位加工操作。
1、先选择最外边(选择过滤为Single )创建底板,然后选择所有的创建体。
再将图层5作为工作层,在其中绘制一个大的立体作为毛坯,编辑毛坯显示为透明显示。
2、然后就可以进入加工模块首先在弹出的对话框中“初始化”加工环境选择general 或lathe 或mill ,本例可选择型腔铣mill_contour3、按照加工创建工具栏中的各命令进行操作。
因为创建操作中需要程序、刀具、几何体等参数,所以最后做 ◇创建程序:在定义名称时最好自己输入一个名称,方便自己与系统默认的一些名称区别。
多轴加工的优点1.减少零件的装夹次数,缩短辅助时间,提高定位精度2.可以加工三轴无法加工的斜角和倒勾等区域3.用更短的刀具从不同的方位去接近零件,增加刀具刚性4.让刀具沿零件面法向倾斜,改善切削条件,避免球头切削5.使用侧刃切削,获得较好表面,提高加工效率6.可用锥度刀代替圆柱刀,柱面铣刀代替球头刀加工m_axis.avi多轴加工的关键因素•机床:不同的结构的机床具有不同的优缺点,应跟据特定的任务选取合适的机床•控制系统:多数有名的控制系统都提供了很好的功能,但也有其特定领域的强项•CAM系统:NX是最好的系统之一,以丰富的功能满足不同的需要,尤其是刀轴控制选项•人员:具备必要的知识和经验X Z BCXZ多轴加工的方式用固定轴功能实行定位加工:机床的旋转轴先转到一固定的方位后加工,转轴不与XYZ联动,NX各固定轴加工方式都可指定刀具轴实现多轴加工用可变轴曲面铣实行联动加工:在实际切削过程中,至少有一个旋转轴同时参加XYZ的运动,NX提供强大的刀轴控制,走刀方式选择,刀路驱动用顺序铣实行多轴联动清根:适用于需要完全控制刀路生成过程的每一步骤的情况,支持2-5轴的铣削编程,交互地一段段生成刀路曲面轮廓铣原理曲面轮廓铣:刀具跟随零件的表面形状进行加工,有效的清除其它刀具加工后的残余,完成零件的精加工刀轨创建需要2个步骤:第1步从驱动几何体上产生驱动点第2步将驱动点沿投射方向投射到零件几何体上,刀具跟随这些点进行加工NX多轴编程的注意点1.编制刀路时总需指定刀轴方向,默认为加工座标系的Z轴2.在固定轴编程中将刀轴设定为非Z轴可实现多轴定位加工3.可变轴编程中,大多情况下,刀轴是非(0,0,1)4.利用可变轴功能,一定要正确设定刀具轴方向5.多轴加工时需确保在刀具或工作台旋转中不发生干涉6.建议在每一操作结束时,将刀轴回复到(0,0,1)旋转中心的设定旋转轴中心相对于加工坐标系可以用两种方式定义:•把加工坐标系MCS放置在旋转轴中心即第4或5轴的旋转中心•指定加工坐标系MCS为加工编程父节点组,加工坐标系由主加工坐标系和局部加工坐标系构成,可把相关的信息数据传给后处理投影矢量允许定义驱动点投影到部件表面的方式和刀具接触的部件表面侧选择投影矢量时应小心,避免出现投影矢量平行于刀轴矢量或垂直于部件表面法向的情况.这些情况可能引起刀轨的竖直波使用“远离点”或“远离直线”作为投影矢量时,从部件表面到矢量焦点或聚焦线的最小距离必须大于刀具的半径Normal to drive投影方法的选择驱动曲线模式本身不是刀轨,必须将它投影到部件上以创建刀轨。