成人高考高等数学二复习资料汇总
- 格式:docx
- 大小:54.25 KB
- 文档页数:12
成人高考高等数学二知识点数学是知识的工具,亦是其它知识工具的泉源。
所有研究顺序和度量的科学均和数学有关。
接下来小编在这里给大家分享一些关于成人高考高等数学二知识点,供大家学习和参考,希望对大家有所帮助。
图片加载中…成人高考高等数学二知识点篇一连续1、知识范围(1)函数连续的概念函数在一点处连续的定义、左连续与右连续函数在一点处连续的充分必要条件、函数的间断点及其分类(2)函数在一点处连续的性质连续函数的四则运算、复合函数的连续性、反函数的连续性(3)闭区间上连续函数的性质有界性定理、值与最小值定理、介值定理(包括零点定理)(4)初等函数的连续性2、要求(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处的连续性的方法。
(2)会求函数的间断点及确定其类型。
(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题。
(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限。
一元函数微分学(一)导数与微分1、知识范围(1)导数概念导数的定义、左导数与右导数、函数在一点处可导的充分必要条件导数的几何意义与物理意义、可导与连续的关系(2)求导法则与导数的基本公式导数的四则运算、反函数的导数、导数的基本公式(3)求导方法复合函数的求导法、隐函数的求导法、对数求导法由参数方程确定的函数的求导法、求分段函数的导数(4)高阶导数高阶导数的定义、高阶导数的计算(5)微分微分的定义、微分与导数的关系、微分法则一阶微分形式不变性2、要求(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导数的方法。
(2)会求曲线上一点处的切线方程与法线方程。
(3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数。
(4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。
(5)理解高阶导数的概念,会求简单函数的阶导数。
2020年成人高考专升本高等数学二知识点复习第一章:极限与连续1-1、极限的运算1、极限的概念(1)设函数y=f(x)在点x0的某个邻域内有定义,如果当x无限趋于x0时函数f(x)无限地趋于f(x)=A一个常数A,则称A为函数f(x)当x→x0时的极限,记作limx→x0(2)左极限、右极限;在某点极限存在,左右极限存在且唯一。
limf(x)=Ax→x0−f(x)=Alimx→x0+2、无穷小量与无穷大量无穷小量定义:对于函数y=f(x),如果当x在某个变化过程中,函数f(x)的极限为0,则f(x)=0称在该变化过程中, f(x)为无穷小量,记作limx→x0无穷大量定义:对于函数y=f(x),如果当x在某个变化过程中,函数f(x)的极限值越来越f(x)=∞大,则称在该变化过程中, f(x)为无穷大量,记作limx→x03、无穷小量与无穷大量的关系为无穷小量;在同一变化过程中,如果f(x)为无穷大量,且f(x)≠0,则1f(x)为无穷大量;在同一变化过程中,如果f(x)为无穷小量,且f(x)≠0,则1f(x)4、无穷小量的性质性质1:有限个无穷小量的代数和仍是无穷小量★性质2:无穷小量与有界函数的积仍是无穷小量5、无穷小量的比较与替换定义:设α,β是同一变化过程中的无穷小量,即limα=0,limβ=0=0,则称β是α比较高阶的无穷小量(1)如果limβα(2)如果limβα=∞,则称β是α比较低阶的无穷小量(3)如果lim βα=c ≠0,则称β是与α同阶的无穷小量(4)如果lim βα=1,则称β与α是等价的无穷小量★常见的等价无穷小量:当x →0时,x ~sin x ~tan x ~ arc sin x ~ arc tan x ~ e x −1 ~ ln (1+x) 1−cos x ~12x 2★★6、两个重要极限 (1)limx→0sin x x=1(2)lim x→∞(1+1x )x=e 或lim x→0(1+x)1x=e★★7、求极限的方法 (1)直接代入法:分母不为零 (2)分子分母消去为0公因子 (3)分子分母同除以最高次幂(4)利用等价代换法求极限(等价无穷小) (5)利用两个重要极限求极限 (6)洛必达求导法则(见第二章)1-2、函数的连续性1、函数在某一点上的连续性定义1:设函数y =f(x)在点x 0的某个邻域内有定义,如果有自变量∆x 趋近于0时,相应的函数改变量∆y 也趋近于0,即lim ∆x→0[f (x 0+∆x )−f (x 0)]=0,则称函数y =f(x)在x 0处连续。
成考高数二知识点总结成考高数二知识点总结成考高数二知识点总结1.函数、极限与连续:主要考查极限的计算或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。
2.一元函数微分学:主要考查导数与微分的定义;各种函数导数与微分的计算;利用洛比达法则求不定式极限;函数极值;方程的的个数;证明函数不等式;与中值定理相关的证明;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形;求曲线渐近线。
3.一元函数积分学:主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。
4.多元函数微分学:主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;多元函数极值或条件极值在与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。
此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。
5.多元函数的积分学:包括二重积分在各种坐标下的计算,累次积分交换次序。
数一还要求掌握三重积分,曲线积分和曲面积分以及相关的重要公式。
6.微分方程及差分方程:主要考查一阶微分方程的通解或特解;二阶线性常系数齐次和非齐次方程的特解或通解;微分方程的建立与求解。
差分方程的基本概念与一介常系数线形方程求解方法由于微积分的知识是一个完整的体系,考试的题目往往带有很强的综合性,跨章节的题目很多,需要考生对整个学科有一个完整而系统的把握。
最后凯程考研名师预祝大家都能取得好成绩。
凯程教育张老师整理了几个节约时间的准则:一是要早做决定,趁早备考;二是要有计划,按计划前进;三是要跟时间赛跑,争分夺秒。
总之,考研是一场“时间战”,谁懂得抓紧时间,利用好时间,谁就是最后的胜利者。
1.制定详细周密的学习计划。
2010年成人高考(专升本)高等数学二(第一章样本,完整版共14页)严格依据大纲编写:笔记目录第一章极限和连续第一节极限[复习考试要求]1.了解极限的概念(对极限定义等形式的描述不作要求)。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
2.了解极限的有关性质,掌握极限的四则运算法则。
3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。
会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。
会运用等价无穷小量代换求极限。
4.熟练掌握用两个重要极限求极限的方法。
第二节函数的连续性[复习考试要求]1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。
2.会求函数的间断点。
3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题。
4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。
第二章一元函数微分学第一节导数与微分[复习考试要求]1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。
2.会求曲线上一点处的切线方程与法线方程。
3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。
4.掌握隐函数的求导法与对数求导法。
会求分段函数的导数。
5.了解高阶导数的概念。
会求简单函数的高阶导数。
6.理解微分的概念,掌握微分法则,了解可微和可导的关系,会求函数的一阶微分。
第二节导数的应用[复习考试要求]1.熟练掌握用洛必达法则求“0·∞”、“∞-∞”型未定式的极限的方法。
2.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法。
会利用函数的单调性证明简单的不等式。
3.理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用题。
4.会判断曲线的凹凸性,会求曲线的拐点。
5.会求曲线的水平渐近线与铅直渐近线第三章一元函数积分学第一节不定积分[复习考试要求]1.理解原函数与不定积分的概念及其关系,掌握不定积分的性质。
成考高数二知识点总结高等数学是考研数学的重中之重,所占的比重较大,在数学一、三中占56%,数学二中占78%,重点难点较多。
以下是小编为大家整理分享的成考高数二知识点总结,欢迎阅读参考!1、函数、极限与连续:主要考查极限的计算或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。
2、一元函数微分学:主要考查导数与微分的定义;各种函数导数与微分的计算;利用洛比达法则求不定式极限;函数极值;方程的的个数;证明函数不等式;与中值定理相关的证明;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形;求曲线渐近线。
3、一元函数积分学:主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。
4、多元函数微分学:主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;多元函数极值或条件极值在与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。
此外,数学一还要求会计算方向导数、梯度、曲线的`切线与法平面、曲面的切平面与法线。
5、多元函数的积分学:包括二重积分在各种坐标下的计算,累次积分交换次序。
数一还要求掌握三重积分,曲线积分和曲面积分以及相关的重要公式。
6、微分方程及差分方程:主要考查一阶微分方程的通解或特解;二阶线性常系数齐次和非齐次方程的特解或通解;微分方程的建立与求解。
差分方程的基本概念与一介常系数线形方程求解方法。
由于微积分的知识是一个完整的体系,考试的题目往往带有很强的综合性,跨章节的题目很多,需要考生对整个学科有一个完整而系统的把握。
最后凯程考研名师预祝大家都能取得好成绩。
凯程教育张老师整理了几个节约时间的准则:一是要早做决定,趁早备考;二是要有计划,按计划前进;三是要跟时间赛跑,争分夺秒。
【公式总结】无穷级数(一)常数项级数1、定义:1)无穷级数:ΛΛ+++++=∑∞=n n nu u u u u3211部分和:n nk kn u u u u uS ++++==∑=Λ3211,正项级数:∑∞=1n n u ,0≥n u 交错级数:∑∞=-1)1(n n n u ,0≥n u 2)级数收敛:若S S n n =∞→lim 存在,则称级数∑∞=1n n u 收敛,否则称级数∑∞=1n n u 发散3)条件收敛:∑∞=1n n u 收敛,而∑∞=1n n u 发散;绝对收敛:∑∞=1n n u 收敛。
2、性质:1)改变有限项不影响级数的收敛性;2)级数∑∞=1n n a ,∑∞=1n n b 收敛,则∑∞=±1)(n n n b a 收敛;3)级数∑∞=1n n a 收敛,则任意加括号后仍然收敛;4)必要条件:级数∑∞=1n n u 收敛⇒0lim =∞→n n u .(注意:不是充分条件!)3、审敛法正项级数:∑∞=1n n u ,0≥n u 1)定义:S S n n =∞→lim 存在;2)∑∞=1n nu收敛⇔{}n S 有界;3)比较审敛法:∑∞=1n n u ,∑∞=1n n v 为正项级数,且),3,2,1(Λ=≤n v u n n 若∑∞=1n n v 收敛,则∑∞=1n n u 收敛;若∑∞=1n n u 发散,则∑∞=1n n v 发散.4)比较法的推论:∑∞=1n n u ,∑∞=1n n v 为正项级数,若存在正整数m ,当m n >时,n n kv u ≤,而∑∞=1n n v 收敛,则∑∞=1n n u 收敛;若存在正整数m ,当m n>时,n n kv u ≥,而∑∞=1n n v 发散,则∑∞=1n n u 发散.5)比较法的极限形式:∑∞=1n n u ,∑∞=1n n v 为正项级数,若)0(lim+∞<≤=∞→l l v u nnn ,而∑∞=1n n v 收敛,则∑∞=1n n u 收敛;若0lim >∞→nnn v u 或+∞=∞→n n n v u lim ,而∑∞=1n n v 发散,则∑∞=1n n u 发散.6)比值法:∑∞=1n n u 为正项级数,设l u u nn n =+∞→1lim ,则当1<l 时,级数∑∞=1n n u 收敛;则当1>l时,级数∑∞=1n n u 发散;当1=l 时,级数∑∞=1n n u 可能收敛也可能发散.7)根值法:∑∞=1n n u 为正项级数,设l u n n n =∞→lim ,则当1<l 时,级数∑∞=1n n u 收敛;则当1>l 时,级数∑∞=1n n u 发散;当1=l 时,级数∑∞=1n n u 可能收敛也可能发散.8)极限审敛法:∑∞=1n n u 为正项级数,若0lim >⋅∞→nn u n 或+∞=⋅∞→n n u n lim ,则级数∑∞=1n n u 发散;若存在1>p ,使得)0(lim +∞<≤=⋅∞→l l u n n pn ,则级数∑∞=1n n u 收敛.交错级数:莱布尼茨审敛法:交错级数:∑∞=-1)1(n n n u ,0≥n u 满足:),3,2,1(1Λ=≤+n u u n n ,且0lim =∞→n n u ,则级数∑∞=-1)1(n n n u 收敛。
全国各类成人高考总复习教材专科起点升本科高等数学(二)考点精解与真题解析成人高考专科起点升本科经管类高数二第一章极限和连续一、常见的考试知识点1.极限(1)函数在一点处的左极限与右极限以及函数在一点处极限存在的充分必要条件.(2)极限的性质、极限的四则运算.(3)无穷小量的概念、性质及无穷小量阶的比较.等价无穷小量代换及其应用.(4)两个重要极限及其应用.2.连续(1)函数在一点处连续与间断的概念及连续的判定.(2)闭区间上连续函数的性质.3.试卷内容比例本章内容约占试卷总分的15%,共计22分左右.二、常用的解题方法与技巧(一)极限求函数(或数列)极限的常用方法主要有:(1)利用极限的四则运算法则.(2)(3)(4)(5)方法求解.(6)利用两个重要极限:注意两个重要极限的结构式分别为:其中方块“口”内可以为x,也可以为x的函数,只要满足上述结构形式,公式都正确.特别要记住下列常用的公式:其中的a,b,d为常数.(7)利用无穷小量的性质.主要是“无穷小量与有界变量之积为无穷小量”以及“无穷大量的倒数为无穷小量”.(8)利用等价无穷小量代换.利用等价无穷小量代换常能简化运算,但是等价无穷小量代换能在乘除法中使用,限于知识面的原因不要在加减法中使用.常用的等价无穷小量代换有:当x→0时,(9)求分段函数在分段点处的极限时,一定要分别求左极限与右极限,然后再判定极限是否存在.(二)连续1.判定ƒ (x)在点x。
处连续性的方法先考察ƒ(x)是否为初等函数,x0点是否为ƒ(x)的定义区间内的点.如果给定函数为分段函数,且x0又是分段点,则需利用连续性定义来判定,特别是在分段点两侧函数表达式不同的时候,应该用左连续、右连续判定.2.判定ƒ(x)间断点的方法连续性的三个要素之一得不到满足的点,即为函数的间断点,因此判定函数间断点的步骤通常是:(1)(2)断点.(3)三、常见的考试题型与评析(一)无穷小量的概念及无穷小量的比较本部分内容1994--2013年共考了8次,考到的概率为40%.1.典型试颢(1)A.高阶的无穷小量B.等价的无穷小量C.非等价的同阶无穷小量D.低阶的无穷小量(2)(0408)(3)(1012)2.解题方法与评析【解析】(I)选B.无穷小量阶的比较就是先求两个无穷小量之比的极限,再根据定义来确定选项.解法1利用等价无穷小量代换.解法2利用重要极限Ⅱ.(2)填1.利用等价无穷小量的定义.(3)填1.利用等价无穷小量的定义.(二)型不定式的极限本部分内容1994--2013年共考了20次,属于必考题.1.典型试题(1)(0521)(2)(0621)(3)(0721)(4)(0821)(5)(0921)(6)(1021)(7)(1221)(8)(1321)2.解题方法与评析【解析】型不定式极限的求法是每年专升本试题中必考的内容之一,考生必须熟练掌握.求型不定式极限的常用方法是利用等价无穷小量代换以及洛必达法则求解.对于极限式中有根式的,首先有理化,再进行计算较简捷.常用的等价无穷小量代换有:当x→0时,(1) 或(2) 或(3) 或或(4)或(5)(6)(7)(8)【评析】(1)(2)等价无穷小量代换:此方法常用于一些可直接用等价无穷小量代换的函数,如题(3).由于知识面的原因,希望考生不要在加减运算中使用等价无穷小量代换,只能在乘除运算中(3)(4)捷的方法.求极限的最佳方法是等价无穷小量代换与洛必达法则的混合使用.例如:(三)“”型不定式的极限本部分内容1994--2013年共考了5次,考到的概率为25%.1.典型试题(1)(0116)(2)(0308)(3)(0701)A.0B.1/2C.1D.2(4)(0801)A.1/4B.0C.2/3D.1(5)(1011)2.解题方法与评析【解析】型不定式极限的计算,常用的办法是约去分子与分母中最高阶无穷因子或直接用洛必达法则求解.(1)(2)填了1/3.或(3)选B.(4)选C.或(5)填0.或【评析】型不定式极限的计算,主要是约去分子与分母中最高阶的无穷因子或直接用洛必达法则求解.在用洛必达法则求解时,一定要注意分子与分母是否满足洛必达法则定理中的条件.本大题的题(1)与题(3)就不满足洛必达法则定理中的条件,因为分子与分母都是离散变量的函数,既不连续,也不可导.(四)重要极限I本部分内容1994—2013年共考了11次,考到的概率为55%.1.典型试题(1)(0403)A.1/3B.1C.2D.3(2)(0501)A.0B.1/5C.1D.5(3)(0612)(4)(0712)(5)(0812)(6)(1021)(7)(1112)(8)(1212)2.解题方法与评析【解析】(1)所以α=3.也可这样求解:(2)选D.或(3)填3.或(4)填1/2.或(5)填2.(6)与题(4)相同.(7)填1.(8)填2/3.【评析】重要极限I是特殊的型不定式极限,所以前面介绍的求型不定式极限的方法均适用.上述各题均可用洛必达法则求解.如果极限式中含有三角函数或反三角函数,应优先考虑用重要极限I求解.(五)重要极限Ⅱ本部分内容1994——2013年共考了13次,考到的概率为65%.1.典型试题(1)(0118)(2)(0521)(3)(0601)A.1B.EC.2eD.e2(4)(0912)(5)(1121)(6)(1315)2.解题方法与评析【解析】(1)(2)(3)选D.(4)(5)(6)【评析】(六)连续性本部分内容1994——2013年共考了12次,考到的概率为60%.1.典型试题(1)(9801)A.一1B.1C.2D.3(2)(0007)(3)(0209)(4)(0613)(5)(0811)(6)(0913)(7)(1013)(8)(1111)(9)(1213)(10)(1312)2.解题方法与评析【解析】(1)(2)填2.所以k=2.(3)填1.方法同题(2),可得α=1.(4)填2.方法同题(2),可得α=2.(5)填1.因为ƒ(0)=(2x+1)|x=0=1.(6)填8.因为则(7)填1.因为则由ƒ (0-0)= ƒ (0+0),得α=1.(8)填0.(9)填1.(10)填1.【评析】判定函数ƒ (x)在一点X0处连续,需依次检查连续性的三个要素.如果X0为ƒ (x)的分段点,且在X0两侧ƒ (x)的表达式不同,需分别计算X0的左极限与右极限以及在X0处的函数值,从而确定在点X0处的连续性.成人高考专科起点升本科经管类高数二第二章一元函数微分学一、常见的考试知识点1.导数与微分(1)导数的概念及几何意义,用定义求函数在一点处的导数值.(2)曲线上一点的切线方程和法线方程.(3)导数的四则运算及复合函数的求导.(4)隐函数的求导及对数求导法.(5)高阶导数的求法.(6)微分法则.2.洛必达法则及导数的应用(1)用洛必达法则求各类不定式的极限.(2)用导数求函数的单调区间.(3)函数的极值、最值.(4)曲线的凹凸性、拐点及曲线的水平渐近线与铅直渐近线.(5)证明不等式.3.试卷内容比例本章内容约占试卷总分的30%,共计45分左右.二、常用的解题方法与技巧(一)导数与微分1.导数的定义2.导数的几何意义3.可导与可微的关系可微必定可导,反之也对,且如果求微分dx可以先求出yˊ,再代入上式即可.4.求导数的常见方法(1)利用基本初等函数的求导公式与导数的四则运算法则.(2)利用复合函数链式法则,为了不遗漏每一个复合层次,可以由外到里一次求得一个层次的导数.(3)对隐函数求导时,只需将所给式子两端出现的y当作中间变量,两端分别关于x求导,整理并解出yˊ.(4)对数求导法,主要解决幂指函数求导与连乘除、乘幂形式的函数的求导问题.(二)导数的应用1.利用导数判定函数ƒ (x)单调性的通常步骤(1)求出ƒ(x)的定义域.(2)求出ƒˊ(x),令ƒˊ(x)=0,求出(x)的所有驻点,并求出ƒ(x)不可导的点.(3)判定上述两相邻点间ƒ '(x)的符号,其中ƒ (x)>0时名的取值范围即为ƒ (x)单调递增的范围; ƒˊ(x)<0时x的取值范围即为ƒ (x)单调递减的范围.2.利用导数判定函数f(x)极值的通常步骤(1)求出ƒ(x)的定义域.(2)求出ƒˊ(x),令ƒˊ(x)=0,求出八ƒ(x)的所有驻点,并求出定义域内ƒ(x)不可导的点.(3)若f(x)在上述点的某邻域内可导,可以利用极值的第一充分条件判定上述点是否为极值点.(4)若在ƒ(x)的驻点处ƒ(x)二阶可导,且二阶导数易求,则可以利用极值的第二充分条件判定驻点是否为极值点.3.利用导数求连续函数ƒ(x)在区间[a,b]上的最大、最小值的通常步骤(1)求出ƒ(x)在(a,b)内所有的驻点(即ƒˊ(x)=0的点)及不可导的点:x1,…,x k4.利用导数判定曲线y=ƒ (x)的凹凸性与拐点的通常步骤(1)求出ƒ (x)在(a,b)内二阶导数为0的点及二阶导数不存在的点.(2)判定ƒ″(x)在上述点的两侧是否异号.若在x0两侧ƒ″(x)异号,则点x0,ƒ (x0))为曲线的拐点.在ƒ″(x)<0的x取值范围内,曲线y=ƒ (x)为凸的;在ƒ″(x)>0的x取值范围内,曲线y=ƒ (x)为凹的.三、常见的考试题型与评析(一)利用导数的定义求极限或求函数在某点的导数值本部分内容1994--2013年共考了8次,考到的概率为40%.1.典型试题(1)(0222)(2)(0303)( ).A.0B.1C.2D.4(3)(0702)A.一2B.0C.2D.4(4)(0802)A.0B.1C.3D.62.解题方法与评析【解析】函数y=ƒ (x)在点X0处导数的定义,其结构式为x0处的导数.如果不符合上式结构,则应通过变形或化简后变成上式结构才成立.(1)(2)选D.(3)选D.方法同(1).(4)选C.方法同(1).(二)利用四则运算法则求函数的导数(微分)或求函数在某点的导数值本部分内容1994--2013年共考了20次,属于必考题.1.典型试题(1)(0210)(2)(0310)(3)(0419)(4)(0522)(5)(0622)(6)(0705)A.B.C.D.(7)(0822)(8)(0903)A.0B.1C.eD.2e(9)(1022)(10)(1122)(11)(1203)A.-1B.-1/2C.0D.1(12)(1302)A.B.C.1/3D.2.解题方法与评析【解析】这些题都可以利用基本初等函数的求导公式及导数的四则运算法则来计算.(1)(2)填1.(3)(4)(5)(6)选C.(7)(8)选C.因为(9)因为所以(10)(11)选A.(12)选A.【评析】这些试题都是考试大纲要求熟练掌握的基本运算,因此希望考生一定要牢记基本初等函数的导数公式及四则运算法则.对其他求微分的试题,考生可自行练习.(三)复合函数的求导本部分内容1994—2013年共考了18次,考到的概率为90%。
成考专升本高数二知识点一、知识概述《成考专升本高数二知识点》①基本定义:成考专升本高数二包含很多内容呢,像函数、极限、导数、积分之类的。
函数就是像y = 2x这样,一个变量x通过一种规则确定另一个变量y。
极限嘛,简单说就是当自变量靠近某个值的时候,函数值接近的那个数。
导数则是函数在某一点上的变化率,就好比车的速度是路程函数的导数。
积分有点像是导数的逆运算,可以用来求面积这些。
②重要程度:在专升本学科里很重要,它是理工科类专业学习的基础,很多后续的专业课都会用到高数二的知识,像是工程力学之类的课程。
③前置知识:要掌握高中的基本数学知识,像代数式、方程、函数的简单概念,还有基本的运算,如加减乘除、幂运算等。
④应用价值:在实际生活中有用处,比如计算物体的运动速度、加速度,工程上计算材料的强度、工程量等。
像盖房子要计算建材用量就可能用到积分的知识。
二、知识体系①知识图谱:在高数整个学科里,高数二处于中级难度的地位,很多专升本的自然科学、工程类专业都会考查它。
它是建立在高数的一些基础概念之上,与后续的工程数学等又相关。
②关联知识:与高数一中的函数、极限概念联系紧密,都是在这个基础上深入和拓展的。
它还和一些工程课程中的物理、力学概念有联系,因为常常要用到高数二的计算。
③重难点分析:- 掌握难度:对一些从来没有接触过导数、积分概念的同学比较难。
导数的概念比较抽象,积分的计算规则比较复杂。
- 关键点:理解导数的定义和意义,掌握积分的基本计算方法,像换元积分法、分部积分法等。
④考点分析:- 在考试中的重要性:是成考专升本理工科类专业必考的科目,成绩对能否顺利升本很重要。
- 考查方式:主要以选择题、填空题、计算题、解答题等形式出现。
选择题考查基本概念,计算题主要考查导数、积分的计算能力。
三、详细讲解【理论概念类- 函数】①概念辨析:函数就是一种对应关系,对于定义域内每个自变量的值,通过某种规则都有唯一确定的函数值与之对应。
成考高等数学二必背公式一、极限与连续1. 重要极限:- $\lim_{x\to0}\frac{\sin x}{x}=1$- $\lim_{x\to\infty}(1+\frac{1}{x})^x=e$- $\lim_{n\to\infty}(1+\frac{1}{n})^n=e$- $\lim_{x\to0}(1+x)^{\frac{1}{x}}=e$- $\lim_{x\to\infty}\frac{\ln x}{x}=0$2. 无穷小量计算:- 当$x$是无穷小量时,$a^x-1\approx x\ln a$,其中$a>0$且$a\neq1$- 当$x$是无穷小量时,$(1+x)^n-1\approx nx$,其中$n$为常数- 当$x$是无穷小量时,$\sqrt[m]{1+x}-1\approx\frac{x}{m}$,其中$m$为常数3. 极限的四则运算:- $\lim_{x\to x_0}(f(x)+g(x))=\lim_{x\to x_0}f(x)+\lim_{x\to x_0}g(x)$- $\lim_{x\to x_0}(f(x)-g(x))=\lim_{x\to x_0}f(x)-\lim_{x\to x_0}g(x)$- $\lim_{x\to x_0}(f(x)\cdot g(x))=\lim_{x\to x_0}f(x)\cdot\lim_{x\to x_0}g(x)$- $\lim_{x\to x_0}(\frac{f(x)}{g(x)})=\frac{\lim_{x\to x_0}f(x)}{\lim_{x\to x_0}g(x)}$(其中$\lim_{x\to x_0}g(x)\neq0$)二、导数与微分1. 基本求导公式:- $(C)'=0$,其中$C$为常数- $(x^n)'=nx^{n-1}$,其中$n$为常数- $(e^x)'=e^x$- $(\ln x)'=\frac{1}{x}$,其中$x>0$- $(\sin x)'=\cos x$- $(\cos x)'=-\sin x$- $(\tan x)'=\sec^2 x$- $(\cot x)'=-\csc^2 x$- $(\sec x)'=\sec x\tan x$- $(\csc x)'=-\csc x\cot x$2. 常用求导法则:- $(u\pm v)'=u'+v'$- $(cu)'=cu'$,其中$c$为常数- $(uv)'=u'v+uv'$- $(\frac{u}{v})'=\frac{u'v-uv'}{v^2}$,其中$v\neq0$- $(f(g(x)))'=f'(g(x))\cdot g'(x)$3. 高阶导数:- 若$f'(x)$存在,则称$f(x)$可导,$f''(x)$为$f(x)$的二阶导数,以此类推- $f^{(n)}(x)$表示$f(x)$的$n$阶导数- $f^{(n)}(x)$可表示为$f^{(n)}(x)=\frac{d^n}{dx^n}f(x)$三、定积分与不定积分1. 基本积分公式:- $\int x^n dx=\frac{1}{n+1}x^{n+1}+C$,其中$n\neq-1$,$C$为常数- $\int e^x dx=e^x+C$- $\int \frac{1}{x} dx=\ln|x|+C$,其中$x\neq0$,$C$为常数- $\int \sin x dx=-\cos x+C$- $\int \cos x dx=\sin x+C$- $\int \tan x dx=-\ln|\cos x|+C$- $\int \cot x dx=\ln|\sin x|+C$- $\int \sec x dx=\ln|\sec x+\tan x|+C$- $\int \csc x dx=\ln|\csc x-\cot x|+C$2. 基本定积分公式:- $\int_a^b f(x)dx=F(b)-F(a)$,其中$F(x)$为$f(x)$的一个原函数3. 常用积分法则:- 第一换元法:设$u=g(x)$可导,则$\int f(g(x))g'(x)dx=\int f(u)du$- 第二换元法(逆函数法):设$u=f(x)$可导且$f'(x)\neq0$,则$\int f(x)dx=\int f(f^{-1}(u))du$四、级数1. 常见级数:- 等比数列:$S_n=a+ar+ar^2+\ldots+ar^{n-1}=\frac{a(1-r^n)}{1-r}$,其中$r\neq1$- 幂级数:$S_n=\sum_{k=0}^n a_k=\sum_{k=0}^n q^k=\frac{1-q^{n+1}}{1-q}$,其中$q\neq1$2. 收敛级数:- 若级数$\sum_{n=1}^\infty a_n$的部分和数列$S_n$有极限$S$,则称级数$\sum_{n=1}^\infty a_n$收敛于$S$,记作$\sum_{n=1}^\infty a_n=S$- 若级数$\sum_{n=1}^\infty a_n$收敛,则$\lim_{n\to\infty}a_n=0$3. 常见收敛级数:- 调和级数:$\sum_{n=1}^\infty\frac{1}{n}$收敛- 几何级数:$\sum_{n=1}^\infty q^n$收敛当且仅当$|q|<1$总结:本文介绍了成考高等数学二中的必背公式。
2021年成人高考〔专升本〕高等数学二〔第一章样本,完整版共14页〕严格依据大纲编写:笔记目录第一章极限和连续第一节极限[复习考试要求]1.了解极限的概念〔对极限定义等形式的描述不作要求〕.会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件.2.了解极限的有关性质,掌握极限的四那么运算法那么.3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系.会进展无穷小量阶的比拟〔高阶、低阶、同阶和等价〕.会运用等价无穷小量代换求极限.4.熟练掌握用两个重要极限求极限的方法.第二节函数的连续性[复习考试要求]1.理解函数在一点处连续与连续的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数〔含分段函数〕在一点处连续性的方法.2.会求函数的连续点.3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题.4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限.第二章一元函数微分学第一节导数与微分[复习考试要求]1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数.2.会求曲线上一点处的切线方程与法线方程.3.熟练掌握导数的根本公式、四那么运算法那么以及复合函数的求导方法.4.掌握隐函数的求导法与对数求导法.会求分段函数的导数.5.了解高阶导数的概念.会求简单函数的高阶导数.6.理解微分的概念,掌握微分法那么,了解可微和可导的关系,会求函数的一阶微分.第二节导数的应用[复习考试要求]1.熟练掌握用洛必达法那么求“0·∞〞、“∞-∞〞型未定式的极限的方法.2.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法.会利用函数的单调性证明简单的不等式.3.理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用题.4.会判断曲线的凹凸性,会求曲线的拐点.5.会求曲线的水平渐近线与铅直渐近线第三章一元函数积分学第一节不定积分[复习考试要求]1.理解原函数与不定积分的概念及其关系,掌握不定积分的性质.2.熟练掌握不定积分的根本公式.3.熟练掌握不定积分第一换元法,掌握第二换元法〔仅限三角代换与简单的根式代换〕.4.熟练掌握不定积分的分部积分法.5.掌握简单有理函数不定积分的计算.第二节定积分及其应用[复习考试要求]1.理解定积分的概念及其几何意义,了解函数可积的条件2.掌握定积分的根本性质3.理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法.4.熟练掌握牛顿—莱布尼茨公式.5.掌握定积分的换元积分法与分部积分法.6.理解无穷区间的广义积分的概念,掌握其计算方法.7.掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积.第四章多元函数微分学[复习考试要求]1.了解多元函数的概念,会求二元函数的定义域.了解二元函数的几何意义.2.了解二元函数的极限与连续的概念.3.理解二元函数一阶偏导数和全微分的概念,掌握二元函数的一阶偏导数的求法.掌握二元函数的二阶偏导数的求法,掌握二元函数的全微分的求法.4.掌握复合函数与隐函数的一阶偏导数的求法.5.会求二元函数的无条件极值和条件极值.6.会用二元函数的无条件极值及条件极值解简单的实际问题.第五章概率论初步[复习考试要求]1.了解随机现象、随机试验的根本特点;理解根本领件、样本空间、随机事件的概念.2.掌握事件之间的关系:包含关系、相等关系、互不相容关系及对立关系.3.理解事件之间并〔和〕、交〔积〕、差运算的意义,掌握其运算规律.4.理解概率的古典型意义,掌握事件概率的根本性质及事件概率的计算.5.会求事件的条件概率;掌握概率的乘法公式及事件的独立性.6.了解随机变量的概念及其分布函数.7.理解离散性随机变量的意义及其概率分布掌握概率分布的计算方法.8.会求离散性随机变量的数学期望、方差和标准差.第一章极限和连续第一节极限[复习考试要求]1.了解极限的概念〔对极限定义等形式的描述不作要求〕.会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件.2.了解极限的有关性质,掌握极限的四那么运算法那么.3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系.会进展无穷小量阶的比拟〔高阶、低阶、同阶和等价〕.会运用等价无穷小量代换求极限.4.熟练掌握用两个重要极限求极限的方法.[主要知识内容]〔一〕数列的极限1.数列定义按一定顺序排列的无穷多个数称为无穷数列,简称数列,记作{x n},数列中每一个数称为数列的项,第n项x n为数列的一般项或通项,例如〔1〕1,3,5,…,〔2n-1〕,…〔等差数列〕〔2〕〔等比数列〕〔3〕〔递增数列〕〔4〕1,0,1,0,…,…〔震荡数列〕都是数列.它们的一般项分别为〔2n-1〕,.对于每一个正整数n,都有一个x n与之对应,所以说数列{x n}可看作自变量n的函数x n=f〔n〕,它的定义域是全体正整数,当自变量n依次取1,2,3…一切正整数时,对应的函数值就排列成数列.在几何上,数列{x n}可看作数轴上的一个动点,它依次取数轴上的点x1,x2,x3,...x n,….2.数列的极限定义对于数列{x n},如果当n→∞时,x n无限地趋于一个确定的常数A,那么称当n趋于无穷大时,数列{x n}以常数A为极限,或称数列收敛于A,记作比方:无限的趋向0,无限的趋向1否那么,对于数列{x n},如果当n→∞时,x n不是无限地趋于一个确定的常数,称数列{x n}没有极限,如果数列没有极限,就称数列是发散的.比方:1,3,5,…,〔2n-1〕,…1,0,1,0,…数列极限的几何意义:将常数A及数列的项依次用数轴上的点表示,假设数列{x n}以A为极限,就表示当n趋于无穷大时,点x n可以无限靠近点A,即点x n与点A之间的距离|x n-A|趋于0.比方:无限的趋向0无限的趋向1〔二〕数列极限的性质与运算法那么1.数列极限的性质定理1.1〔惟一性〕假设数列{x n}收敛,那么其极限值必定惟一.定理1.2〔有界性〕假设数列{x n}收敛,那么它必定有界.注意:这个定理反过来不成立,也就是说,有界数列不一定收敛.比方:1,0,1,0,…有界:0,12.数列极限的存在准那么定理1.3〔两面夹准那么〕假设数列{x n},{y n},{z n}满足以下条件:〔1〕,〔2〕,那么定理1.4假设数列{x n}单调有界,那么它必有极限.3.数列极限的四那么运算定理.定理1.5〔1〕〔2〕〔3〕当时,〔三〕函数极限的概念1.当x→x0时函数f〔x〕的极限〔1〕当x→x0时f〔x〕的极限定义对于函数y=f〔x〕,如果当x无限地趋于x0时,函数f〔x〕无限地趋于一个常数A,那么称当x→x0时,函数f〔x〕的极限是A,记作或f〔x〕→A〔当x→x0时〕例y=f〔x〕=2x+1x→1,f〔x〕→?x<1x→1x>1x→1〔2〕左极限当x→x0时f〔x〕的左极限定义对于函数y=f〔x〕,如果当x从x0的左边无限地趋于x0时,函数f〔x〕无限地趋于一个常数A,那么称当x→x0时,函数f〔x〕的左极限是A,记作或f〔x0-0〕=A〔3〕右极限当x→x0时,f〔x〕的右极限定义对于函数y=f〔x〕,如果当x从x0的右边无限地趋于x0时,函数f〔x〕无限地趋于一个常数A,那么称当x→x0时,函数f〔x〕的右极限是A,记作或f〔x0+0〕=A例子:分段函数,求,解:当x从0的左边无限地趋于0时f〔x〕无限地趋于一个常数1.我们称当x→0时,f〔x〕的左极限是1,即有当x从0的右边无限地趋于0时,f〔x〕无限地趋于一个常数-1.我们称当x→0时,f〔x〕的右极限是-1,即有显然,函数的左极限右极限与函数的极限之间有以下关系:定理1.6当x→x0时,函数f〔x〕的极限等于A的必要充分条件是反之,如果左、右极限都等于A,那么必有.x→1时f(x)→?x≠1x→1f(x)→2对于函数,当x→1时,f〔x〕的左极限是2,右极限也是2.2.当x→∞时,函数f〔x〕的极限〔1〕当x→∞时,函数f〔x〕的极限y=f(x)x→∞f(x)→?y=f(x)=1+x→∞f(x)=1+→1定义对于函数y=f〔x〕,如果当x→∞时,f〔x〕无限地趋于一个常数A,那么称当x→∞时,函数f〔x〕的极限是A,记作或f〔x〕→A〔当x→∞时〕〔2〕当x→+∞时,函数f〔x〕的极限定义对于函数y=f〔x〕,如果当x→+∞时,f〔x〕无限地趋于一个常数A,那么称当x→+∞时,函数f〔x〕的极限是A,记作这个定义与数列极限的定义根本上一样,数列极限的定义中n→+∞的n是正整数;而在这个定义中,那么要明确写出x→+∞,且其中的x不一定是正整数,而为任意实数.y=f(x)x→+∞f(x)x→?x→+∞,f(x)=2+→2例:函数f〔x〕=2+e-x,当x→+∞时,f〔x〕→?解:f〔x〕=2+e-x=2+,x→+∞,f〔x〕=2+→2所以〔3〕当x→-∞时,函数f〔x〕的极限定义对于函数y=f〔x〕,如果当x→-∞时,f〔x〕无限地趋于一个常数A,那么称当x→-∞时,f〔x〕的极限是A,记作x→-∞f(x)→?那么f(x)=2+(x<0)x→-∞,-x→+∞f(x)=2+→2例:函数,当x→-∞时,f〔x〕→?解:当x→-∞时,-x→+∞→2,即有由上述x→∞,x→+∞,x→-∞时,函数f〔x〕极限的定义,不难看出:x→∞时f〔x〕的极限是A充分必要条件是当x→+∞以及x→-∞时,函数f〔x〕有一样的极限A.例如函数,当x→-∞时,f〔x〕无限地趋于常数1,当x→+∞时,f〔x〕也无限地趋于同一个常数1,因此称当x→∞时的极限是1,记作其几何意义如图3所示.f(x)=1+y=arctanx不存在.但是对函数y=arctanx来讲,因为有即虽然当x→-∞时,f〔x〕的极限存在,当x→+∞时,f〔x〕的极限也存在,但这两个极限不一样,我们只能说,当x→∞时,y=arctanx的极限不存在. x)=1+y=arctanx不存在.但是对函数y=arctanx来讲,因为有即虽然当x→-∞时,f〔x〕的极限存在,当x→+∞时,f〔x〕的极限也存在,但这两个极限不一样,我们只能说,当x→∞时,y=arctanx的极限不存在. 〔四〕函数极限的定理定理1.7〔惟一性定理〕如果存在,那么极限值必定惟一.定理1.8〔两面夹定理〕设函数在点的某个邻域内〔可除外〕满足条件:〔1〕,〔2〕那么有.注意:上述定理1.7及定理1.8对也成立.下面我们给出函数极限的四那么运算定理定理1.9如果那么〔1〕〔2〕〔3〕当时,时,上述运算法那么可推广到有限多个函数的代数和及乘积的情形,有以下推论:〔1〕〔2〕〔3〕用极限的运算法那么求极限时,必须注意:这些法那么要求每个参与运算的函数的极限存在,且求商的极限时,还要求分母的极限不能为零.另外,上述极限的运算法那么对于的情形也都成立.〔五〕无穷小量和无穷大量1.无穷小量〔简称无穷小〕定义对于函数,如果自变量x在某个变化过程中,函数的极限为零,那么称在该变化过程中,为无穷小量,一般记作常用希腊字母,…来表示无穷小量.定理1.10函数以A为极限的必要充分条件是:可表示为A与一个无穷小量之和.注意:〔1〕无穷小量是变量,它不是表示量的大小,而是表示变量的变化趋势无限趋于为零.〔2〕要把无穷小量与很小的数严格区分开,一个很小的数,无论它多么小也不是无穷小量.〔3〕一个变量是否为无穷小量是与自变量的变化趋势严密相关的.在不同的变化过程中,同一个变量可以有不同的变化趋势,因此结论也不尽一样.例如:振荡型发散〔4〕越变越小的变量也不一定是无穷小量,例如当x越变越大时,就越变越小,但它不是无穷小量.〔5〕无穷小量不是一个常数,但数“0〞是无穷小量中惟一的一个数,这是因为.2.无穷大量〔简称无穷大〕定义;如果当自变量〔或∞〕时,的绝对值可以变得充分大〔也即无限地增大〕,那么称在该变化过程中,为无穷大量.记作.注意:无穷大〔∞〕不是一个数值,“∞〞是一个记号,绝不能写成或.3.无穷小量与无穷大量的关系无穷小量与无穷大量之间有一种简单的关系,见以下的定理.定理1.11在同一变化过程中,如果为无穷大量,那么为无穷小量;反之,如果为无穷小量,且,那么为无穷大量.当无穷大无穷小当为无穷小无穷大4.无穷小量的根本性质性质1有限个无穷小量的代数和仍是无穷小量;性质2有界函数〔变量〕与无穷小量的乘积是无穷小量;特别地,常量与无穷小量的乘积是无穷小量.性质3有限个无穷小量的乘积是无穷小量.性质4无穷小量除以极限不为零的变量所得的商是无穷小量.5.无穷小量的比拟定义设是同一变化过程中的无穷小量,即.〔1〕如果那么称是比拟高阶的无穷小量,记作;〔2〕如果那么称与为同阶的无穷小量;〔3〕如果那么称与为等价无穷小量,记为;〔4〕如果那么称是比拟低价的无穷小量.当等价无穷小量代换定理:如果当时,均为无穷小量,又有且存在,那么.均为无穷小又有这个性质常常使用在极限运算中,它能起到简化运算的作用.但是必须注意:等价无穷小量代换可以在极限的乘除运算中使用.常用的等价无穷小量代换有:当时,sinx~x;tan~x;arctanx~x;arcsinx~x;〔六〕两个重要极限1.重要极限Ⅰ重要极限Ⅰ是指下面的求极限公式令这个公式很重要,应用它可以计算三角函数的型的极限问题.其构造式为:2.重要极限Ⅱ重要极限Ⅱ是指下面的公式:其中e是个常数〔银行家常数〕,叫自然对数的底,它的值为e=2.718281828495045……其构造式为:重要极限Ⅰ是属于型的未定型式,重要极限Ⅱ是属于“〞型的未定式时,这两个重要极限在极限计算中起很重要的作用,熟练掌握它们是非常必要的. 〔七〕求极限的方法:1.利用极限的四那么运算法那么求极限;2.利用两个重要极限求极限;3.利用无穷小量的性质求极限;4.利用函数的连续性求极限;5.利用洛必达法那么求未定式的极限;6.利用等价无穷小代换定理求极限.根本极限公式〔2〕〔3〕〔4〕例1.无穷小量的有关概念〔1〕[9601]以下变量在给定变化过程中为无穷小量的是A. B.C. D. [答]CA.发散D.〔2〕[0202]当时,与x比拟是A.高阶的无穷小量B.等价的无穷小量C.非等价的同阶无穷小量D.低阶的无穷小量[答]B解:当,与x是极限的运算:[0611]解:[答案]-1例2.型因式分解约分求极限〔1〕[0208] [答]解:〔2〕[0621]计算[答]解:例3.型有理化约分求极限〔1〕[0316]计算 [答]解:〔2〕[9516] [答]解:例4.当时求型的极限 [答]〔1〕[0308]一般地,有例5.用重要极限Ⅰ求极限〔1〕[9603]以下极限中,成立的是A. B.C. D. [答]B〔2〕[0006] [答]解:例6.用重要极限Ⅱ求极限〔1〕[0416]计算 [答][解析]解一:令解二:[0306][0601]〔2〕[0118]计算 [答]解:例7.用函数的连续性求极限[0407] [答]0解:,例8.用等价无穷小代换定理求极限[0317] [答]0解:当例9.求分段函数在分段点处的极限〔1〕[0307]设那么在的左极限[答]1[解析]〔2〕[0406]设,那么 [答]1 [解析]例10.求极限的反问题〔1〕那么常数[解析]解法一:,即,得. 解法二:令,得,解得.解法三:〔洛必达法那么〕即,得.〔2〕假设求a,b的值.[解析]型未定式.当时,.令于是,得.即,所以.[0402][0017],那么k=_____.〔答:ln2〕[解析]前面我们讲的内容:极限的概念;极限的性质;极限的运算法那么;两个重要极限;无穷小量、无穷大量的概念;无穷小量的性质以及无穷小量阶的比拟.第二节函数的连续性[复习考试要求]1.理解函数在一点处连续与连续的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数〔含分段函数〕在一点处连续性的方法.2.会求函数的连续点.3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题.4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限.[主要知识内容]〔一〕函数连续的概念1.函数在点x0处连续定义1设函数y=f〔x〕在点x0的某个邻域内有定义,如果当自变量的改变量△x 〔初值为x0〕趋近于0时,相应的函数的改变量△y也趋近于0,即那么称函数y=f〔x〕在点x0处连续.函数y=f〔x〕在点x0连续也可作如下定义:定义2设函数y=f〔x〕在点x0的某个邻域内有定义,如果当x→x0时,函数y=f 〔x〕的极限值存在,且等于x0处的函数值f〔x0〕,即定义3设函数y=f〔x〕,如果,那么称函数f〔x〕在点x0处左连续;如果,那么称函数f〔x〕在点x0处右连续.由上述定义2可知如果函数y=f〔x〕在点x0处连续,那么f〔x〕在点x0处左连续也右连续. 2.函数在区间[a,b]上连续定义如果函数f〔x〕在闭区间[a,b]上的每一点X处都连续,那么称f〔x〕在闭区间[a,b]上连续,并称f〔x〕为[a,b]上的连续函数.这里,f〔x〕在左端点a连续,是指满足关系:,在右端点b连续,是指满足关系:,即f〔x〕在左端点a处是右连续,在右端点b处是左连续.可以证明:初等函数在其定义的区间内都连续.3.函数的连续点定义如果函数f〔x〕在点x0处不连续那么称点x0为f〔x〕一个连续点.由函数在某点连续的定义可知,假设f〔x〕在点x0处有以下三种情况之一:〔1〕在点x0处,f〔x〕没有定义;〔2〕在点x0处,f〔x〕的极限不存在;〔3〕虽然在点x0处f〔x〕有定义,且存在,但,那么点x0是f〔x〕一个连续点.,那么f〔x〕在A.x=0,x=1处都连续B.x=0,x=1处都连续C.x=0处连续,x=1处连续D.x=0处连续,x=1处连续解:x=0处,f〔0〕=0∵f〔0-0〕≠f〔0+0〕x=0为f〔x〕的连续点x=1处,f〔1〕=1f〔1-0〕=f〔1+0〕=f〔1〕∴f〔x〕在x=1处连续[答案]C[9703]设,在x=0处连续,那么k等于A.0B.C.D.2分析:f〔0〕=k[答案]B例3[0209]设在x=0处连续,那么a=解:f〔0〕=e0=1∵f〔0〕=f〔0-0〕=f〔0+0〕∴a=1 [答案]1〔二〕函数在一点处连续的性质由于函数的连续性是通过极限来定义的,因而由极限的运算法那么,可以得到以下连续函数的性质.定理1.12〔四那么运算〕设函数f〔x〕,g〔x〕在x0处均连续,那么〔1〕f〔x〕±g〔x〕在x0处连续〔2〕f〔x〕·g〔x〕在x0处连续〔3〕假设g〔x0〕≠0,那么在x0处连续.定理1.13〔复合函数的连续性〕设函数u=g〔x〕在x=x0处连续,y=f〔u〕在u0=g 〔x0〕处连续,那么复合函数y=f[g〔x〕]在x=x0处连续.在求复合函数的极限时,如果u=g〔x〕,在x0处极限存在,又y=f〔u〕在对应的处连续,那么极限符号可以与函数符号交换.即定理1.14〔反函数的连续性〕设函数y=f〔x〕在某区间上连续,且严格单调增加〔或严格单调减少〕,那么它的反函数x=f-1〔y〕也在对应区间上连续,且严格单调增加〔或严格单调减少〕.〔三〕闭区间上连续函数的性质在闭区间[a,b]上连续的函数f〔x〕,有以下几个根本性质,这些性质以后都要用到.定理1.15〔有界性定理〕如果函数f〔x〕在闭区间[a,b]上连续,那么f〔x〕必在[a,b]上有界.定理1.16〔最大值和最小值定理〕如果函数f〔x〕在闭区间[a,b]上连续,那么在这个区间上一定存在最大值和最小值.定理1.17〔介值定理〕如果函数f〔x〕在闭区间[a,b]上连续,且其最大值和最小值分别为M和m,那么对于介于m和M之间的任何实数C,在[a,b]上至少存在一个ξ,使得推论〔零点定理〕如果函数f〔x〕在闭区间[a,b]上连续,且f〔a〕与f〔b〕异号,那么在[a,b]内至少存在一个点ξ,使得f〔ξ〕=0〔四〕初等函数的连续性由函数在一点处连续的定理知,连续函数经过有限次四那么运算或复合运算而得的函数在其定义的区间内是连续函数.又由于根本初等函数在其定义区间内是连续的,可以得到以下重要结论.定理1.18初等函数在其定义的区间内连续.利用初等函数连续性的结论可知:如果f〔x〕是初等函数,且x0是定义区间内的点,那么f〔x〕在x0处连续也就是说,求初等函数在定义区间内某点处的极限值,只要算出函数在该点的函数值即可.[0407][0611]例1.证明三次代数方程x3-5x+1=0在区间〔0,1〕内至少有一个实根.证:设f〔x〕=x3-5x+1f〔x〕在[0,1]上连续f〔0〕=1 f〔1〕=-3由零点定理可知,至少存在一点ξ∈〔0,1〕使得f〔ξ〕=0,ξ3-5ξ+1=0即方程在〔0,1〕内至少有一个实根.本章小结函数、极限与连续是微积分中最根本、最重要的概念之一,而极限运算又是微积分的三大运算中最根本的运算之一,必须熟练掌握,这会为以后的学习打下良好的根底.这一章的内容在考试中约占15%,约为22分左右.现将本章的主要内容总结归纳如下:一、概念局部重点:极限概念,无穷小量与等价无穷小量的概念,连续的概念.极限概念应该明确极限是描述在给定变化过程中函数变化的性态,极限值是一个确定的常数.函数在一点连续性的三个根本要素:〔1〕f〔x〕在点x0有定义.〔2〕存在.〔3〕.常用的是f〔x0-0〕=f〔x0+0〕=f〔x0〕.二、运算局部重点:求极限,函数的点连续性的判定.1.求函数极限的常用方法主要有:〔1〕利用极限的四那么运算法那么求极限;对于“〞型不定式,可考虑用因式分解或有理化消去零因子法.〔2〕利用两个重要极限求极限;〔3〕利用无穷小量的性质求极限;〔4〕利用函数的连续性求极限;假设f〔x〕在x0处连续,那么.〔5〕利用等价无穷小代换定理求极限;〔6〕会求分段函数在分段点处的极限;〔7〕利用洛必达法那么求未定式的极限.2.判定函数的连续性,利用闭区间上连续函数的零点定理证明方程的根的存在性.。
成考专升本高数(二)复习资料汇总第一部分考点⅛解第一章极限和连续一.常见的考试知识点L ftffi(1)√Λtt的左扱阳与右极用以決函数在一点处极限"在的允分必箜茶件.(2)根浪的性JliM的四則运算+(3)无穷小啟的槪念、性质从无穷小秋阶的比较.辛价无穷小故代除及Jt应用・(4)MtIStt限及其应用.2» ⅛⅛(1)⅛JSft-AttS续与间断的槪念及连续的fl⅛+(2)闭KfHl I:连续甯故的性厳.3.试卷内容比例本就内容约占试总总分的∣5%t ft计22分左右・二、常用的解题方法与技巧(_) IftlKj R⅛ft(或數列)极限的席用方½1⅛⅛:(1)H用极限的四則运WffiNl(2)利用函数的违续性:«/(*)在*处O t MlInlΛt)√(χj.• ■苇⑶帖瑞r他式•町加呗"解消左讪子法无穷小【唯快⑷故利Jeit奥极限lim—^=I等方法*∙→fl X(4)⅛τ-"tt⅛不定式•可考Igifi去Je穷因子比对于4∙∣"9⅛i****11的不定式•还可以用洛必½ifeW∣求解.V ∞0 X(5)叶…”叭…为的不定式■应先化叫r或的梯式血泌方法求悴(6)利用两个Mft限:IinI 1 Jim( I+—) ≡c( ⅛lim( l+x)τ≡e) t∙∙∙o X ∙-*∙∖ XI∙-∙o注盘関个亀要极限的结构式分别为:Iim 迦口≡≡∣∙Iim(I÷□)r^c to∙*t O OY其中方块“口”内可以为*•也可以为*的甬数・只要涡足上述结构形式•公式都止堀• 特別菱记住下列常用的公式:lim( 1÷αx其中的a.b.d为4数・(7)利用无穷小■的性质•主刻r无穷小*与有界变■之积为无穷小Ir以及*无穷大It 的倒数为无穷小ιr∙(8)利用等价无穷小缺代换•利用等价无穷小備代换常能简化运算•但是等价无穷小:It 代换能在秦除法中便FlLRiTnliH面的廉因不聽在加减法中使用•常用的等价无穷小肚代换幻:当*->0时.Bin 1 * X t tan X -X t arCMIl X ^X t arCtan X -X t In( l+x) -XJ -COb X上述各式也应该理解为:当χ→χ0( × )时•口→0∙則有SinC□ J O ■ IanO * 口等■其中口内可以为Z •也可以为*的由败•(9)求分段师在分段点处的极IR时.•定要分别求左段限与右极限•然后押判定极限是否IimzU)=M的允分必要条件是Iim /(x)≡ Hm /(χ)≡ Λ.—6 ∙→∙∣(二)连续1.判定/(#)在点*•处连续性的方法先考察/(*)是否为初第⅞tt.χφ点是否为/("的宦义区间内的点•如果给定魚数为分段函ft.IL>∙又是分段点•则需利用连续性定义来判定•特别是在分段点两制甬数衣达式不同的时候,应该用左连续•右连续判定.2.n r s,f{×)何斯点的方法连续性的三个耍素之Ty不到満足的点•即为两数的间断点•因此押定两敌间斯点的步驟通tft:(1)⅝⅛∕(χ)在点*•处科无定义.ft∕(χβ)X定义•则"为“的间断点.(2)to∣jβ∕(x.)存在.再⅛Λlim∕(Jr)⅛⅛存在.如果Iim/(x)不存在•則*■必为/("的何∙∙∙∙ f ∙→∙⅜断点.第二章一元函数微分学一、常见的考试知识点1.导数与微分(1)导数的槪念及几何恿义•用定义求隕数在一点处的导数值.(2)曲线上一点的切线方程和法线方程.(3)导数的四则运算及复合隕数的求导.(4)隐丙数的求导及对数求导法.(5)高阶导数的求法.(6)微分法则.2.洛必达法则及导数的应用(1)用洛必达法则求各类不定式的极限•(2)用导数求函数的单调区间.(3)函数的极值、最fit(4)曲线的凹凸性、拐点及曲线的水平渐近线与铅直渐近线.(5)证明不等式.3.试卷内容比例本腹内容约占试卷总分的30% •共计45分左右.二、常用的解题方法与技巧(-)⅛tt⅛at分L#數的定义/≡∕(χ)在点X。
处存散的定义的标准形式与等价形式:l.∆y .. /(⅜÷∆χ)√(⅜) i. /UUIIm γi∙≡ IIrn --- S IIm ‘ ∣-∙AY AX ∙Y A ∙→M X-X a出響如寸g符别地•加厂O时/•Ihna≡=∕,(0).1导敛的儿何堂义如杲函Ry∙Λ*)ft点“处的导敷厂匕。
)存在,则表明曲线y≡∕(t)ft点(M<l))处存壶切线.H切线的斜率为/'(“)・切线方桎为y∙Λjt∙)≡∕X⅜)(»•*•)•fc*Γ(⅞)≠O t M∣曲线)*/(*)在点(χφ√(χe))处的法线方桎为⅜y√(*β)≡-γ^χ)("★)・Λ*Γ(χe)≡o t则,≡√(轧)为曲线从)在点(“』(“))处的水甲切线•1 4⅛⅛∏I⅛的关系吋处必定可导•反之也对•且d尸y<h. dy∣"jy'∣"jk∙如果求做分d) ∙∏f以先求岀√Jtf代入I:式即可・4.求导数的朮见方Jfc(1)利用曙本协等曲故的求导公式与导数的四则运算法炖(2)利用麵合诵數链式法*1 •为了不遗M毎一个复合保出•可以由外SSl-次求得一个艮次的易Jt(3)对H函數求导时■只需将所给式子廉瑞出现的y当做中间变SL两Je分别关于%求护. 整JI 并Mdir.(4)对tt^R⅛法•主耍解决求#与连乗除、孃M形式的廉数的求#问题.(二)今战的应用i.ff∏j⅛tt^½函数/(χ)∙n闕性的通需步驟⑴求出/(,)的定义域•(2)*出厂⑴•令厂⑷"・求出/(“的所有妊点•并求出/0)不可导的点.(3)判定上述两相邻点间厂匕)的符号•其中/'(*)>OBtjr的JR(ft£HBP为/(x)ΦM 递巾≡M√,(*)< O时才的取即为/(χ)Φia∣递减的MM.2.利用⅛ft∏l定悔«(/(■)极(ft的通常步骤(1) 求岀 /(χ)fi ⅛i ⅛(2) 求⅛Γ(√).Φ∕f (χ)=O.求岀∕h)的所有柱点■并求出定义域内的总(3) O*)4i≡点的棊邨戟内⅛Γ⅛Λ以利Jflftt 的第一充分条需判堂上HAΛ9为Ifi 曲点.(4) ft ⅛JU)的肚点处/(J o 二阶可札只二Ift 导β⅛求d 以利用械他的第二充分条件 ιι½tt 点是香为tso.λ wιtι⅛ft 求连线的tt/bM 卫ISlh 』]上的量大出小(IiHifillr(1) *mΛiM ⅛内所有的韭点(W∕*(I)≡ 0的虑}及用可导的嶼験(2) 比较几门績叩严JhJJ(<0J(6}.J {中Jft 大值即⅛∕(χ)&[o t 4]上的敲大IflJA 小血即⅛∕(<)ft[4Λ]上的血小他4. 利用导救弭定曲媒v=Λ≠)的凹凸性与拐点的⅛S 常步興(1) 求出/(*)在(“丄)内二I ⅛⅛J ⅛ΛO 的点⅛l^⅛ft 不"任的也(2) n ⅛ru)ft∣ 述点 WrtΛ½fr ⅛9√εftι9wftΓ(ι)*⅛l M 点(SJ 代))为曲线 的拐总ft∏x)<0ft ⅛τ IhfftffiIH 内血找尸/(可为凸的$ftΓ(t)>o ∣*∣.IhMly^X)为 Blftt第三章一元函数积分学、常见的考试知识点1. 不定积分 (1)原函数与不定积分的概念及关系,不定积分的性质。
⑵不足怛分的坯本处式.<3)F ⅛m 分的第一换冗扶■第二换∕c ⅛<aj换马简m 的祖式代恢)•(4>不定稅分的分恥机分法•(5) 简®宵理丽救的不建积分.2.底枳分(!)定枳分的槪金及其儿何总文•甬數町积的充分条件.⑵定积分的u ⅛n ⅛. (3》砸上限軸分的rt¾(⅛*蠻上RI 軌分求辱数的方法• 4(4) 牛H-M ⅛⅛i ⅛⅛Λ^<5} ⅛B ∙⅛的換元积分i ⅛与分歸职分迭•(6) 无疗区阀反牯報井的盛念及KihW 方法'(7) rtfft ⅛标系下用运枳分计祥平面開股的而积以及平南图!E 绕坐林轴施转所牛成的i ⅛转 侔侔税•3+试強内容比例本盘内界约占试粮总分的32% .M 什48分左右*二.常用的解题方法与技巧I-不⅛eι⅛(1) MK-LL 知/X JT )是宦文在MKIal \的一牛祗敕•如舉存在 卜贼敢 f 便得任讲区间上的每 点.祁有r(i) = /(Xl T ^ dX(,τ > =Λ J r) th .则称 f(x)⅛∕(*)fti ⅛ K 何 I:的 个 ⅛ A 歇如柴/O)征集区河上连⅛⅜,9Hft 这个【K 间r√(i )的原隨数川町一定存在.(2) 不定机分的定耸 '陷数人“的瓯顒数的全作.称为带数/(门的不從锲仆,记作∫∕S 川「井称J 为枳分V,n ⅛ttf<χ)为被积嗨t ⅛ 为被P IJiiΔΛ.X 为R ⅛>Φ⅛JM 此 J7<τ)dx = F(j ) +C t氈中 F(*)M∕X*)的一个原确BLC 为任5Jfrft( BH>⅛½).⑴不定枳分的性质.OH P r(Jf )<kf∕(H 或 JP-(^)dr =∕(χ)d^② J 尸(r)<lx = F(X) + C 或 ∫dF(x) = F(X) > C. (4)靖一罠换无机分加・笫 炎换朮枳什法丈停为澳做分弘•这种枳分方松圧:术枳分”10*)]护'")血时*若(A ≠ O 为徹± ≠ ( τ ) ] MJL B PX X ) d.⅞ ± ±…φ(x)βx 的可•个新变Jt 屛代褂讥*),并用血代卄心血此时积分变成了 JrtIl)<k,如果它可以盘公式枳分,得到F(U) +C.则将UOΦ(x)即可.(5) 分部枳分法.分部枳分法也ft-tt ⅛β的«1分方法•用分部积分法积分时•就是用下面的公式:PdF = “ ∙"d 叭其中"和P 都是*的可微西数.这个公式说明:当卜枷没右别的方法求出时,町以将它分成何部分,一部分叩是已经求岀 的•另一部分”血是容易求出的.(6) —些简m 有理曲数的积分.这堪所说的简妝有理悔数.J½ffiW 下的分式有理甬数:它可以“接好成两个分式之和,或通 过分子加、减一顶之后•很容易将氏片成-个矗式与一个分式之和或两个分式之和.然后再求出 其不定积分.2. 定积分(I)定积分的性质・φt f ⅛∕∙(υ<lχ≡√7(χ)dχ (R 为常数)・® S W W m 分别是心)在区间[-6]上的嚴大值和*小值腐有(2) 变上限枳分.积分上限X 为变Ja 时的定积分ffd)dι称为变上限积分.变上限积分一般是上限X 的甬散•记为Φ(ι).f ⅛WΦ(x)≡J∕(∣)d<・如果函数/U)在区间2,61上连续,则函ftφ(χ) = ∫7(<)θ< (α≤χ≤6)对积分上RbM 导 婀于/(χ)∙即0⑴訂[∕ω<h]'=√("∙S(I(X)t fc(x)βx 的可导函数•记Φ(x)=Γ7(0d<,④如果左区间[叭6]上总有/(*) ≤<(x), 则]∕(*)dx ≤ ∫ g(x)<∣x.③ J/(x)dx =∫^∕(*)<h ÷∫^∕(x)dx.则定理可以推广为豺(,)≡ [「7⑴ <1川≡Λ b(ι)]δr(ι) -Λα(*)hX*)・(3)牛$■菜布尼茨公式.»SSF(X)是连续悔数/(χ)≡H[βJ]±的任总一个KBfift.M有j∕(*)dx≡F(x)p≡F(6)-F(Q)・(4)定枳分的快元积分法•^f(X)AX^=^=^J[φ(ι) t p,(ι)dl9其中xM<)⅛[α./?]上有连续导«/(<).fl 当‘从β→6 时」从α→3. Jfftα≡φ,(fl). T(6)・(5)定机分的分部积分法.(6)反常枳分.I /(x)<h ≡ IinI jf(x)6x.(7)计祁平面用形的面枳.如杲某平面图形楚由两条连续曲Sn=/(X)J I≡r(χ)及两条ft⅛χ,=β Wx1=A所国成的(其中y l是下面的曲线小圧上面的曲⅛).WMHSu可由下式求出:⅜A Ss(S jf m jr)血(8)卄算旋披体的体积.(7)中的平IS图形嶷,轴虞转一周所得駐转体的体机为第四章多元函数微分学一.常见的考试知识点1.二元两数的一阶個导数和全做分、二元除数的二阶《1导数2.SI合函数与隐函数的一阶僞导敬3.二元两数的无条件极備和条件极值4.试卷内容比例本权内容约占试松分備的15% •共计22分左右.二、常用的解题方法与技巧I. «9ft的求法设二元函数为ι=∕(χ.y).当求/(χ.y)X∙tχ的僞导敎时•只嬰将二元函数中的y看成««.»对*求导数就行了•同理・求/(χ.y)对)•的備导数时,要将* 而对)求导数•这样求出的是個导函数•如果耍求帧ft∕(χ,y)ft点(心必)处的W⅛tt.只爲任僞导丙数中将代人即可.三元西数u=∕(χ√.χ)对x.y.:的債导数的定义和求法与此类饥2・全做分及其求法如果⅛Sftχ=∕(χ.y)ft点($』)的某一邻域内存在连续的一阶Wi导数/:(x.y)./:(x.y), M 函数i=∕(χ√)4点(JGy)处可做,且d"/:(*』)dx“:(x』)dy・对于给出的F⅛ft^∕(χ.y).只需求出悄个一阶Wl导数/:(*」)及/;(*』)・代入上式即鮒命做分表达式.3.复合函数的備导數如果负数U=^(Xo).v=≠(χ√)在点(χ,y)处“在连续的偵导数•旦在对应于∂x ∂y OX∂v(X』)的点(“』)处√(u.p)存花连续的函数"Aw(Xy)M(Xy)]∂u ∂r在点(Xy)处存在对«和y的连续M⅛ft.且bz h: Hu∂i ∂vWVWF = OTMW ∙ «wve +∙ MW∂x ∂u ∂x c>r∂χ,∂∑∂: ∂u∂ι∂r一二一• 一+一• 一.∂y ∂u ∂y∂r∂y恃别地•如果:=/(u.r).而M=φ(x) .∣=≠(Λ).则:IL X的一尤南数N≡√¼( Y)M(X)]・这时2对*的导数令称为全导数•于是全导数Ck ∂: (IU 3: dr•W ∙ ≡BW ∙∙≡≡∙+«■■» ∙∙≡∙^(1Λ ∂U dx Hc dx如果“/(B)•而r≡y(x).2时A既是中何变址乂是4变Bt,那么:对X的全导数虫-色+色■也Ax Λx 3y Ax4.Rk函数的导数和M⅛K(1)也函数的导数•对干方fif(χ.y)≡O所确定的稳Ifieu=/(χ).可以由F列公式求出、对*的⅛ft y f:,F:(M)」TiI而•其中FE)』;("分别楚将F(X t V)对X』所求的W⅛tt(对某个变伙求Λi⅛t⅛时•将另- 个变MIfOft).(2)隐怖数的僞导数.对于由方ff F(xσ.-)≡ 0所确定的IaaftX≡∕(jrj).可用下列公色-F:(*・y肩)∂f, X(χj∙.z)∂Λ ^ A';(x.y t i) * ∂r^ P:(XJY)°其中F:(x.y.x).f:(i.y.z).F:(x.y.z)分別是将F(x.).z)对XJY 所求的M⅛ft (对菜个变ht 求侗导数时•将另外懈个变撒均弃成常数)・5.二元函数无条件极値的计算求二元函数z=∕(ι√)极tf(的步骤:弩山O[、求出所有的脏点肌(ι>l).(I)解方程组4⅛L⅛o,∂y9(2)对毎个鸵点求出对应的A,B.C.其中λs^∖,:B=⅛L.∙ "*L.∙(3)由H^AC W 4(或C)的符号胃定该社点是否为极(ft点以及是极大(ft还是极小值.(4)求出极(ft "/(%“)・6.二元两数条件极他的卄算二元⅛Λι=∕(χ.y)½条件叭忙O下的极備计算•只需F(x.y.λ)≈f(x,y)^λφ(x,y)・第五章概率论初步一、常见的考试知识点1.事件的关系及运算2.概率的加法公式•条件概率•乘法公式及步件的独立性3.离散型随机变凰的概率分布的计算■数学期望•方差和标准差的计算4.试卷内容比例本章内容约占试卷分值的8% •共计12分左右•二、常用的解题方法与技巧I •审件的关系和运算(1)事件的包含:A CB.(2)事件的并或和i AUB或从B・(3)事件的交或积i A∏B或佔.(4)事件的互斥或互不相容:AH = 0.。