高等教育数学微积分发展史论文
- 格式:docx
- 大小:23.98 KB
- 文档页数:5
微积分的历史与现代发展微积分,作为数学的一个重要分支,起源于古代的几何学和无穷小分析,经过漫长的历史发展,逐渐完善并在现代科学中扮演着不可或缺的角色。
本文将从微积分的起源开始,探究其历史演变和现代发展。
一、古代的几何学与无穷小分析微积分最早的雏形可以追溯到古代希腊的几何学。
几千年前,人们就开始通过几何方法来研究曲线的长度、面积和体积等问题。
在这个过程中,人们发现了一些计算面积和弧长的方法,这些方法成为后来微积分理论的基础。
另一方面,无穷小分析的思想也在不同的文化和时期得到了独立的发展。
在古印度、中国和中世纪欧洲,人们通过无穷小量的概念,探索了数列、级数和曲线的性质。
而这些合并到一起的思想,为微积分的产生奠定了基础。
二、牛顿与莱布尼茨的微积分革命17世纪,英国科学家牛顿和德国数学家莱布尼茨几乎同时独立发明了微积分的基本原理。
他们分别创造了微分和积分的概念,并建立了微积分的核心理论。
牛顿的《自然哲学的数学原理》和莱布尼茨的符号法成为微积分学科的奠基之作。
牛顿和莱布尼茨的微积分革命,为科学的飞速发展提供了工具和理论基础。
微积分的应用广泛涉及物理学、工程学、经济学等领域,为解决实际问题提供了强大的工具。
三、微积分的拓展与独立发展近代,微积分得到了更进一步的发展。
19世纪初,法国数学家拉格朗日和法国数学家傅里叶对微积分做出了巨大贡献。
拉格朗日提出了微积分的最优化原理,傅里叶则将微积分应用于热传导的研究中,从而开辟了新的领域。
20世纪,微积分随着计算机技术的发展进一步拓展。
数值计算方法的出现,使得微积分的应用更加便捷和高效。
微积分的概念也得到了进一步的推广和深化,例如广义函数、多元微积分等。
现代,微积分已经和许多其他学科紧密结合,形成了数理科学的基础。
在物理学、工程学、计算机科学等领域,微积分被广泛运用于模型的建立、数据分析和问题求解等过程中。
总结起来,微积分的历史源远流长,经过几千年的演变和发展,从几何学和无穷小分析到牛顿和莱布尼茨的创新,再到近代的拓展与独立发展,微积分已经成为现代科学中不可或缺的工具和理论基础。
微积分的完善与发展作文
微积分,真的很神奇。
微积分,这个名字听起来好像很高大上,但其实它就是我们生活中的小助手。
你想知道一辆车加速时的速度变化吗?微积分能帮你算出来。
想知道一片森林里树木生长的总面积吗?微积分也能搞定。
简单说,微积分就是帮你理解变化的一种工具。
你知道吗,微积分其实并不是一开始就那么完美的。
它的历史里充满了各种争议和修正。
但正因为这些,它才变得越来越准确、越来越有用。
就像我们生活中的很多事物,都需要经过不断的尝试和修正,才能变得更好。
说到微积分的应用,那真的是无处不在。
你去超市购物,算一下打折后的总价,那就是微积分的简单应用。
还有手机里的导航软件,帮你规划最佳路线,背后也是微积分在默默工作。
微积分,真的就像我们生活中的“小助手”。
不过,微积分也不总是那么容易理解。
有时候,它就像是一个复杂的迷宫,让人摸不着头脑。
但没关系,只要你有耐心,一步一
步去探索,总会找到出路的。
毕竟,生活中没有什么是过不去的坎,对吧?
所以,下次当你听到“微积分”这个词时,不要觉得它遥不可及。
它其实就在我们身边,帮助我们更好地理解这个世界。
只要我
们愿意去探索、去学习,微积分就能成为我们生活中的好朋友。
论数学中微积分的发展史538 李维春1002507007一、微积分的内容和概念解析几何是代数与几何的产物,它讲变量引进了数学,使运动与变化的定量表述成为可能,从而为微积分搭建了舞台。
微积分是建立在实数、函数和极限的基础上的。
极限和微积分的概念可以追溯到古代。
到了十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。
他们建立微积分的出发点是直观的无穷小量,理论基础是不牢固的。
直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。
微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学个分支中,有越来越广泛的应用。
特别是计算机的发明更有助于这些应用的不断发展。
微积分学是微分学和积分学的总称。
客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。
因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。
由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。
微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。
微积分的基本内容研究函数,从量的方面研究事物运动变化是微积分的基本方法。
这种方法叫做数学分析。
本来从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。
微积分的基本概念和内容包括微分学和积分学。
微分学的主要内容包括:极限理论、导数、微分等。
积分学的主要内容包括:定积分、不定积分等。
微积分是与应用联系着发展起来的,最初牛顿应用微积分学及微分方程为了从万有引力定律导出了开普勒行星运动三定律。
二、微积分的萌芽微积分的思想萌芽。
可以追溯到古代。
微积分发展应用史学院:数学与计算机科学学院专业:数学与应用数学(1)班【摘要】:由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。
微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。
整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支还是牛顿和莱布尼茨。
【关键词】:解析几何建立牛顿莱布尼兹发展史【正文】如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。
微积分堪称是人类智慧最伟大的成就之一。
从17世纪开始,随着社会的进步和生产力的发展,自文艺复新以来在资本主义生产力刺激下蓬勃发展的自然科学开始迈入综合与突破阶段,而这种综合与突破所面临的数学困难,是的微积分学的基本问题空前的成为人们关注的焦点:确定非匀速运动物体的速度与加速度使瞬时变化率问题成为研究;望远镜的光程设计需要确定透镜曲面上任意一点的法线这就是人以曲线的切线问题变得不可回避;确定炮弹的最大射程及寻求行星轨道的近日点与远日点等涉及的函数极大值、极小值问题也亟待解决与此同时,行星眼轨道运行的路程,行星矢径扫过的面积及物体的重心和引力的计算有使微积分学的基本问题——面积、体积、曲线长、重心和引力的计算的兴趣被重新激发起来。
在十七世纪中叶几乎所有的科学大师都致力于寻求解决这些难题的新的数学工具,在这种特殊的背景下微积分学即将应运而生。
任何新事物的产生都有一个准备的过程,微积分的诞生也不会例外,德国天文学家数学家开普勒(Johannes Kepler,1571-1630),意大利数学家卡瓦列里(Bonaventura Cavalier i,1598-1647)都为此做出不可磨灭的贡献,但他们主要采用几何方法并集中于积分问题,解析几何的诞生改变了这一状况,其创始人笛卡尔和费马将坐标方法引进微分学问题研究的先锋,笛卡尔在《几何学》中提出了切线的所谓“圆法”,其本质作为一种代数方法,在推动微积分的早期发展中有着很大影响,牛顿就是以笛卡尔原发为起点高踏上了研究微积分的道路。
内容摘要】一般地,导数概念的起点是极限,即从数列→数列的极限→函数的极限→导数,但对于高中的学生来说,极限是非常抽象和不容易理解的,而新课标导数教学并没有介绍形式化的极限定义,改从变化率入手,用形象直观的“逼近”方法定义导数。
本文就是从微积分的发展史来弄清为什么可以这样引入导数的概念。
【关键词】流数;变化率;瞬时变化率;导数一般地,导数概念的起点是极限,即从数列→数列的极限→函数的极限→导数。
这种概念建立方式有严密的逻辑性和系统性,但是也产生了一些问题:就高中学生的认知水平而言,他们很难理解极限的形式化定义。
由此产生的困难也影响了对导数本质的理解。
而新课标导数概念是怎样讲呢?教科书(人教版)没有介绍形式化的极限定义及相关知识。
而是从变化率入手,用形象直观的“逼近”方法定义导数。
这种概念建立方式当然就没有严密的逻辑性和系统性了,有这种必要吗?笔者从微积分的发展史找到答案。
一、微积分的发展史简介众所周知,微积分是由伊萨克?牛顿(Isac Newton,1643-1727)与戈特弗里?威廉?莱布尼茨(Gottfried Wilhelm,1646-1716)分别通过研究不同的问题而创立的。
对牛顿的数学思想影响最深的要数笛卡儿的《几何学》和沃利斯的《无穷算术》,正是这两部著作引导牛顿走上了创立微积分之路。
1666年牛顿将其前两年的研究成果整理成一篇总结性论文—《流数简论》,这也是历史上第一篇系统的微积分文献。
在简论中,牛顿以运动学为背景提出了微积分的基本问题,发明了“正流数术”(微分);从确定面积的变化率入手通过反微分计算面积,又建立了“反流数术”;并将面积计算与求切线问题的互逆关系作为一般规律明确地揭示出来,将其作为微积分普遍算法的基础论述了“微积分基本定理”。
“微积分基本定理”也称为牛顿—莱布尼茨定理,牛顿和莱布尼茨各自独立地发现了这一定理。
而莱布尼茨与牛顿的切入点不同,他创立微积分首先是出于几何问题的思考,尤其是特征三角形的研究。
数学微积分论文范文微积分是高等数学的一部分知识,关于微积分的论文有哪些?接下来店铺为你整理了数学微积分论文的范文,一起来看看吧。
数学微积分论文范文篇一:初等微积分与中学数学摘要:初等微积分作为高等数学的一部分,属于大学数学内容。
在新课程背景下,几进几出中学课本。
可见初等微积分进入中学是利是弊已见分晓,其重要性不言而喻。
但对很多在岗教师而言,还很陌生,或是理解不透彻。
这样不利于这方面的教学。
我将对初等微积分进入中学数学背景,作用及教学作简单研究.关键词:微积分;背景;作用;函数一、微积分进入高中课本的背景及必要性在数学发展史上,自从牛顿和莱布尼茨创建微积分以来,数学中的很多问题都得以解决。
微积分已成为我们学习数学不可或缺的知识。
其在经济、物理等领域的大量运用也使之成为解决生活实际问题的重要工具。
但牛顿和莱布尼茨创建的微积分为“说不清”的微积分,也就是连他们自己也说不清微积分的理论依据,只是会应用。
这使得很多人学不懂微积分,更不用说让中学生来学习微积分。
柯西和维尔斯特拉斯等建立了严谨的极限理论,巩固了微积分基础,这是第二代微积分,但概念和推理繁琐迂回,对高中生更是听不明白。
近十年来,在大量的数学家如:张景中,陈文立,林群等的不懈努力下,第三代微积分出现了相比前两代说得清楚,对高中生而言,也更容易理解。
这为其完全进入高中课本奠定了基础。
从内容来看,新一轮的课改数学教材在微积分部分增加了定积分的概念及应用(求曲边梯形面积,旋转体体积,以及在物理中的应用),可能考虑到中学生的认知能力,人教版新教材与北师大版在这方面有所不同。
即利用定积分求简单旋转体体积在北师大版教材中出现了,但人教版没有。
从课标和考试大纲(参考2011年高考考试大纲)上看,初等微积分所占比重也是越来越重。
回顾历届高考,微积分相关题型分值越来越高。
但就我个人观点,初等微积分在中学数学中的作用还没有真正全面发挥。
我认为,它是学生中学数学和教师教学的一条线索,它是我们研究中学函数问题的统一方法,也是联系中学与大学数学知识的纽带!二、微积分在中学数学中的作用1.衔接性与后继作用。
微积分的发展史范文微积分是现代数学中的一个重要分支,涉及对函数的导数和积分等概念的研究。
微积分的发展经历了几个重要的阶段,从古希腊数学的一些零散的想法,到17世纪初牛顿和莱布尼茨的独立发现,再到19世纪的完善和推广,微积分已经成为现代科学和工程中的基础理论。
早在公元前4世纪,古希腊数学家欧几里得提出了一种用极限概念来研究曲线斜率的方法。
在此之后,亚历山大的阿基米德在第三世纪前后也使用了一些近似方法来研究圆周率和测量圆的面积。
然而,在古希腊时期,微积分的概念还没有被系统地发展出来。
微积分真正的发展始于17世纪初,当时牛顿和莱布尼茨几乎同时独立地发现了微积分的基本原理和方法。
牛顿将微积分应用于天文学和物理学,而莱布尼茨则将其应用于几何学和计算问题。
通过牛顿和莱布尼茨的努力,微积分的基本概念如导数和积分被建立起来,并形成了一套完整的理论体系。
在18世纪,微积分的研究得到了进一步的推广和完善。
欧拉是18世纪最重要的数学家之一,他对微积分进行了深入的研究。
欧拉发展了一些重要的概念和技巧,例如级数、复变函数和微分方程等,为微积分的应用和推进做出了巨大贡献。
此外,拉格朗日和拉普拉斯等数学家也对微积分进行了深入的研究,并为微积分的发展提供了许多重要的思想和方法。
到了19世纪,微积分的研究进入了一个全新的阶段。
拉格朗日的求导法则和莱布尼茨的积分法则等基本概念和技巧被进一步推广和完善。
庞加莱、魏尔斯特拉斯和威尔逊等数学家对微积分理论进行了深入研究,提出了许多重要的定理和方法。
特别是庞加莱在微分方程理论方面的贡献,使微积分得到了进一步的应用和发展。
20世纪是微积分研究的蓬勃发展阶段。
在这个时期,微积分被广泛应用于物理学、工程学、经济学和计算机科学等领域。
随着计算机的普及和计算能力的提高,微积分的数值方法和近似计算技术得到了极大的发展。
微分方程的数值解法、积分的数值计算、函数逼近和插值等都在这个时期得到了广泛的应用。
总体而言,微积分的发展历程可以概括为:古希腊数学的零散想法,17世纪牛顿和莱布尼茨的独立发现,18世纪的推广和完善,19世纪的深入研究,以及20世纪的应用和发展。
微积分发展简史范文微积分是数学的一个分支,用于研究变化与积分问题。
微积分的发展历史可以追溯到古代希腊和印度,但真正的微积分体系是在17世纪由牛顿和莱布尼茨等数学家建立起来的。
以下将介绍微积分的发展简史。
在古代希腊,数学家们已经研究了一些与微积分相关的概念,例如阿基米德的测量问题和亚历山大的一些近似方法。
然而,直到公元前3世纪的希帕索斯才开始研究曲线的面积和体积问题。
然而,微积分的真正发展是在17世纪。
1642年,法国数学家费马提出了求极值问题的方法,为微积分的发展奠定了基础。
在此之后,其他数学家纷纷加入到微积分的研究中来。
牛顿和莱布尼茨是微积分的两位重要创始人。
1665年,牛顿发明了微积分的基本原理,并在《自然哲学的数学原理》中介绍了微积分的概念和方法。
与此同时,莱布尼茨也在独立地研究微积分,并提出了微积分的符号表示法。
牛顿和莱布尼茨的发现被认为是微积分的巅峰之作。
微积分的发展在18世纪得到了进一步的推动。
欧拉是18世纪微积分发展的中坚人物之一,他提出了欧拉计算法则和欧拉公式,这些在微积分和复变函数等数学领域都有重要应用。
19世纪是微积分发展的丰富时期。
拉格朗日和拉普拉斯等数学家对微积分的推广和发展做出了重要贡献。
拉格朗日提出了拉格朗日乘子法,并建立了微积分的拉格朗日法则。
拉普拉斯则将微积分应用于概率论,并提出了拉普拉斯变换的概念。
20世纪是微积分发展的一个新阶段,微积分开始向更高维度的空间扩展。
韦尔斯特拉斯提出了极限的严格定义,使微积分的基础更加牢固。
在此期间,泛函分析和变分法等新的数学工具也被引入微积分中。
近年来,微积分在科学和工程领域的应用越来越广泛。
微积分被应用于物理学、经济学、生物学、计算机科学等领域的模型建立和问题求解中。
微积分的发展也不断推动着数学理论的深入研究和应用创新。
总结起来,微积分的发展可以追溯到古代希腊和印度,但真正的微积分体系是在17世纪由牛顿和莱布尼茨等数学家建立起来的。
微积分发展史的认识及应用姓名:张佳佳班级:数学1班学号:120701010027摘要微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。
它是数学的一个基础学科。
内容主要包括极限、微分学、积分学及其应用。
微分学包括求解导数的运算,是一套关于变化率的理论。
它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。
积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
微积分是与应用联系着发展起来的,最初牛顿应用微积分学及微分方程为了从万有引力定律导出了行星运动三定律。
此后,微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。
并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断发展。
关键词微积分;应用;微分;积分;物理,几何引言微积分的产生是数学上的伟大创造。
它从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。
如今,微积分已是广大科学工作者以及技术人员不可缺少的工具。
如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。
微积分堪称是人类智慧最伟大的成就之一。
从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。
通过研究微积分在物理,经济等方面的具体应用,得到微积分在现实生活中的重要意义,从而能够利用微积分这一数学工具科学地解决问题。
微积分的发展历史表明了人的认识是从生动的直观开始,进而达到抽象思维,也就是从感性认识到理性认识的过程。
人类对客观世界的规律性的认识具有相对性,受到时代的局限。
随着人类认识的深入,认识将一步一步地由低级到高级、不全面到比较全面地发展,人类对自然的探索永远不会有终点。
目录高等数学—-微积分--------------------------------------------------------------- - 2 - 什么是微积分 ---------------------------------------------------------------------- - 2 - 微积分的历史 ---------------------------------------------------------------------- - 3 - 微积分的创立 ----------------------------------------------------------------- - 3 - 中国古代微积分 -------------------------------------------------------------- - 4 - 微积分的与公式 ------------------------------------------------------------------- - 4 - 微分公式------------------------------------------------------------------------ - 4 - 积分公式------------------------------------------------------------------------ - 5 - 微积分的运算法则---------------------------------------------------------------- - 7 - 微分的运算法则 -------------------------------------------------------------- - 7 - 积分的运算法则------------------------------------------------------------- - 7 - 例题与解题方法 ------------------------------------------------------------------- - 8 - 微分的计算方法 -------------------------------------------------------------- - 8 - 定积分的计算方法 ----------------------------------------------------------- - 9 - 微积分的意义与应用------------------------------------------------------------ - 10 - 微积分的意义 ---------------------------------------------------------------- - 10 -微积分的应用 ---------------------------------------------------------------- - 10 -高等数学-—微积分周露摘要:本文介绍了微积分的概念与历史发展,并在文中详细例举了微积分的各种公式和求取法则,文中用例题的方式讲解了微积分的解题方法,最后在文末说明了微积分的重要意义与生活中的应用.关键词:微分、积分、方法、数学史、应用引言众所周知,微积分是数学中重要的一个分支,微积分的发现,极大地促进了数学史的发展,那么,究竟什么是微积分?谁创立了微积分?微积分究竟有什么重要的作用与意义?让我们在这篇文章中揭晓答案吧。
大学数学微积分论文(专业推荐范文10篇)7700字大学数学微积分包括极限、微分学、积分学及其应用,也包括求导数的运算,是一套关于变化率的理论。
本篇文章就向大家介绍几篇大学数学微积分论文,希望大家通过以下论文,跟大家一起探讨这个课题。
大学数学微积分论文专业推荐10篇之第一篇:浅析微积分在大学数学学习和生活中的应用摘要:经济社会的发展和科技的进步,计算机应用领域的扩大,也不断拓展了微积分的应用范围。
微积在大学数学学习和生活中很常见,应用广泛。
本文主要针对微积分在大学数学学习和生活中的应用进行了分析。
关键词:微积分;大学数学;学习生活;应用;数学作为一项重要的工具,在社会长期发展中发挥着重要的作用,尤其是在其他学科知识的学习、日常生活的应用等方面,数学工具不可或缺。
在大学中,微积分属于大学数学的一个分支,其研究对象是函数的微分、积分及其他内容。
微积分是很多在校大学生的必修课程,同时,在生活中也有广泛的应用空间。
研究微积分,具有重要的现实意义。
1. 大学教学中微积分的应用大学教育的过程中,很多专业知识的学习中都需要运用到微积分,可以说,大学教学中微积分的应用十分广泛,尤其是数学教学和学习,微积分是高等数学研究的一个分支,且在具体的学习中有重要的指导意义。
具体应用分析如下。
1.1 数学建模。
数学建模主要用于把一个抽象的生活问题用具体的数学模型做简化和假设,在此基础上,运算得出一个相对合理的对应方案。
数学建模在现实生活中具有较强的实际意义。
在传统的数学应用中,人们运用微积分建构了多个数学模型,并且为科学研究做出了很大的贡献。
历史上将数学模型运用到科学研究的典型例子,牛顿借助自己研究的微积分,提出万有引力定律,这些典型的现实性案例,都证明了微积分在数学建模中的重要作用。
1.2 等式证明中的微积分使用。
在变量关系的研究过程中,会涉及到有关等式作证明的问题,可以利用微积分无线分割的思想,在处理数学问题的过程中,以简御繁,其次,微积分中的值订立、函数的增减性、极值的判定等,都在在等式的证明中有重要的作用,在具体的运用中,能简化等式,降低了普通方法证明等式时的技巧性和高难度性,因此,微积分的使用让等式证明更加简化和简单。
微积分的发展历史摘要:我国和西方古代微积分的萌芽到近现代微积分的巨大发展,以及从牛顿到柯西等人为微积分的发明。
关键词:微积分;中国;西方;牛顿;“流数术”;微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。
它是数学的一个基础学科。
内容主要包括极限、微分学、积分学及其应用。
微分学包括求导数的运算,是一套关于变化率的理论。
它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。
积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
(一)我国的微积分思想萌芽:公元前5世纪,战国时期名家的代表作《庄子•天下篇》中记载了惠施的一段话:“一尺之棰,日取其半,万世不竭”,是我国较早出现的极限思想。
魏晋时期的数学家刘徽的“割圆术”开创了圆周率研究的新纪元,用他的话说,就是:“割之弥细,所失弥少。
割之又割,以至于不可割,则与圆合体,而无所失矣。
”(二)西方的微积分思想萌芽:安提芬的“穷竭法”。
他在研究化圆为方问题时,提出用圆内接正多边形的面积穷竭圆面积,从而求出圆面积。
之后,阿基米德借助穷竭法解决了一系列几何图形的面积、体积计算问题。
刺激微分学发展的主要科学问题是求曲线的切线、求瞬时变化率以及求函数的极大值极小值等问题。
(三)近现代微积分的发展:1635年意大利数学家卡瓦列里在其著作《用新方法促进的连续不可分量的几何学》中发展了系统的不可分量方法。
1665年,牛顿对微积分问题的研究始于,当时他反复阅读笛卡儿《几何学》,牛顿首创了小○记号表示x 的无限小且最终趋于零的增量。
并发明“正流数术”(微分法),次年5月又建立了“反流数术”(积分法),这就是牛顿的“流数术”。
在牛顿发明“流数术”的同时,莱布尼茨几乎和牛顿取得了同样的成就,并得到了著名的牛顿—莱布尼茨公式:从17世纪到18世纪的过渡时期,法国数学家罗尔在其论文《任意次方程一个解法的证明》中给出了微分学的一个重要定理,也就是我们现在所说的罗尔微分中值定理。
微积分的历史与发展微积分是数学中的一个重要分支,广泛应用于科学、工程、经济学等领域。
本文将介绍微积分的历史与发展,并探讨其在现代社会中的应用。
一、古代对微积分的探索古代的数学家们通过几何学的方法进行了对曲线和面积的研究,这可以看作是微积分的雏形。
在公元前300年,古希腊的数学家欧多克斯提出了求解平面图形面积的方法,称为欧几里得几何。
他将面积问题转化为与角度、线段有关的问题。
进一步的发展出现在17世纪,最著名的数学家之一阿基米德提出了方法求解圆的面积,这也是微积分的基础之一。
然而,在古代,微积分作为一个独立的数学分支并未得到完全的发展。
二、牛顿与莱布尼茨的发现17世纪末,英国的牛顿和德国的莱布尼茨几乎同时独立发现微积分。
牛顿将微积分应用于自然科学领域,莱布尼茨则将其应用于工程和计算学。
牛顿发现了微积分的两个核心概念:导数和积分。
他用导数来研究物体运动的速度和加速度,用积分来求解曲线下的面积。
他的工作被收录在《自然哲学的数学原理》一书中,对后来的数学家产生了深远的影响。
莱布尼茨的微积分符号体系则更加直观和易于应用。
他引入了微积分中的核心概念:微分和积分。
莱布尼茨的符号体系后来成为了微积分的标准符号,并被广泛应用于科学和工程领域。
三、微积分的发展与应用微积分在18世纪逐渐发展成熟。
欧拉、拉格朗日等数学家进一步推动了微积分的应用和发展。
欧拉是微积分的集大成者,他提出了复变函数概念,并将微积分应用于力学、光学等领域。
19世纪,微积分经历了一次革命。
柯西、魏尔斯特拉斯等数学家对微积分进行了严格的定义和建立了新的理论基础。
微积分的发展使得数学和其他科学领域的研究更加深入和准确。
在现代社会,微积分已经成为科学与工程领域不可或缺的工具。
从物理学中的运动学和力学到经济学中的边际分析和优化问题,微积分的应用无处不在。
总结:微积分作为一门数学分支,经历了数千年的发展和演变。
古代的几何学为微积分的发展奠定了基础,而牛顿和莱布尼茨则几乎同时发现了微积分的核心概念。
大学生微积分论文范文大全微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。
它是数学的一个基础学科。
以下是搜集并整理的微积分论文有关内容,希望在阅读之余对大家能有所帮助!大学生微积分论文范文大全微积分是研究客观世界运动现象的一门学科,我们引入极限概念对客观世界运动过程加以描述,用极限方法建立其数量关系并研究其运动结果[1]。
极限理论是微积分学的基础理论,贯穿整个微积分学。
要学好微积分,必须认识和理解极限理论,而把握极限理论的前提,首先要认识极限思想。
极限思想蕴涵着丰富的辩证思想,是变与不变、过程与结果、有限与无限、近似与精确、量变与质变以及否定与肯定的对立统一。
1、极限思想与辩证哲学的联系。
1.1极限思想是变与不变的对立统一。
“变”与“不变”反映了客观事物运动变化与相对静止两种不同状态,不变是相对的,变是绝对的,但它们在一定条件下又可相互转化。
例如,平面内一条曲线C上某一点P的切线斜率为kp。
除P点外曲线上点的斜率k是变量,kp是不变量,曲线上不同的点对应不同的斜率K,斜率k不可能等于kp,k与kp是变与不变的对立关系;同时,它们之间也体现了一种相互联系相互依赖的关系。
当曲线上的点无限接近P点过程中,斜率k无限接近kp,变化的量向不变的量逐渐接近。
当无限接近的结果产生质的飞跃时,变量转化为不变量,即“变”而“不变”,这体现了变与不变的统一关系。
1.2极限思想是过程与结果的对立统一。
过程和结果在哲学上是辩证统一的关系,在极限思想中也充分体现了结果与过程的对立统一。
在上例中,当曲线上的点无限接近点P 的变化过程中,k是变化过程,kp是变化结果。
一方面,无论曲线上点多么接近点P,都不能与点P重合,同样曲线上变化点的斜率k 也不等于kp,这体现了过程与结果的对立性;另一方面,随着无限接近过程的进行,斜率k越来越接近kp,二者之间有紧密的联系,无限接近的变化结果使得斜率k转化为kp,这体现了过程与结果的统一性。
数学概论之微积分的发展汪捷数学与应用数学2012501004从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。
公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。
作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。
比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。
三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。
”这些都是朴素的、也是很典型的极限概念。
到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。
归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。
第二类问题是求曲线的切线的问题。
第三类问题是求函数的最大值和最小值问题。
第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。
十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔玛、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。
为微积分的创立做出了贡献。
十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。
他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。
他们建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。
牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。
微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。
浅谈微积分的发展历史李飞姜攀牛晋徽微积分是数学史上一个伟大的发明。
微积分在两千多年前就开始萌芽,但真正开始发展是从16世纪开始的,并由牛顿和莱布尼兹在17世纪建立,然而为它打好逻辑基础的是19世纪柯西。
从此之后,微积分成了各学科中重要的数学工具。
1 引言在高等数学的教学中,微积分是教学难点之一,学生普遍反应微积分的许多概念和公式比较难以理解。
近几年国内外越来越多的大学在数学教材引入数学史的知识,通过“历史线索”和“历史原型”来组织高等数学的教学,使学生真正理解课本上抽象的概念和形式化的公式背后的实际内涵。
为便于将数学史引入高等数学的教学中,本文简单地介绍一下微积分的发展历史。
2 微积分的发展历史微积分从发端至今已有两千多年的历史,并且其发展并不是一帆风顺的,本文将其分为四个阶段:萌芽阶段;酝酿阶段;创立阶段;发展阶段。
2.1 萌芽阶段2000多年前东西方的数学家就开始对微积分思想的萌芽和探索。
这个阶段对后世最有影响的是古希腊的数学发展。
古希腊的数学并不是单独的一个分支 ,而是与天文 、哲学密不可分的,其研究对象以几何学为主。
这一阶段最重要的两个哲学思想是“穷竭法”和“原子论”。
公元前5世纪,古希腊诡辩学派的安提丰(Antiphon)为解决“化圆为方”的问题,提出如下方法:“先作一圆内接正方形,将边数加倍,得内接8边形;再加倍,得16边形。
如此作下去,最后正多边形穷竭了圆。
”该方法被阿基米德(Archimedes)发展为“穷竭法”。
同样在公元前5世纪,德谟克利特(Demokritos)提出了“原子论”,并用“原子论”解释数学概论,提出:“线段、面积和立体都是由一些不可再分的原子构成的 ,而计算面积 、体积就是将这些‘原子’累加起来”。
他根据这一思想来求解圆锥体的体积,发现“圆锥体积等于具有同底同高的圆柱体积的三分之一”。
但这一结论的证明是由攸多克萨斯(Eudoxus)完成的。
德谟克利特认为圆锥体是由一系列底面积不等的不可再分的圆形薄片构成,因此圆锥体的表面不光滑。
微积分的创立、发展及意义摘要该文主要论述了微积分的创立过程、微积分的发展历程,以及微积分的重要意义。
在微积分的创立过程中,主要说明了创立背景、微积分的两位创始人独立创立微积分的过程以及微积分的基本内容及基本方法;其次,以欧拉为主要代表介绍了微积分的发展历程;最后论述了微积分对科学、社会、工业、航空等方面的影响及其深远意义。
关键词:微积分数学史创立发展意义论文1、微积分的创立1.1 微积分的创立背景[1]克莱因(M.Klein)认为:微积分的创立,首先是处于17世纪主要两科学问题,即有四种主要类型的问题有待用微积分去解决。
第一类:已知物体移动的距离表示为时间的函数的公式,求物体在任意时刻的速度和加速度;反过来,已知物体的加速度表示为时间的函数的公式,求速度和距离。
第二类:问题是求曲线的切线,这是一个几何问题,但对科学的应用有巨大的影响。
第三类:问题是求函数的极大极小值。
第四类:问题包括求曲线的长度,曲线围成的面积等等。
首先对微积分的创造作出贡献的是开普勒和伽利略。
用无数个无穷小之和计算面积和体积是开普勒的基本思想,而这一思想的精华是从阿基米德的著作中吸收的,伽利略则奠定了实验和理论协调的近代科学精神,这对于微积分的形成是至关重要的。
对于微积分的孕育有重要影响的是1635 年卡瓦列利(B.Cavalieri意大利)的《不可分连续量的几何学》的发表,他对前人的微积分结果作了初步系统的综合,并创立了一种简易形式的积分法——不可分量法,使卡瓦列利的不可分量更接近于定积分计算的,是法国的帕斯卡(B.Pascal)和英国的瓦里士(J.Wallis)。
瓦里士是牛顿、莱布尼茨之前把分析方法引入微积分的工作做得最多的人。
对微积分的孕育具有重要影响的人物是法国的费马(Fermat),最迟在1636年他已达到求积分方法上的算术化程度,微积分的另一个重要课题——求极值的方法也是费马创造的。
在17世纪,至少有10多位大数学家探索过微积分,而牛顿(Newton)、莱布尼茨(Laeibniz),则处于当时的顶峰。
微积分发展应用史
学院:数学与计算机科学学院
专业:数学与应用数学(1)班
【摘要】:由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。
微积分学这门学科在数学发展中的地位是十
分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。
整个17世纪有数十位
科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支还是牛顿和
莱布尼茨。
【关键词】:解析几何建立牛顿莱布尼兹发展史
【正文】
如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而
树干的主要部分就是微积分。
微积分堪称是人类智慧最伟大的成就之一。
从17世纪开始,
随着社会的进步和生产力的发展,自文艺复新以来在资本主义生产力刺激下蓬勃发展的自然
科学开始迈入综合与突破阶段,而这种综合与突破所面临的数学困难,是的微积分学的基本问题空前的成为人们关注的焦点:确定非匀速运动物体的速度与加速度使瞬时变化率问题成为研究;望远镜的光程设计需要确定透镜曲面上任意一点的法线这就是人以曲线的切线问题
变得不可回避;确定炮弹的最大射程及寻求行星轨道的近日点与远日点等涉及的函数极大值、极小值问题也亟待解决与此同时,行星眼轨道运行的路程,行星矢径扫过的面积及物体的重心和引力的计算有使微积分学的基本问题——面积、体积、曲线长、重心和引力的计算的兴趣被重新激发起来。
在十七世纪中叶几乎所有的科学大师都致力于寻求解决这些难题的新的数学工具,在这种特殊的背景下微积分学即将应运而生。
任何新事物的产生都有一个准备的过程,微积分的诞生也不会例外,德国天文学家数
学家开普勒(Johannes Kepler,1571-1630),意大利数学家卡瓦列里(Bonaventura Cavalier i,1598-1647)都为此做出不可磨灭的贡献,但他们主要采用几何方法并集中于积分问题,解析几何的诞生改变了这一状况,其创始人笛卡尔和费马将坐标方法引进微分学问题研究的先锋,笛卡尔在《几何学》中提出了切线的所谓“圆法”,其本质作为一种代数方法,在推动微积分的早期发展中有着很大影响,牛顿就是以笛卡尔原发为起点高踏上了研究微积分的道路。
牛顿通过对反复阅读笛卡尔《几何学》,对笛卡尔求切线的“圆法”产生浓厚的兴趣,并试图寻找解决该问题的最优方法,在1665年夏至1667年春终于功夫不负有心人,在探讨微积分方向取得突破性进展,并将研究成果整理成一篇总结性论文,此文献现在称为《流数简论》(Traction Fluxions)(因为牛顿当时并没有发表,只是在研究同人中间传阅),成为历史上最早系统的微积分文献,标志作为积分的诞生。
《流数简论》充分反映了牛顿微积分学的的运动背景,该文事实上以速度形式引进了“流数”(即微商)的概念,虽然没有使用流数这一术语,但却在其中提出了微积分的基本问题,虽然《简论》对微积分的基本定理的论述不能算是现代意义上的严格证明,但是牛顿再后来的著作中队高问题做了不依赖于运动清楚证明。
不过此时的微积分在很多方面还不成熟,牛顿对自己的成果并未做宣扬,而是用1667-1693这段时间的大约四分之一来不断该今晚
自己的微积分学说,最终将研究成果议论文的形式总结出来,这些论文有:《运用无限多项的分析》(De Analysi per Aequationes Numero Terminnrum Infinitas)、《流数法与无穷级数》(Methodus Fluxionum et Serierum Infinitarum),《曲线求积数》(Tractatus de Quadratura Curvarum)。
最后一篇作为牛顿最成熟的微积分著述,在其中对以前的
不足之处做了大量的改进,重新重视无限小瞬0的作用,并强调在数学中,最小的误差也
不能被忽略……就是这种严谨的科学态度,最终成为了那个时代的历史巨人。
但在微积分研究过程并非牛顿一枝独秀,莱布尼茨(Cottfried Wilhelm
Leibniz,1646-1716)有足够的理由和他分享荣誉,他在法国巴黎工作期间与荷兰数学家物理学家惠更斯(C.Huygens)结实交流激发了他对数学的兴趣,通过对卡瓦列里、帕斯卡、巴罗扥人的著作了解求曲线的切线以及求面积体积等积分问题,在此基础上形成自己研究方向从几何问题着手,尤其是特征三角形也称“微分三角形”的研究,并在1673年提出了他自己的特征三角(因为在此之前巴罗和帕斯卡的著作中已经出现过),并在其中认识到求曲线的切线依赖于横纵坐标的差值当这些差值变成无限小时值比;求曲线下的面积则依赖于无限小区间上的纵坐标之和,正是由于这两类问题的互逆关系被发现,使得莱布尼茨有的研究的新目标,就是超过巴罗等人建立一般普通的算法,将以解决这两类问题的各种结果技巧统一起来,而他早年研究数的序列的积累已经使他找到了向这个目标挺进的思路。
早在1666年的时候,他通过研究《组合艺术》一书中讨论数列的问题得到了许多重要结论,大约到了1672开始,莱布尼茨开始将他对数列的研究成果与微积分运算联系起来,借助已有成果笛卡尔《解析几何》最终得出求切线不过是求差,球积不过是求和的结论。
通过艰难不懈的研究终于从一串离散知过度到任意函数值y的增量,并采用符号代
替omnia紧接着又引进记号dx表示相邻x的值并能够给出幂函数的微积分公式:
dx e=e x e−1dx
x e dx=x e+1
e+1
并陈述微积分的基本原理,给定一条曲线,其纵坐标为y,求该曲线的面积,可以通过假设求出一条曲线(割圆曲线)其纵坐标为z,使得:
dZ
=y即y dx=dz
dX
于是得到曲线面积: ydz = dz =z
他还做在区间[a b]上的讨论,假设曲线z 通过原点,这就将求积问题转化成了反切线
问题,则面积: y dy b
a =z
b -z a
最终在1677年有明确陈述微积分的基本定理给定曲线求面积,但是以上结论都是通过手稿形式发表,散乱难懂,最终在1864年发表了自己第一篇通过总结整理后的研究成果微分学论文[2]《一种求极大与极小值和求切线的新方法》(Nova methodus pro maximis et minimisla ,itemque tangentibus ,quae nec fractas nec irrationals quantitates moratur,et singular pro illi calculi genus) ,同时也是数学史上第一篇正式发表的微积分文献,并定义微分且广泛采用微分记号dx ,dy 。
并陈述函数和差积乘幂与方根的微份公式:
d z −y +w +x =d z −d y +dw +dx
dx xv =x dv +v dx
d v y
=ydv −v dy y 2 d x a =ax
a −1dx d x a
b =a b x
a −
b dx b 所有运算都表明莱布尼茨微积分的形式运算法则和公式系统,相比之下牛顿虽然重视并运用这些法则,但是却没有费心去陈述一般公式他更大的兴趣在于微积分方法的直接运用,但他们都是那个时代的巨人,就微积分的创立而言,尽管在背景、方法和形式上存在差异、
各有特色,我个人认为二者的供给是相当的,他们都是微积分成为最普遍适用的运算方法,同时又将面积、体积及相当的问题归结为反切线(微分)运算,应该说,微积分能成为独立学科并给整个自然科学带来革命性影响,被誉为[1]“人类精神的最高胜利”,主要靠莱布尼茨和牛顿的不懈探索和研究。
微积分虽然已经创立,但是探索者的脚步却并没有停下,在十八世纪微积分有了进一步的发展,这种发展与广泛的应用紧密的交织在一起刺激和推动了很多数学分支的产生,在数学家不懈的努力探索中,克服基础问题的困难而大胆前进,大大的扩展了微积分的应用范围,尤其是与力学的结合已经成为十八世纪数学家鲜明的时代特征之一,这种结合的紧密程度是数学史上任何时期都无法比拟的。
当时几乎所有的数学家都不同程度是力学家,欧拉的名字通刚体运动和流体力学的基本方程联系紧密;拉格朗日最富盛名的著作是[3]《分析力学》(Traite de mechanique analitique,1788),拉普拉斯的许多重要数学成果包含在他的无答卷《天体力学》(Mecanique celeste,1799-1825),正是这种广泛的运用成为新思想的源泉,人们为解决更多的问题进而促进数学的更大发展。