高考物理电磁学知识点之磁场综合练习(3)
- 格式:doc
- 大小:870.50 KB
- 文档页数:21
电磁场练习题电磁场是物理学中重要的概念,广泛应用于电力工程、通信技术等领域。
为了更好地理解和掌握电磁场的相关知识,以下是一些练习题,帮助读者巩固对电磁场的理解。
练习题1:电场1. 有一电荷+Q1位于坐标原点,另有一电荷+Q2位于坐标(2a, 0, 0)处。
求整个空间内的电势分布。
2. 两个无限大平行带电板,分别带有电荷密度+σ和-σ。
求两个带电板之间的电场强度。
3. 一个圆环上均匀分布有总电荷+Q,圆环的半径为R。
求圆环轴线上离圆环中心距离为x处的电场强度。
练习题2:磁场1. 一个无限长直导线通过点A,导线中电流方向由点A指向B。
求点A处的磁场强度。
2. 一个长直导线以λ的线密度均匀分布电流。
求距离导线距离为r处的磁场强度。
3. 一半径为R、载有电流I的螺线管,求其轴线上离螺线管中心的距离为x处的磁场强度。
练习题3:电磁场的相互作用1. 在一均匀磁场中,一电子从初始速度为v0的方向垂直进入磁场。
求电子做曲线运动的轨迹。
2. 有两个无限长平行导线,分别通过电流I1和I2。
求两个导线之间的相互作用力。
3. 一个电荷为q的粒子以速度v从初始位置x0进入一个电场和磁场同时存在的区域。
求电荷受到的合力。
练习题4:电磁场的应用1. 描述电磁波的基本特性。
2. 电磁感应现象的原理是什么?列举几个常见的电磁感应现象。
3. 解释电磁场与电路中感应电动势和自感现象的关系。
根据上述练习题,我们可以更好地理解和掌握电磁场的基本原理和应用。
通过解答这些练习题,我们能够加深对电场、磁场以及电磁场相互作用的理解,并掌握其在实际应用中的运用。
希望读者能够认真思考每道练习题,尽量自行解答。
如果遇到困难,可以参考电磁场相关的教材、课件等资料,或者向老师、同学寻求帮助。
通过不断练习和思考,相信读者可以彻底掌握电磁场的相关知识,为今后的学习和应用奠定坚实的基础。
高考物理电磁学知识点之磁场知识点总复习含答案(4)一、选择题1.一回旋加速器当外加磁场一定时,可把质子加速到v ,它能把氚核加速到的速度为 ( )A .vB .2vC .3vD .23v 2.质量和电荷量都相等的带电粒子M 和N ,以不同的速率经小孔S 垂直进入匀强磁场,运行的半圆轨迹分别如图中的两支虚线所示,下列表述正确的是( )A .M 带正电,N 带负电B .M 的速率大于N 的速率C .洛伦磁力对M 、N 做正功D .M 的运行时间大于N 的运行时间3.如图所示,两相邻且范围足够大的匀强磁场区域Ⅰ和Ⅱ的磁感应强度方向平行、大小分别为B 和2B 。
一带正电粒子(不计重力)以速度v 从磁场分界线MN 上某处射入磁场区域Ⅰ,其速度方向与磁场方向垂直且与分界线MN 成60 角,经过t 1时间后粒子进入到磁场区域Ⅱ,又经过t 2时间后回到区域Ⅰ,设粒子在区域Ⅰ、Ⅱ中的角速度分别为ω1、ω2,则( )A .ω1∶ω2=1∶1B .ω1∶ω2=2∶1C .t 1∶t 2=1∶1D .t 1∶t 2=2∶14.在探索微观世界中,同位素的发现与证明无疑具有里程碑式的意义。
质谱仪的发现对证明同位素的存在功不可没,1922年英国物理学家阿斯顿因质谱仪的发明、同位素和质谱的研究荣获了诺贝尔化学奖。
若速度相同的一束粒子由左端射入质谱仪后的运动轨迹如图所示,不计粒子重力,则下列说法中正确的是( )A.该束粒子带负电B.速度选择器的P1极板带负电C.在B2磁场中运动半径越大的粒子,质量越大D.在B2磁场中运动半径越大的粒子,比荷qm越小5.如图甲是磁电式电流表的结构图,蹄形磁铁和铁芯间的磁场均匀辐向分布。
线圈中a、b两条导线长度均为l,未通电流时,a、b处于图乙所示位置,两条导线所在处的磁感应强度大小均为B。
通电后,a导线中电流方向垂直纸面向外,大小为I,则()A.该磁场是匀强磁场B.线圈平面总与磁场方向垂直C.线圈将逆时针转动D.a导线受到的安培力大小始终为BI l6.如图所示,匀强磁场的方向垂直纸面向里,一带电微粒从磁场边界d点垂直于磁场方向射入,沿曲线dpa打到屏MN上的a点,通过pa段用时为t.若该微粒经过P点时,与一个静止的不带电微粒碰撞并结合为一个新微粒,最终打到屏MN上.若两个微粒所受重力均忽略,则新微粒运动的 ( )A.轨迹为pb,至屏幕的时间将小于tB.轨迹为pc,至屏幕的时间将大于tC.轨迹为pa,至屏幕的时间将大于tD.轨迹为pb,至屏幕的时间将等于t7.如图所示,虚线为两磁场的边界,左侧磁场垂直纸面向里,右侧磁场垂直纸面向外,磁感应强度大小均为B。
高考物理电磁学知识点之静电场单元汇编含答案解析(3)一、选择题1.如图所示,四个点电荷所带电荷量的绝对值均为Q ,分别固定在正方形的四个顶点上,正方形边长为a ,则正方形两条对角线交点处的电场强度( )A .大小为42kQ,方向竖直向上 B .大小为22kQ,方向竖直向上 C .大小为42kQ,方向竖直向下 D .大小为22kQ,方向竖直向下 2.静电场方向平行于x 轴,将一电荷量为q -的带电粒子在x d =处由静止释放,粒子只在电场力作用下沿x 轴运动,其电势能E P 随x 的变化关系如图所示.若规定x 轴正方向为电场强度E 、加速度a 的正方向,四幅示意图分别表示电势ϕ 随x 的分布、场强E 随x 的分布、粒子的加速度a 随x 的变化关系和粒子的动能E k 随x 的变化关系,其中正确的是A .B .C .D .3.真空中静电场的电势φ在x 正半轴随x 的变化关系如图所示,x 1、x 2、x 3为x 轴上的三个点,下列判断正确的是( )A.将一负电荷从x1移到x2,电场力不做功B.该电场可能是匀强电场C.负电荷在x1处的电势能小于在x2处的电势能D.x3处的电场强度方向沿x轴正方向4.如图所示,A、B、C、D为半球形圆面上的四点,处于同一水平面,AB与CD交于球心且相互垂直,E点为半球的最低点,A点放置一个电量为+Q的点电荷,B点放置一个电量为-Q的点电荷,则下列说法正确的是()A.C、E两点电场强度不相同B.C点电势比E点电势高C.沿CE连线移动一电量为+q的点电荷,电场力始终不做功D.将一电量为+q的点电荷沿圆弧面从C点经E点移动到D点过程中,电场力先做负功,后做正功5.如图所示,一绝缘光滑半圆环轨道放在竖直向下的匀强电场中,电场强度大小为E。
在与环心等高处放有一质量为m、带电荷量+q的小球,由静止开始沿轨道运动,下述说法正确的是()A.小球在运动过程中机械能守恒B.小球经过环的最低点时机械能最大C.小球经过环的最低点时对轨道压力为2(mg+qE)D.小球经过环的最低点时对轨道压力为(mg+qE)v进入某电场,由于电场力和重力的作用,6.质量为m的带电微粒以竖直向下的初速度微粒沿竖直方向下落高度h后,速度变为零。
高考物理新电磁学知识点之磁场经典测试题含答案解析(1)一、选择题1.如图所示,在水平放置的光滑绝缘杆ab上,挂有两个相同的金属环M和N.当两环均通以图示的相同方向的电流时,分析下列说法中,哪种说法正确()A.两环静止不动 B.两环互相远离C.两环互相靠近 D.两环同时向左运动.其核心部分是分别与高频交流电源两极相连接的两2.回旋加速器是加速带电粒子的装置个D形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法中正确的是( )A.减小磁场的磁感应强度B.增大匀强电场间的加速电压C.增大D形金属盒的半径D.减小狭缝间的距离3.质量和电荷量都相等的带电粒子M和N,以不同的速率经小孔S垂直进入匀强磁场,运行的半圆轨迹分别如图中的两支虚线所示,下列表述正确的是()A.M带正电,N带负电B.M的速率大于N的速率C.洛伦磁力对M、N做正功D.M的运行时间大于N的运行时间4.如图所示的圆形区域里匀强磁场方向垂直于纸面向里,有一束速率各不相同的质子自A 点沿半径方向射入磁场,则质子射入磁场的运动速率越大,A.其轨迹对应的圆心角越大B.其在磁场区域运动的路程越大C.其射出磁场区域时速度的偏向角越大D.其在磁场中的运动时间越长5.笔记本电脑机身和显示屏对应部位分别有磁体和霍尔元件.当显示屏开启时磁体远离霍尔元件,电脑正常工作:当显示屏闭合时磁体靠近霍尔元件,屏幕熄灭,电脑进入休眠状态.如图所示,一块宽为a、长为c的矩形半导体霍尔元件,元件内的导电粒子是电荷量为e的自由电子,通入方向向右的电流时,电子的定向移动速度为υ.当显示屏闭合时元件处于垂直于上表面、方向向下的匀强磁场中,于是元件的前、后表面间出现电压U,以此控制屏幕的熄灭.则元件的()A.前表面的电势比后表面的低B.前、后表面间的电压U与υ无关C.前、后表面间的电压U与c成正比D.自由电子受到的洛伦兹力大小为eU a6.下列关于教材中四幅插图的说法正确的是()A.图甲是通电导线周围存在磁场的实验。
高考物理电磁学知识点之磁场知识点总复习附答案一、选择题1.如图,边长为l ,质量为m 的等边三角形导线框用绝缘细线悬挂于天花板,导线框中通一逆时针方向的电流,图中虚线过ab 边中点和ac 边中点,在虚线的下方有一垂直于导线框向外的匀强磁场,其磁感应强度大小为B ,此时导线框处于静止状态,细线中的拉力为1F ;保持其他条件不变,现将虚线下方的磁场移至虚线上方,此时细线中拉力为2F 。
导线框中的电流大小为( )A .12F F Bl -B .21F F Bl -C .122()F F Bl -D .212()F F Bl- 2.如图所示,台秤上放一光滑平板,其左边固定一挡板,一轻质弹簧将挡板和一条形磁铁连接起来,此时台秤读数为N 1,现在磁铁上方中心偏左位置固定一通电导线,电流方向如图,当加上电流后,台秤读数为N 2,则以下说法正确的是( )A .N 1>N 2,弹簧长度将变长B .N 1>N 2,弹簧长度将变短C .N 1<N 2,弹簧长度将变长D .N 1<N 2,弹簧长度将变短3.回旋加速器是加速带电粒子的装置.其核心部分是分别与高频交流电源两极相连接的两个D 形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法中正确的是( )A .减小磁场的磁感应强度B .增大匀强电场间的加速电压C .增大D 形金属盒的半径D .减小狭缝间的距离4.质量和电荷量都相等的带电粒子M 和N ,以不同的速率经小孔S 垂直进入匀强磁场,运行的半圆轨迹分别如图中的两支虚线所示,下列表述正确的是( )A .M 带正电,N 带负电B .M 的速率大于N 的速率C .洛伦磁力对M 、N 做正功D .M 的运行时间大于N 的运行时间5.如图所示,边长为L 的等边三角形导线框用绝缘细线悬挂于天花板,导线框中通一逆时针方向的电流,图中虚线过ab 边中点和ac 边中点,在虚线的下方有一垂直于导线框向里的匀强磁场,此时导线框通电处于静止状态,细线的拉力为F 1;保持其他条件不变,现虚线下方的磁场消失,虚线上方有相同的磁场同时电流强度变为原来一半,此时细线的拉力为F 2 。
高二《磁场》重难点精析及综合能力强化训练高中,物流,高一力学是基础,高二电磁学是根本,高三知识综合用,所以高二部分,往往是高考的难点和重点,应当全面掌握这一块的方法和内容,综合利用。
I. 重难知识点精析一、知识点回顾1、磁场(1)磁场的产生:磁极周围有磁场;电流周围有磁场(奥斯特实验),方向由安培定则(右手螺旋定则)判断(即对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向);变化的电场在周围空间产生磁场(麦克斯韦)。
(2)磁场的基本性质:磁场对放入其中的磁极、电流(安培力)和运动电荷(洛仑兹力)有力的作用(对磁极一定有力的作用;对电流和运动电荷只是可能有力的作用,当电流、电荷的运动方向与磁感线平行时不受磁场力作用)。
2、磁感应强度ILF B =(条件:L ⊥B ,并且是匀强磁场中,或ΔL 很小)磁感应强度B 是矢量。
3、磁感线⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。
磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N 极的指向。
磁感线的疏密表示磁场的强弱。
⑵磁感线是封闭曲线(和静电场的电场线不同)。
⑶要熟记常见的几种磁场的磁感线4、安培力——磁场对电流的作用力(1)BIL F =(只适用于B ⊥I ,并且一定有F ⊥B, F ⊥I ,即F 垂直B 和I 确定的平面。
B 、I 不垂直时,对B 分解,取与I 垂直的分量B ⊥)(2)安培力方向的判定:用左手定则。
通电环行导线周围磁场地球磁场 通电直导线周围磁场另:只要两导线不是互相垂直的,都可以用“同向电流相吸,反向电流相斥”判定相互作用的磁场力的方向;当两导线互相垂直时,用左手定则判定。
5、洛仑兹力——磁场对运动电荷的作用力,是安培力的微观表现(1)计算公式的推导:如图,整个导线受到的安培力为F 安 =BIL ;其中I=nesv ;设导线中共有N 个自由电子N=nsL ;每个电子受的磁场力为F ,则F 安=NF 。
高考物理新电磁学知识点之交变电流经典测试题附答案(3)一、选择题1.如图所示,图乙中理想变压器的原线圈接图甲所示的交变电流.理想变压器原、副线圈的匝数比为20:3,定值电阻的阻值为11Ω,滑动变阻器的总阻值为22Ω.下列说法中正确的是()A.副线圈输出电压的频率为100HzB.滑动变阻器的滑片P向右滑动时,电阻R两端的电压不变C.滑动变阻器的滑片P滑到最右端时,通过电阻R的电流为8.45AD.滑动变阻器的滑片P滑到最左端时,理想变压器的输入功率为132W2.普通的交流电流表不能直接接在高压输电线路上测量电流,通常要通过电流互感器来连接,图中电流互感器ab一侧线圈的匝数较少,工作时电流为I ab,cd一侧线圈的匝数较多,工作时电流为I cd,为了使电流表能正常工作,则()A.ab接MN、cd接PQ,I ab<I cd B.ab接MN、cd接PQ,I ab>I cdC.ab接PQ、cd接MN,I ab<I cd D.ab接PQ、cd接MN,I ab>I cd3.如图所示,一交流电的电流随时间而变化的图象。
此交流电流的有效值是()A.2A B.3.5A C.5A D.2A4.图甲是某燃气炉点火装置的原理图转换器能将电压恒为3V的直流电压转换转为如图乙所示的正弦交变电压,并加在一理想变压器的原线圈上,变压器原副线圈的匝数分别为n1、n2。
当变压器副线圈电压的瞬时值大于5000V时,就会在钢针和金属板间引发电火花进而点燃气体。
以下判断正确的是()A.电压表的示数等于3V B.电压表的示数等于10VC.实现点火的条件之一是121500nn<D.实现点火的条件是钢针和金属板紧密接触5.如图是交流发电机的示意图,匀强磁场方向水平向右,磁感应强度为B,线圈ABCD从图示位置(中性面)开始计时,绕垂直于磁场方向的轴OO′逆时针匀速转动。
已知转动角速度为ω,线圈ABCD的面积为S,匝数为N,内阻为r,外电路总电阻为R(包括滑环和电刷的接触电阻和电表电阻),规定线圈中产生的感应电流方向沿ABCD为正方向,下列说法正确的是()A.线圈产生感应电动势的瞬时值为2sine NB S tωω=B.电路中产生的电流有效值为022()NB SIR rω=+C.外电路的电压峰值为02mNB S RUR rω=+D.1秒内线圈中电流方向改变2ωπ次6.在匀强磁场中,一矩形金属线圈绕与磁感线垂直的转轴匀速转动,如图甲所示,产生的交变电动势的图象如图乙所示,则 ()A.t=0.005s时线圈平面与磁场方向平行B.t=0.010s时线圈的磁通量变化率最大C .线圈产生的交变电动势频率为100HzD .线圈产生的交变电动势有效值为311V7.如图所示,一理想变压器的原、副线圈匝数之比为12:55:1n n =,原线圈接入电压2202sin100u tV π=的交流电源,图中电表均为理想电表,闭合开关后,当滑动变阻器的滑动触头P 从最上端滑到最下端的过程中,下列说法正确的是( )A .副线圈中交变电流的频率为100HzB .0t =时,电压表的示数为0C .电流表的示数先变小后变大D .电流表的示数先变大后变小8.如图所示,左右两个电路中,当a 、b 两端和e 、f 两端分别接220V 的交变电压时,测得c 、d 两端和g 、h 两端的电压均为110V .若分别在c 、d 两端和g 、h 两端加上110V 交变电压,则a 、b 两端和e 、f 两端测得的电压将分别是( )A .220V ,220VB .220V ,110VC .110V ,110VD .220V , 0V9.一含有理想变压器的电路如图所示,图中电阻1R 、2R 和3R 的阻值分别为3Ω、1Ω和4Ω,A 为理想交流电流表,U 为正弦交流电压源,输出电压R 的有效值恒定当开关S 断开时,电流表的示数为I ;当S 闭合时,电流表的示数为4I 。
高考物理最新电磁学知识点之静电场知识点训练附答案(3)一、选择题1.如图,一带正电的点电荷固定于O 点,两虚线圆均以O 为圆心,两实线分别为带电粒子M 和N 先后在电场中运动的轨迹,a 、b 、c 、d 为轨迹和虚线圆的交点,不计重力。
则( )A .a 点的场强和c 点的场强相同B .M 带正电荷,N 带负电荷C .N 在从c 点运动到d 点的过程中电场力做正功D .M 在b 点的电势能等于N 在d 点的电势能2.如图所示,足够长的两平行金属板正对竖直放置,它们通过导线与电源E 、定值电阻R 、开关S 相连。
闭合开关后,一个带电的液滴从两板上端的中点处无初速度释放,最终液滴落在某一金属板上。
下列说法中正确的是( )A .液滴在两板间运动的轨迹是一条抛物线B .电源电动势越大,液滴在板间运动的加速度越大C .电源电动势越大,液滴在板间运动的时间越长D .定值电阻的阻值越大,液滴在板间运动的时间越长3.如图所示,实线表示某电场中的四个等势面,它们的电势分别为123,,ϕϕϕ和4ϕ,相邻等势面间的电势差相等.一带负电的粒子(重力不计)在该电场中运动的轨迹如虚线所示,a 、b 、c 、d 是其运动轨迹与等势面的四个交点,则可以判断( )A .4ϕ等势面上各点场强处处相同B .四个等势面的电势关系是1234ϕϕϕϕ<<<C .粒子从a 运动到d 的过程中静电力直做负功D .粒子在a 、b 、c 、d 四点的速度大小关系是a b c d v v v v <<=4.如图所示,虚线a 、b 、c 代表电场中三个等势面,相邻等势面之间的电势差相同.实线为一带正电的质点仅在电场力作用下通过该区域的运动轨迹,P 、Q 是这条轨迹上的两点,由此可知( )A .三个等势面中,c 等势面电势高B .带电质点通过Q 点时动能较小C .带电质点通过P 点时电势能较大D .带电质点通过Q 点时加速度较大5.如图所示,匀强电场中三点A 、B 、C 是一个三角形的三个顶点,30ABC CAB ∠=∠=︒,23m BC =,已知电场线平行于ABC 所在的平面,一个电荷量6110C q -=-⨯的点电荷由A 移到B 的过程中,电势能增加了51.210J -⨯,由B 移到C 的过程中电场力做功6610J -⨯,下列说法正确的是( )A .B 、C 两点的电势差为3VB .该电场的电场强度为1V/mC .正电荷由C 点移到A 点的过程中,电势能增加D .A 点的电势低于B 点的电势6.质量为m 的带电微粒以竖直向下的初速度0v 进入某电场,由于电场力和重力的作用,微粒沿竖直方向下落高度h 后,速度变为零。
1-磁场与电场磁场电场性质对放入其中的电荷或电流有力的作可对放入其中的电布有力的作用场源电荷、电流皂荷物理量疫感应强曳电场强度、电势差〔电势〕描述磁感线电场线、等势面2.磁感应强度与电场强度磁感应罡度B电场在度E电势差U 物理意义反映随场的强弱反映电场的强弱反映电场的位置定义放入通电导饯,当B_L1时,B=F/IL放入试探电荷,E=F/q移动试探电荷.U=\\7q决定因素场源Q、I和乏场源的矩姿r,与导线无关场源Q和距场源的距离r, 与试探电荷无美两点间的电势之差,与试探电荷无关单位T V/m(N/C)V标矢量矢量,与放入小递针的X极所指的方向矢量,与放入试探正电荷所攵电场力的方向标量3 .磁感线与电场线磴感线电场线定义满足切践方向为B的方向的一组曲线满足切线方向为E的方向的一组曲浅特点闭合曲线.外部从N到S.内部S到N始于正电荷.终于负电荷永不相交永不相交疏客程度反映磁场的强弱〔B〕疏后程度反映场况的羽弱〔E〕4.安培力、洛伦兹力与电场力安培力洛伦兹力皂场力物理意义版场对通电导线的力盔场对运动电荷的力电场对电荷的力大小当B«LI 时,F=B1L当B〃I 时,F=0当互成一定夹角时,取有效长度〔,B方向的投影〕当BJ_v 时,F=qyB当B〃v 时,F=0F=Eq方向左手定那么〔不等于场的方向.且相互垂宜〕左手定那么〔注意电性不同方向相反〉正电荷所受电场力与E相同负电荷所受电场力与E相反一、磁场知识要点1,磁场的产生⑴磁极周围有磁场.⑵电流周围有磁场〔奥斯特〕.安培提出分子电流假说〔又叫磁性起源假说〕,认为磁极的磁场和电流的磁场都是由电荷的运动产生的.〔不等于说所有磁场都是由运动电荷产生的.〉⑶变化的电场在周困空间产生磁场〔麦克斯韦〕.2,磁场的根本性质•••磁场对放入其中的磁极和电流有磁场力的作用〔对磁极一定有力的作用:对电流只是遮有力的作用,当电流和磁感线平行时不受磁场力作用〕.这一点应该跟电场的根本性质相比拟.3.磁感应强度B =—〔条件是匀强磁场中,或AL很小,并且L_L8 〕oIL磁感应强度是矢量.单位是特斯拉,符号为T, 1T=1N/〔A m〕=lkg/〔A夕〕4.战感线⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线.磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N极的指向.磁感线的疏密表示磁场的强弱.⑵—印封闭地线〔和静电场的电场线不同〕. ⑶要熟记常见的几种磁场的磁感线:⑷安培定那么〔右手螺旋定那么〕:对直导线,四指指磁感线方向:对环行电流,大拇指手中央定线上的磁感线方向:对长直螺线箕大也指指螺线篁内邯的磁廛线方向.5 ,磁通量如果在磁柄应强度为B的匀强磁场中有一个与磁场方向垂直的平面,其面积为S,那么定义8与S的乘积为穿过这个面的磁通量,用.表示.s是标量,但是有方向〔进该面或出该而1玳位为韦伯,符号为Wbc lWb=lT m2=iv s=lkg m2/〔A s2〕.可以认为磁通量就是穿过某个面的磁感线条数C在匀强磁场磁感线垂直于平面的情况下,8二S/S.所以在感应强度又叫磁通密度.在匀强磁场中,当8与S的夹角为.时, 有S=BSsin a.A■中条形磁铁蹄形磁铁—+制感线分布安培定那么环形电流的磁场V:地球磁场通电直导线周围磁场由, 密感线分布U 安培定期直线电流的磁场、通电螺线管的磁场X XX①XX X 通电环行导线周围破二、安培力〔磁场对电流的作用力〕知识要点1 ,安培力方向的判定 ⑴用左手定那么.⑵用“同性相斥,异性相吸〞〔只适用于磁铁之间或磁体位于螺线管外部时〕.⑶用“同向电流相吸,反向电流相斥"〔反映r 磁现象的电本质,可以把条形同铁等效为长直螺线管〔不要把长直上线管 等效为条形磁铁〕.只要两导线不是互相垂直的,都可以用''同向电流相吸,反向电流相斥〞判定相互作用的磁场力的方向:当两导线互相垂 直时,用左手定那么判定.2安培力大小的计算:F=BUstn .〔.为8、L 间的夹角〕高中只力求会计算.=0 〔不受安培力〕和"900两种情况.例题分析例1:如下图,可以自由移动的竖直导线中通有向下的电流,不 仅在磁场力作用下,导线将如何移动解:先画出导线所在处的磁感线,上下两局部导线所受安培力的方向相反,使导线丛左回在看顺时轨段动:.那么又爱到竖 直向上的磁场的作用而向右移动〔不要说成先转90°后平移〕.分析的关键是画出相关的磁感线.例2:条形磁铁放在粗糙水平而匕正中的正上方有一导线, 流后,磁铁对水平面的压力将会一〔增大、减小还是不变〕.水 力大小为.}解:此题有多种分析方法.〔1〕画出通电导线中电流的磁场中 感线〔如图中粗虚线所示〕,可看出两极受的磁场力的合力竖直 的压力减小,但不受摩擦力.〔2〕画出条形磁铁的磁感线中通过通电导线的那一条〔如图中细虚线所示〕,可看出导线受到的安 培力竖直向下,因此条形磁铁受的反作用力竖直向上.⑶把条形磁铁等效为通电螺线管,上方的电流是向里的,与通电导线中 的电流是同向电流,所以互相吸引.例3:如图在条形磁铁N 极附近悬挂一个线圈,当线圈中通有逆时针方向 哪个方向偏转解:用“同向电流互相吸引,反向电流互相排斥〞最简的:条形磁铁的等 面是向下的,与线圈中的电流方向相反,互相排斥,而左边的线圈匝数多所以 如果用“同名磁极相斥,异名磁极相吸〞将出现判断错误,由于那只适用于线圈位于磁铁外部的情况C 〕例4:电视机显象管的偏转线圈示意图如右,即时电流方向如下图.该时刻由里 将向哪个方向偏转 >解:画出偏转线圈内侧的电流,是左半线圈靠电子流的一侧为向里,右半线圈靠 外.电子流的等效电流方向是向里的,根据“同向电流互相吸引,反向电流互相排斥〞. 偏转C 〔此题用其它方法判断也行,但不如这个方法简洁〕.通有图示方向的电 平面对磁铁的摩擦通过两极的那条磁 向上C 磁铁对水平面电子流的一侧为向 可判定电子流向左计通电导线的重力,的电流时,线圈将向效螺线管的电流在正 线圈向右偏转c 〔此题向外射出的电子流例5:如下图,光滑导轨与水平面成,角,导轨宽L 匀强磁场磁感应 长也为L ,质量为m,水平放在导轨上.当回路总电流为“时,金属杆正好 至少多大这时B的方向如何⑵假设保持B 的大小不变而将B 的方向改为竖直向 流/2调到多大才能使金属杆保持静止解:画出金属杆的截面图.由三角形定那么可知,只有当安培力方向沿导 力才最小,8也最小.根据左手定那么,这时8应垂直于导轨平面向上,大小 8二mgsin a 〞口当8的方向改为竖直向上时,这时安培力的方向变为水平向右,沿导轨Wcos .=mgsin a , /2=/1/cos ez o 〔在解这类题时必须画出截面图,只有在截面图上才能正确表示各力的准确方向,从而弄清各 矢量方向间的关系〕.例6:如下图,质量为m 的铜棒搭在U 形导线框右端,棒长和框宽均 的匀强磁场方向竖直向下.电键闭合后,在磁场力作用下铜棒被平抛出去, 上,水平位移为5.求闭合电键后通过铜棒的电荷量Q .解:闭合电键后的极短时间内,铜棒受安培力向右的冲量F/t 二m%而被 而瞬时电流和时间的乘积等于电荷量Q=/ 43由平抛规律可算铜棒离开导.=*唇最终可得.啮三、洛伦兹力知识要点1 .洛伦兹力2 •洛伦兹力方向的判定3 •洛伦兹力大小的计算带电粒子在匀强磁场中仅受洛伦兹力而做匀速忸周运动时,洛伦兹力充当向心力,由此可以推导出该圆周运动的半径公式和周期公式:r = —.T = —Bq Bq4 ,带电粒子在匀强磁场中的偏转⑴穿过矩形磁场区, 一定要先画好辅助线〔半径、速度及延长线〕.偏转角由运动电荷在磁场中受到的磁场力叫洛伦兹力,它是安培力的微观表现. 计算公式的推导:如下图,整个导线受到的磁场力〔安中/aesv :设导线中共有N 个自由电子N=nsh 每个电子受的 二NF .由以上四式可得F=qvB,条件是v 与8垂直.当v 与Bxxx xlx XXX 培力〕为人=8化:其 磁场力为F,那么F安X X X 头头XXX在用左手定那么时•,M 必须拒里逅方问〔丕星速度方回〕, 动方向的反方向.即正电荷定向移动的方向:对负电荷,四指应指负电荷定向移sin 〃,/R 求出.侧为L ,磁感应强度为8 下落h 后落在水平面 平抛出去,其中F=8/3 线框时的初速度移由外;以伊沙产解出.经历时间由I = "g得出.Bq注意,这里鼠世速度的反向延长线与初速度延长线见这点丕理是塞度北段的史点,这点与带电粒子在匀强电场中的偏转结论不同!⑵穿过圆形磁场区.面好辅助线〔半径、速度、轨迹圆的圆心、连心线〕.求出.经历时间由,一〃历得出.Bq注意:由对称性“射出线的反向延怅线必过磁场圆的圆心. 偏角可由lang =二 2R例题分析例1:磁流体发电机原理图如右.等离子体高速从左向右喷射, 向的匀强磁场,该发电机哪个极板为正极两板间城大电压为多少解:由左手定那么,正、负离子受的洛伦兹力分别向上、向下.所负极板间会产生电场.当刚进入的正负离子受的洛伦兹力与电场力等电压:U=Bdv.4处里跪断殂必选也感星电动教圣当外电路接通时, 小,板间场强减小,洛伦兹力将大于电场力,进入的正负离子又将发仍是£=8dv,但路端电压将小于8dv°在定性分析时特别需要注意的是:两极板间有如图方以上极板为正.正、值反向时,到达最大极板上的电荷量减生偏转,这时电动势⑴正负离子速度方向相同时,在同一磁场中受洛伦兹力方向相反.⑵外电路接通时,电路中有电流,洛伦兹力大于电场力,两板间电压将小于8雨,但电动势不变〔和所有电源一样, 电动势是电源本身的性质.〕⑶注意在带电粒子偏转聚集在极板上以后新产生的电场的分析.在外电路断开时最终将到达平衡态.例2:半导体靠自由电子〔带负电〕和空穴〔相当于带正电〕导两种.p型半导体中空穴为多数载流子:n型半导体中自由电子为多验可以判定一块半导体材料是p型还是〃型:将材料放在匀强磁场中, 电,分为P型和n型数载流子.用以下实通以图示方向的电流人用电压表比拟上下两个外表的电势上下,假设上极板电势高,就是P型半导体:假设下极板电势高,就是.型半导体.试分析原因.解:分别判定空穴和自由电子所受的洛伦兹力的方向,由于四指指电流方向,都向右,所以渔企丝力方向都跑上,迄攸鄱将向上偏转.P型半导体中空穴多,上极板的电挎高:,型半导体中自由电子多,上极板电势低.注意:一曳返友包根夙些,『尤"空鹿王走网二公磁场史改近裳的曲俭丝力麦迪根双,Jg以®拽力®板那么.例3:如图直线MN上方有磁感应强度为B的匀强磁场.正、点.以与MN成30,角的同样速度v射入磁场〔电子质量为m, 场中射出时相距多远射出的时间差是多少解:正负电子的半径和周期是相同的.只是偏转方向相反. 径,由对称性知:射入、射出点和圆心恰好组成正三角形.所以由图还看出经历时间相差2所.答案为射出点相距s = 空,时Be负电子同时从同一电荷为2〕,它们从磁先确定圆心,画出半两个射出点相距2小间差为A/ =4m〃关键是找网心、找半径和用对称.例4:一个质量为m电荷量为q的带电粒子从x轴上的P〔G. 0〕点以速度的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限.求8和射出点的坐标.I解:由射入、射出点的半径可找到圆心.,并得出半径为「='=竺,得8 =史竺:射出点坐标为〔0,岛〕.£ Bq 2aq v,沿与X正方向成60匀强磁场的磁感应强度四、带电粒子在混合场中的运动知识要点1 .速度选择器正交的匀强磁场和匀强电场组成螃螃暨.带电粒子必须以唯二碘定的逑度,包抵划,,加包上才熊匀叫,耍意世没真线〕通过速度选择器.否那么将发生偏转.这个速度的大小可以由洛伦兹力和出:qv8二£q, 1,=色.在木图中,速度方向必须向右.B〔D这个结论与离子带何种电荷、电荷多少都无关.⑵假设速度小于这一速度,电场力将大于洛伦兹力,带电粒子向电场力方正功,动能将增大,洛伦兹力也将增大,粒子的轨迹既不是抛物线,也不是曲线:假设大于这一速度,将向洛伦兹力方向偏转,电场力将做负功,动能将电场力的平衡得向偏转,电场力做圆,而是一条更杂减小,洛伦兹力也将减小,轨迹是一条红杂曲线.2,带电微粒在重力、电场力、磁场力共同作用下的运动⑴带电微粒在三个场共同作用下做匀速圆周运动.必然是电场力和重力平衡,而洛伦兹力充当向心力, ⑵与力学紧密结合的综合题,要认真分析受力情况和运动情况〔包括速度和加速度〕.必要时加以讨论.例题分析例1:某带电粒子从图中速度选择器左端由中点O以速度内向右射下方的.点以速度力射出:假设增大磁感应强度8,该粒子将打到.点上ac=ob,那么该粒子带—电:第二次射出时的速度为o解:B增大后向上偏,说明洛伦兹力向上,所以为带正电,由于洛所以两次都是只有电场力做功,第一次为正功,第二次为负功,但功的去,从右端中央a方的c点,且有伦兹力总不做功, 绝对值相同.1 , 1 , 12 1 ,一5〃?以=7,nv o 一不加打,二匕例2:如下图,一个带电粒子两次以同样的垂直于场线的初速度vo分别穿越匀强电场区和匀强磁场区,场区的宽度均为L偏转角度均为.,求£:8解:分别利用带电粒子的偏角公式.在电场中偏转:解:〔1〕离子在加速电场中加速,根据动能定理有rr 1 2au =mv^2①〔3分〕磁场中偏转:§而0=竺2,由以上两式可得与=」_.可以证实:当偏转角相同时,侧移必然不同〔电场中侧移较大〕: mv Q B cosa 当侧移相同时,偏转角必然不同〔磁场中偏转角较大〕. 例3: 一个带电微粒在图示的正交匀强电场和匀强磁场中在竖直面内做匀速 粒必然带,旋转方向为,假设圆半径为心电场强度为£磁感应强解:由于必须有电场力与重力平衡,所以必为负电:由左手定那么得逆时针 圆周运动◎那么该带电微 度为8,那么线速度为转动:再由Eq = 〃ig 和 r = 例4:质量为m 带电量为q 的小球套在竖直放置的绝缘杆上,球与杆间的动摩擦因数 强磁场的方向如下图,电场强度为£磁感应强度为8:小球由静止糅放后沿杆下滑. 磁场也足够大,求运动过程中小球的最大加速度和最大速度. 解:不妨假设设小球带正电〔带负电时电场力和洛伦兹力都将反向,结论相同〕.刚 电场力、弹力、摩擦力作用,向下加速:开始运动后又受到洛伦兹力作用,弹力、摩擦力 力等于电场力时加速度最大为g .随着v 的增大,洛伦兹力大于电场力,弹力方向变为向 擦力随着增大,加速度减小,当摩擦力和重力大小相等时,小 了=些+匕 〃Bq B 假设将磁场的方向反向,而其他因素都不变,那么开始运动后 力、摩擦力不断增大,加速度减小.所以开始的加速度最大为 为〃,匀强电场和匀 设杆足够长,电场和糅放时小球受重力、 开始减小:当洛伦兹 右,且不断增大,摩 球速度到达最大洛伦兹力向右,弗-㈣:摩擦力等于重力时速度最大,为y = 皿- No pBq B5.〔20分〕如下图为一种质谱仪示意图,由加速电场、静电分析器和磁分析器组成.:静电分析器通道的半径为R 均匀辐射电场的场强为£磁分析器中有垂直纸面向外的匀强磁场,磁感强度为8〉问:〔1〕为J'使位于4处电量为q 、质量 为m 的离子,从静止开始经加速电场加速后沿图中圆弧虚线通过静电分析器,加速电场的电压U 应为多大〔2〕离子由P 点进 入磁分析器后,最终打在乳胶片上的Q 点,该点距入射点P 多远 加速电场离子在辐向电场中做匀速恻周运动,电场力提供向心力,有_ 说&aE= m —丑②〔4分〕解得 2 ③〔2分〕〔2〕离子在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,有④〔3分〕由②、④式得⑤〔5分〕故〔3分〕例6:〔20分〕如下图,固定在水平桌面上的光滑金属框架cde/处于竖直向下磁感应强度为80的匀强磁场中.金属杆附与金属框架接触良好.此时.bed构成一个边长为/的正方形,金属杆的电阻为八其余局部电阻不计.⑴假设从t=0时刻起,磁场的磁感应强度均匀增加,每秒钟增量为A,施加一水平拉力保持金属杆静止不动,求金属杆中的感应电流.⑵在情况⑴中金属杆始终保持不动,当上fl秒末时,求水平拉力的大小.⑶假设从上0时刻起,磁感应强度逐渐减小,当金属杆在框架上以恒定速度v向右做匀速运动时,可使回路中不产生感应电流.写出磁感应强度8与时间t的函数关系式.解⑴设瞬时磁感应强度为8,由题意得山①〔1分〕一〞二一二回即S出产生感应电动势为M 匕t 氏②〔3分〕根据闭合电路欧姆定律得,产生的感应电流产了③ 〔3分〕〔2 〕由题意,根据二力平衡,安培力等于水平拉力,即F二七④〔1分〕% = ⑤〔3 分〕F国十5 尸伊.十姑「户由①酶得强丫 ,所以广〔2分〕〔3〕回路中电流为0,说明磁感应强度逐渐减小产生的感应电动势£和金属杆运动产生的感应电动势8’相反,即S + S f = 09那么有〔"一为〕'\班=0 8 =里一0〔4分〕解得 ,十讨〔2分〕例7〔19分〕如图,在x轴上方有磁感强度大小为从方向垂直纸面向里的匀强磁场.x轴下方有磁感强度大小为8/2,方向垂直纸面向外的匀强磁场.一质量为m、电量为f的带电粒子〔不计重力〕,从x轴上.点以速度4垂直x轴向上射出.求:<1〕经多长时间粒子第三次到达x轴.〔初位置.点为第一次〕〔2〕粒子第三次到达x轴时离.点的距离.X X X X X XXX X5/2解:X X X X X XXX X〔1〕粒子运动轨迹示意图如右图〔2分〕由牛顿第二定律效=%匕一r①〔4分〕冲②〔2分〕271m得71=祖〔2分〕72=祖〔2分〕1 - 1 - 3 根-A + -f2 =——粒子第三次到达x轴需时间t= 2 2 於〔1分〕叫〔2〕由①式可知rl=就〔2分〕2叫r2= " 〔2 分〕6阳片粒子第三次到达x轴时离0点的距离5 = 2rl 2r2 = * 〔2分〕例8、如下图,在第I象限范围内有垂直xOy平面的匀强磁场,磁感应强度为8.质量为m、电量大小为q的带电粒子〔不计重力〕,在.0平面里经原点0射入磁场中,初速度为vO,且与X轴成60.角,试分析计算:〔1〕带电粒子从何处离开磁场穿越磁场时运动方向发生的偏转角多大〔2〕带电粒子在鹤场中运动时间多长解:带电粒子假设带负电荷,进入磁场后将向x轴偏转,从A点离开磁场: 假设带正电荷,进入磁场后将向y轴偏转,从B点离开磁场:如下图.带电粒子进入磁场后作匀速圆周运动,轨迹半径均为圆心位于过0点与I/O垂直的同一条直线上,O1O=O2O=OL4 = O28 = R,带电粒子沿半径为R的圆周运动一周的时间为_ 2成2府1 = ----- =-------心的.〔1〕粒子假设带负电荷,进入磁场后将向x轴偏转,从A点离开磁场,运动方向发生的偏角为:01 = 20=2x600 = 1200,A点到原点o的距离为:q®粒子假设带正电荷,进入磁场后将向y轴偏转,在B点离开磁场:运动方向发生的偏角为:02 = 2 〔900-3〕 =2x300 = 600.B点到原点O的距离为:〔2〕粒子假设带负电荷, 进入磁场后将向x轴偏转,从A点离开磁场,运动的忖间为:粒子假设带正电荷,进入磁场后将向y轴偏转,在B点离开磁场:运动的时间为:’2二丽"二石二%例9、右图是科学史上一张著名的实验照片,显示一个属板运动的径迹.云室旋转在匀强磁场中,磁场方向垂板对粒子的运动起阻碍作用.分析此径迹可知粒子A.带正电,由下往上运动B.带正电,由上往下运动C.带负电,由上往下运动D.带负电,由下往上运动答案:A,mv解析:粒子穿过金属板后,速度变小,由半径公式——可知,半径变小,粒子运动方向为由下向上:又由于洛仑兹力的方qB向指向圆心,由左手定那么,粒子带正电.选A.例10、如下图,固定位置在同一水平向内的两根平行长直金属导轨的间距为d,其右端接有阻值为R的电阻,整个装置处在竖直向上磁感应强度大小为B的匀强磁场中.一质量为m 〔质量分布均匀〕的导体杆ab垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为5现杆在水平向左、垂直于杆的恒力F作用下从静止开始沿导轨运动距离L时,速度恰好到达最大〔运动过程中杆始终与导轨保持垂直〕.设杆接入电路的电阻为r,导轨电阻不计,重力加速度大小为g.那么此过程〔尸 _ M QRA・杆的速度最大值为82 d2BdlB.流过电阻R的电量为五十厂C,恒力F做的功与摩擦力做的功之和等于杆动能的变化量D.恒力F做的功与安倍力做的功之和大于杆动能的变化量答案BD【解析】当杆到达最大速度Vm时,F —卬堂—'"& = 0得匕〞=〔卜二卬9Rf' ,八错:由公式R + r m B%2q-△① =8*B对:在棒从开始到到达最大速度的过程中由动能定理有:+W f=AE K.带电粒子在云室中穿过某种金直照片向里.云室中横放的金属〔R + r〕〔R + r〕R + r *'、卜其中% =一〃〃吆,卬笈=一.,恒力F做的功与摩擦力做的功之和等于杆动能的变化量与回路产生的焦耳热之和,C错:恒力F做的功与安倍力做的功之和等于于杆动能的变化量与克服摩擦力做的功之和,D对.例11、如图甲,在水平地向上固定一倾角为.的光滑绝缘斜面,斜面 小为E 、方向沿斜面向下的匀强电场中.一劲度系数为k 的绝缘轻质 在斜而底端,整根弹簧处于自然状态.一质量为m 、带电量为q 〔q>0〕 簧上端为so 处静止释放,滑块在运动过程中电量保持不变,设滑块与 有机械能损失,算黄始终处在弹性限度内,重力加速度大小为g .〔1〕求滑块从静止糅放到与弹簧上端接触瞬间所经历的时间匕 〔2〕假设滑块在沿斜面向下运动的整个过程中最大速度大小为 择放到速度大小为心过程中弹簧的弹力所做的功W :〔3〕从滑块静止称放瞬间开始计时,请在乙图中画出滑块在沿 整个过程中速度与时间关系v-t 图象.图中横坐标轴上的11t2及t3分 次与弹簧上端接触、第一次速度到达最大值及第一次速度减为零的时次为滑块在匕时刻的速度大小,Vm 是题中所指的物理量.〔木小题不要求写出计算过程〕⑵ W 」叫2 -.叫sin6 + 把)• (% + 〃"6 + 吟; 2 k【解析】木题考查的是电场中斜面上的弹簧类问题,涉及到匀变速直线运动、运用动能定理处理变力功问题、最大速度问题和 运动过程分析.〔1〕滑块从静止糅放到与弹簧刚接触的过程中作初速度为零的匀加速直线运动,设加速度大小为.,那么有qE^mgsin0=mo1 . 2% = 53联立①②可得2〃 7soqE + "ig sin 0〔2〕滑块速度最大时受力平衡,设此时弹簧压缩量为X .,那么有mg sin 0 + qE = kx .从静止样放到速度到达最大的过程中,由动能定理得- 1 ,57gsin<9 + qE 〕^〔x nt +x 0〕 + W = -mv n ; -0乙联立④⑤可得W = _ (mg sin 0 + qE)• (“ +2〔3〕如图(3)2〃7soqE + mgmg sin 6 + qE)s 处于电场强度大 弹簧的一端固定 的滑块从距离弹 弹簧接触过程没Vm ,求滑块从静止斜而向下运动的 别表示滑块第一 刻,纵坐标轴上的 答案〔1〕。
高考物理电磁学知识点之磁场基础测试题含解析(4)一、选择题1.如图所示,地面附近某真空环境中存在着水平方向的匀强电场和匀强磁场,已知磁场方向垂直纸面向里,一个带正电的油滴,沿着一条与竖直方向成α角的直线MN运动,由此可以判断A.匀强电场方向一定是水平向左B.油滴沿直线一定做匀加速运动C.油滴可能是从N点运动到M点D.油滴一定是从N点运动到M点2.如图所示,台秤上放一光滑平板,其左边固定一挡板,一轻质弹簧将挡板和一条形磁铁连接起来,此时台秤读数为N1,现在磁铁上方中心偏左位置固定一通电导线,电流方向如图,当加上电流后,台秤读数为N2,则以下说法正确的是()A.N1>N2,弹簧长度将变长B.N1>N2,弹簧长度将变短C.N1<N2,弹簧长度将变长D.N1<N2,弹簧长度将变短3.2019年我国研制出了世界上最大的紧凑型强流质子回旋加速器,该回旋加速器是我国目前自主研制的能量最高的质子回旋加速器。
如图所示为回旋加速器原理示意图,现将两个相同的回旋加速器置于相同的匀强磁场中,接入高频电源。
分别加速氘核和氦核,下列说法正确的是()A.它们在磁场中运动的周期相同B.它们的最大速度不相等C.两次所接高频电源的频率不相同D.仅增大高频电源的频率可增大粒子的最大动能.其核心部分是分别与高频交流电源两极相连接的两4.回旋加速器是加速带电粒子的装置个D形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法中正确的是( )A.减小磁场的磁感应强度B.增大匀强电场间的加速电压C.增大D形金属盒的半径D.减小狭缝间的距离5.如图所示,有abcd四个离子,它们带等量的同种电荷,质量不等.有m a=m b<m c=m d,以不等的速度v a<v b=v c<v d进入速度选择器后有两种离子从速度选择器中射出,进入B2磁场,由此可判定( )A.射向P1的是a离子B.射向P2的是b离子C.射到A1的是c离子D.射到A2的是d离子6.质量和电荷量都相等的带电粒子M和N,以不同的速率经小孔S垂直进入匀强磁场,运行的半圆轨迹分别如图中的两支虚线所示,下列表述正确的是()A.M带正电,N带负电B.M的速率大于N的速率C.洛伦磁力对M、N做正功D.M的运行时间大于N的运行时间7.为了降低潜艇噪音可用电磁推进器替代螺旋桨。
高考物理电磁学知识点之磁场综合练习(3)一、选择题1.如图,条形磁铁平放于水平桌面上,在它的正中央上方固定一根直导线,导线与磁场垂直,现给导线中通以垂直于纸面向外的电流,则下列说法正确的是()A.桌面对磁铁的支持力增大B.桌面对磁铁的支持力减小C.桌面对磁铁的支持力不变D.以上说法都有可能2.质量和电荷量都相等的带电粒子M和N,以不同的速率经小孔S垂直进入匀强磁场,运行的半圆轨迹分别如图中的两支虚线所示,下列表述正确的是()A.M带正电,N带负电B.M的速率大于N的速率C.洛伦磁力对M、N做正功D.M的运行时间大于N的运行时间3.在探索微观世界中,同位素的发现与证明无疑具有里程碑式的意义。
质谱仪的发现对证明同位素的存在功不可没,1922年英国物理学家阿斯顿因质谱仪的发明、同位素和质谱的研究荣获了诺贝尔化学奖。
若速度相同的一束粒子由左端射入质谱仪后的运动轨迹如图所示,不计粒子重力,则下列说法中正确的是()A.该束粒子带负电B.速度选择器的P1极板带负电C.在B2磁场中运动半径越大的粒子,质量越大D.在B2磁场中运动半径越大的粒子,比荷qm越小4.为了降低潜艇噪音可用电磁推进器替代螺旋桨。
如图为直线通道推进器示意图。
推进器前后表面导电,上下表面绝缘,规格为:a ×b ×c =0.5m×0.4m×0.3m 。
空间内存在由超导励磁线圈产生的匀强磁场,其磁感应强度B =10.0T ,方向竖直向下,若在推进器前后方向通以电流I =1.0×103A ,方向如图。
则下列判断正确的是( )A .推进器对潜艇提供向左的驱动力,大小为4.0×103N B .推进器对潜艇提供向右的驱动力,大小为5.0×103N C .超导励磁线圈中的电流方向为PQNMP 方向D .通过改变流过超导励磁线圈或推进器的电流方向可以实现倒行功能5.如图所示,边长为L 的等边三角形导线框用绝缘细线悬挂于天花板,导线框中通一逆时针方向的电流,图中虚线过ab 边中点和ac 边中点,在虚线的下方有一垂直于导线框向里的匀强磁场,此时导线框通电处于静止状态,细线的拉力为F 1;保持其他条件不变,现虚线下方的磁场消失,虚线上方有相同的磁场同时电流强度变为原来一半,此时细线的拉力为F 2 。
已知重力加速度为g ,则导线框的质量为A .2123F F g +B .212 3F F g -C .21F F g -D .21 F F g+ 6.如图所示,一块长方体金属板材料置于方向垂直于其前表面向里的匀强磁场中,磁感应强度大小为B 。
当通以从左到右的恒定电流I 时,金属材料上、下表面电势分别为φ1、φ2。
该金属材料垂直电流方向的截面为长方形,其与磁场垂直的边长为a 、与磁场平行的边长为b ,金属材料单位体积内自由电子数为n ,元电荷为e 。
那么A .12IB enb ϕϕ-=B .12IB enb ϕϕ-=-C .12IB ena ϕϕ-=D .12IB enaϕϕ-=- 7.如图,一带电粒子在正交的匀强电场和匀强磁场中做匀速圆周运动。
已知电场强度为E,方向竖直向下,磁感应强度为B,方向垂直于纸面向外。
粒子圆周运动的半径为R,若小球运动到最高点A时沿水平方向分裂成两个粒子1和2,假设粒子质量和电量都恰好均分,粒子1在原运行方向上做匀速圆周运动,半径变为3R,下列说法正确的是()A.粒子带正电荷B.粒子分裂前运动速度大小为REB gC.粒子2也做匀速圆周运动,且沿逆时针方向D.粒子2做匀速圆周运动的半径也为3R8.如图所示,在垂直纸面向里的匀强磁场边界上,有两个质量、电荷量均相等的正、负离子(不计重力),从O点以相同的速度射入磁场中,射入方向均与边界成θ角,则正、负离子在磁场中运动的过程,下列判断正确的是A.运动的轨道半径不同B.重新回到磁场边界时速度大小和方向都相同C.运动的时间相同D.重新回到磁场边界的位置与O点距离不相等9.下列关于教材中四幅插图的说法正确的是()A.图甲是通电导线周围存在磁场的实验。
这一现象是物理学家法拉第通过实验首先发现B.图乙是真空冶炼炉,当炉外线圈通入高频交流电时,线圈产生大量热量,从而冶炼金属C.图丙是李辉用多用电表的欧姆挡测量变压器线圈的电阻刘伟手握线圈裸露的两端协助测量,李辉把表笔与线圈断开瞬间,刘伟觉得有电击说明欧姆挡内电池电动势很高D.图丁是微安表的表头,在运输时要把两个接线柱连在一起,这是为了保护电表指针,利用了电磁阻尼原理10.教师在课堂上做了两个小实验,让小明同学印象深刻。
第一个实验叫做“旋转的液体”,在玻璃皿的中心放一个圆柱形电极,沿边缘内壁放一个圆环形电极,把它们分别与电池的两极相连,然后在玻璃皿中放入导电液体,例如盐水,如果把玻璃皿放在磁场中,液体就会旋转起来,如图甲所示。
第二个实验叫做“振动的弹簧”,把一根柔软的弹簧悬挂起来,使它的下端刚好跟槽中的水银接触,通电后,发现弹簧不断上下振动,如图乙所示。
下列关于这两个趣味实验的说法正确的是( )A .图甲中,从上往下看,液体沿顺时针方向旋转B .图甲中,如果改变电源的正负极,液体的旋转方向不变C .图乙中,如果将水银换成酒精,依然可以观察到弹簧不断上下振动D .图乙中,如果改变电源的正负极,依然可以观察到弹簧不断上下振动11.如图所示,ABC 为与匀强磁场垂直的边长为a 的等边三角形,比荷为e m 的电子以速度v 0从A 点沿AB 边射出(电子重力不计),欲使电子能经过AC 边,磁感应强度B 的取值为A .B <03mv B .B <02mv aeC .B >03mvD .B >02mv ae 12.如图,半径为R 的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B ,方向垂直于纸面向外.一电荷量为q (q >0)、质量为m 的粒子沿平行于直径ab 的方向射入磁场区域,射入点与ab 的距离为2R .已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力)( )A .2qBR mB .qBR mC .32qBR mD .2qBR m13.如图所示,在以原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 方向垂直于纸面向里的匀强磁场,A 、C 、D 为磁场边界上的点,A 、C 为边界与坐标轴的交点,OD 连线与x 轴负方向成45°。
一带负电粒子从A 点以速度v 沿AC 方向射入磁场,恰好从D点飞出,粒子在磁场中运动的时间为()A.2rvπB.34rvπC.54rvπD.52rvπ14.如图所示,以O为圆心的圆形区域内,存在方向垂直纸面向外的勻强磁场,磁场边界上的A点有一粒子发射源,沿半径AO方向发射出速率不同的同种粒子(重力不计),垂直进入磁场,下列说法正确的是A.率越大的粒子在磁场中运动的时间越长B.速率越小的粒子在磁场中运动的时间越长C.速率越大的粒子在磁场中运动的角速度越大D.速率越小的粒子在磁场中运动的角速度越大15.如图所示为质谱仪的原理图,一束粒子流由左端平行于P1、P2射入,粒子沿直线通过速度选择器,已知速度选择器的电场强度为E,磁感应强度为B1.粒子由狭缝S0进入匀强磁场B2后分为三束,它们的轨道半径关系为132r r r=<,不计重力及粒子间的相互作用力,则下列说法中正确的是()A.P1极板带负电B.能通过狭缝S0的带电粒子的速率等于1BEC.三束粒子在磁场B2中运动的时间相等D.粒子1的比荷11qm大于粒子2的比荷22qm 16.电磁流量计广泛应用于测量可导电流体(如污水)在管中的流量(单位时间内通过管内某横截面的流体的体积)。
为了简化,假设流量计是如图所示的横截面为长方形的一段管道,其中空的部分的长、宽、高分别为图中的a 、b 、c 。
流量计的两端与输送流体的管道相连(图中虚线),图中流量计的上、下两面是金属材料,前、后两面是绝缘材料,现给流量计所在处加磁感应强度为B 的匀强磁场,磁场方向垂直于前、后两面,当导电流体稳定地流经流量计时,在管外将流量计上、下两面分别与一串联了电阻R 的电流表的两端连接,I 表示测得的电流值,已知流体的电阻率为ρ,不计电流表的内阻,则可求得流量为( )A .()I c bRB a ρ+ B .()I b aR B c ρ+C .() I a cR B b ρ+D .()I bc R B a ρ+ 17.如图所示,矩形线圈abcd 在匀强磁场中可以分别绕垂直于磁场方向的轴P 1和P 2以相同的角速度匀速转动,当线圈平面转到与磁场方向平行时( )A .线圈绕P 1转动时的电流等于绕P 2转动时的电流B .线圈绕P 1转动时的电动势小于绕P 2转动时的电动势C .线圈绕P 1和P 2转动时电流的方向相同,都是a →b →c →dD .线圈绕P 1转动时dc 边受到的安培力大于绕P 2转动时dc 边受到的安培力18.如图所示,在两个水平放置的平行金属板之间,存在相互垂直的匀强电场和匀强磁场.一束带电粒子(不计重力)沿着直线通过两板间而不发生偏转,则这些粒子一定具有相同的( )A .质量mB .初速度vC .电荷量qD .比荷q m19.如图所示,通有恒定电流的导线MN 与闭合金属框共面,第一次将金属框由位置Ⅰ平移到位置Ⅱ,第二次将金属框绕cd 边翻转到位置Ⅱ,设先、后两次穿过金属框的磁通量变化分别为和,则()A .B .C .D .不能判断20.关于电场和磁场,下列说法中正确的是( )A .电场和磁场不是实际存在的,是人们想象假设出来的B .电场和磁场的观点是库仑首先提出来的,并得到物理学理论和实验的证实和发展C .磁感应强度的方向就是通电导线在磁场中所受力的方向D .电场强度是电场本身的性质,与试探电荷的电量及其所受电场力大小无关21.导线中带电粒子的定向运动形成了电流。
带电粒子定向运动时所受洛伦兹力的矢量和,在宏观上表现为导线所受的安培力。
如图所示,设导线ab 中每个带正电粒子定向运动的速度都是v ,单位体积的粒子数为n ,粒子的电荷量为q ,导线的横截面积为S ,磁感应强度大小为B 、方向垂直纸面向里,则下列说法正确的是A .由题目已知条件可以算得通过导线的电流为I nqvS =B .题中导线受到的安培力的方向可用安培定则判断C .每个粒子所受的洛伦兹力为F qvB =洛,通电导线所受的安培力为F nqvB =安D .改变适当的条件,有可能使图中带电粒子受到的洛伦兹力方向反向而导线受到的安培力方向保持不变22.现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定。
质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场。