An anisotropic Phong BRDF model
- 格式:pdf
- 大小:1.76 MB
- 文档页数:7
灯光与材质分析VR灯光VR灯光主要分3种:平面光、半球光和球体光投影:是否对物体的光照产生阴影双面:用来控制灯光的双面都产生照明效果(当灯光类型为平面时有效,其它类型无效)不可见:用来控制最终渲染时是否显示VR灯的形状忽略灯光法线:控制灯光的发射是否按照光源的法线发射不衰减:物理世界中,所有的光线都是有衰减的,如果勾选这个选项,VR将不计算灯光的衰减效果天光入口:这个选项是把VR灯转换为天光,这时的VR灯就变成间接照明(GI),失去了直接照明。
当勾选时,投影、双面、不可见等参数将不可用,这些参数将被VR的天光参数取代存储发光贴图:勾选这个选项,同时间接照明(GI)里的一次反弹引擎选择发光贴图时,VR灯光的光照信息将保存在发光贴图里。
在渲染光子的时候将变慢,但出图渲染速度会提高很多。
当渲染完光子的时候,可以把这个VR灯光关闭或删除,它对最后的渲染效果没有影响,因为它的光照信息已经保存在发光贴图里影响漫反射:该选项决定灯光是否影响物体材质属性的漫反射影响高光反射:该选项决定灯光是否影响物体材质属性的高光影响反射:勾选该选项时,灯光将对物体的反射区进行光照,物体可以将光源进行反射细分:这个参数控制VR灯光的采样细分。
较低的值,杂点多,渲染速度快;较高的值,杂点少,渲染速度慢阴影偏移:该参数用来控制物体与阴影偏移距离,较高的值会使阴影向灯光的方向偏移标准材质介绍阴影类型:标准材质的最基本属性,也称反光类型。
一块布料和一块金属在光的照射下所呈现出的反光效果是完全不同的multi-layer(双非圆型高光):组合了两个Anisotropic(非圆型高光),每一个反光都可以拥有不同的颜色和角度,适用于表现抛光的表面特殊效果,例如缎纹、丝绸和光芒四射的油漆等(其中roughness为粗糙度,值为0时,与使用Blinn效果一样)oren-nayer-Blinn:Blinn的变种,看起来更柔和,更适合做一些较为粗糙的效果。
brdf 原理BRDF(双向反射分布函数)是计算机图形学中广泛使用的一种表面光照模型,用于描述物体表面对入射光的反射特性。
BRDF原理是指通过数学模型来描述光在物体表面上的反射和散射过程。
BRDF的原理基于光线追踪和光的物理特性,它考虑了光照的入射角度、物体表面的法线向量以及观察方向。
通过这些因素,BRDF 能够计算出在不同入射角度下的反射光强度。
BRDF通常用函数的形式表示,它将入射光照强度、入射角度、出射角度等参数作为输入,输出反射光的强度。
BRDF的计算可以分为两个步骤:入射光照强度的采样和反射光强度的计算。
在采样阶段,通过光线追踪方法来模拟光线与物体表面的相互作用,确定入射光照强度。
在计算阶段,根据入射光照强度的采样结果以及物体表面的法线向量等参数,利用BRDF函数来计算出反射光的强度。
在BRDF函数中,常用的模型包括Lambertian模型、Phong模型、Blinn-Phong模型等。
这些模型通过调整参数来模拟不同的物体材质特性,如漫反射、镜面反射等。
通过选择合适的BRDF模型和参数,可以实现逼真的光照效果。
BRDF的应用广泛存在于计算机图形学中,例如计算机游戏、电影特效、虚拟现实等领域。
在这些应用中,BRDF被用于计算物体表面的光照效果,使得渲染出的图像更加真实和细致。
除了BRDF,还有另一种相关的表面光照模型称为BSDF(双向散射分布函数)。
BSDF包含了BRDF的内容,并且还考虑了光线的透射和散射过程。
BSDF的原理与BRDF类似,但是更加复杂。
BSDF可以用于模拟透明物体的光照效果,如玻璃、水等。
总结起来,BRDF是一种用于描述物体表面光照特性的数学模型。
通过计算入射光照强度和物体表面的反射特性,BRDF能够实现逼真的光照效果。
在计算机图形学中,BRDF被广泛应用于各种渲染技术中,提供了逼真的光照效果,使得渲染出的图像更加真实和细致。
vray双向反射分布函数phong blinn 双向反射分布函数(BRDF)是计算机图形学中用于描述光线与表面相互作用的一种数学模型。
它包含了关于光线入射、反射和折射的信息,是渲染真实感光照效果的关键因素之一。
在计算机图形学中,常用的BRDF模型有Phong模型和Blinn-Phong 模型。
Phong模型是一种经典的光照模型,由贝尔实验室的Paul Phong于1975年提出。
它主要考虑了表面的镜面反射特性,即光线入射到表面时,只有一部分能量被吸收,另一部分能量被反射出来。
Phong模型的BRDF定义为:BRDF(θi, θr) = (F0 + Fs * (cos(θi))^n) * cos(θi - θr)其中,θi和θr分别表示光线入射和反射的角度;F0表示环境光的强度;Fs表示表面材质的光泽度;n表示表面材质的粗糙度。
Phong模型的特点是简单易实现,但在某些情况下(如高光区域较小或表面粗糙度较大时),渲染结果可能不够真实。
为了解决Phong模型的问题,Blinn在1977年提出了一种改进的光照模型,称为Blinn-Phong模型。
Blinn-Phong模型在Phong模型的基础上增加了一个菲涅尔项,用于描述光线在表面之间的透射和反射过程。
Blinn-Phong模型的BRDF定义为:BRDF(θi, θr) = (Kd + Ks * (Fs * (cos(θi))^n)) * cos(θi - θr)+ Kt * (1 - cos(θi - θr))其中,Kd表示漫反射系数;Ks表示镜面反射系数;Kt表示透射系数。
Blinn-Phong模型在保留Phong模型优点的同时,增加了对表面材质的漫反射和透射特性的描述,使得渲染结果更加真实。
V-Ray是一款广泛应用于计算机图形学的渲染引擎,它支持多种BRDF模型,包括Phong模型和Blinn-Phong模型。
在V-Ray中,用户可以通过调整材质参数来选择不同的BRDF模型,以实现所需的光照效果。
diffusion model简书(中英文实用版)Title: A Brief Introduction to Diffusion Models标题:扩散模型简述Diffusion models have gained immense popularity in the field of machine learning, particularly in the generation of images, text, and audio.扩散模型在机器学习领域变得非常流行,尤其是在图像、文本和音频的生成方面。
The core concept of diffusion models lies in simulating the process of data distribution evolving from a noisy state to a clean, high-quality state.扩散模型的核心概念是模拟数据分布从噪声状态演变为干净、高质量状态的过程。
These models are trained to reverse this process, effectively generating new, high-quality data from random noise.这些模型被训练来逆转这一过程,有效地从随机噪声生成新的、高质量的数据。
One of the key advantages of diffusion models is their ability to generate data with high fidelity and diversity, making them highly suitable for various applications such as image synthesis, text generation, and audio processing.扩散模型的一大优势是它们能够生成高保真度和多样性的数据,使它们非常适合各种应用,如图像合成、文本生成和音频处理。
基于BRDF模型的金属表面反射特性及相变特性研究张颖;李金龙;黄趾维;冯尧;杨露露;唐欣盈【期刊名称】《光电技术应用》【年(卷),期】2017(32)3【摘要】针对强反射金属表面物体的三维形貌测量问题,在传统光照度BRDF模型的基础上,详细研究了适合金属表面的Cook-Torrance反射模型,并结合菲涅尔公式对金属表面相变特性进行了分析.以常见几种金属可见光范围内的复折射率为例,对模型进行数值仿真,得出常见金属在不同波长下的镜面反射率和相移特性曲线,为金属表面物体的三维形貌测量等应用提供理论基础和方法指导.【总页数】4页(P32-35)【作者】张颖;李金龙;黄趾维;冯尧;杨露露;唐欣盈【作者单位】西南交通大学物理科学与技术学院,成都611756;西南交通大学物理科学与技术学院,成都611756;西南交通大学物理科学与技术学院,成都611756;西南交通大学物理科学与技术学院,成都611756;西南交通大学物理科学与技术学院,成都611756;西南交通大学物理科学与技术学院,成都611756【正文语种】中文【中图分类】TN219【相关文献】1.金属表面Ω介质涂层的电磁反射特性研究 [J], 周斌和;吴峰;厉位阳;周一峰;应金品;孙威2.频域分波法研究涂覆于金属表面的手征介质层的电磁反射特性 [J], 吴峰;李文扬3.基于BRDF的在轨卫星反射特性 [J], 王付刚;张伟;汪洪源4.基于PR-715测量的PVC材料BRDF特性与Phong模型研究 [J], 刘屹超;李宏宇;秦锋;邹纪平;冯洁;杨卫平5.基于Roujean和Ross-Li模型算法的不同户外光照南疆冬枣BRDF特性研究 [J], 索玉婷;罗华平;刘金秀;李伟;陈冲;徐嘉翊;王长旭因版权原因,仅展示原文概要,查看原文内容请购买。
双向反射分布函数反射成像
双向反射分布函数(BRDF)是描述物体表面反射性质的一种数学模型,它能够预测任意入射光线方向下的反射光线方向和强度。
BRDF 在计算机图形学、计算机视觉、遥感、光学等领域都有着广泛应用。
反射成像是指物体表面反射出的图像,它是由光线经过物体表面反射后形成的。
在计算机图形学中,反射成像是绘制真实场景的重要组成部分。
通过使用 BRDF 模型和反射成像技术,我们可以在计算机上渲染出高度逼真的图像。
BRDF 的计算过程可以分为两个部分:入射光线和出射光线的处理。
入射光线通常是通过光线跟踪技术确定的,而出射光线的方向和强度则由 BRDF 模型计算得出。
BRDF 模型通常包括反射率、粗糙度、金属度等参数,这些参数决定了物体表面的反射特性。
反射成像技术可以分为两种:离线渲染和实时渲染。
离线渲染通常用于生成高质量的静态图像,它可以利用 BRDF 模型预先计算出所有入射光线和出射光线的信息。
而实时渲染则需要在每一帧图像中动态计算出入射光线和出射光线的信息,因此需要更快的计算速度和更低的计算成本。
总之,BRDF 模型和反射成像技术对于计算机图形学和计算机视觉等领域都具有重要意义。
它们的应用使得计算机能够模拟真实世界的光学效果,从而生成出逼真的图像和场景。
- 1 -。
光照模型Lambert模型(漫反射)环境光:Iambdiff = Kd*Ia其中Ia 表⽰环境光强度,Kd(0<K<1)为材质对环境光的反射系数,Iambdiff是漫反射体与环境光交互反射的光强。
⽅向光:Ildiff = Kd * Il * Cos(θ)其中Il是点光源强度,θ是⼊射光⽅向与顶点法线的夹⾓,称⼊射⾓(0<=A<=90°),Ildiff是漫反射体与⽅向光交互反射的光强,若 N为顶点单位法向量,L表⽰从顶点指向光源的单位向量(注意顶点指向光源),则Cos(θ)等价于dot(N,L),故⼜有:Ildiff = Kd * Il * dot(N,L)最后综合环境光和⽅向光源,Lambert光照模型可以写成:Idiff = Iambdiff + Ildiff = Kd * Ia + Kd * Il * dot(N,L)Phong模型(镜⾯反射)Phong模型认为镜⾯反射的光强与反射光线和视线的夹⾓相关:Ispec = Ks * Il * ( dot(V,R) )^Ns其中Ks 为镜⾯反射系数,Ns是⾼光指数,V表⽰从顶点到视点的观察⽅向,R代表反射光⽅向。
由于反射光的⽅向R可以通过⼊射光⽅向L(从顶点指向光源)和物体的法向量求出,R + L = 2 * dot(N, L) * N 即 R = 2 * dot(N,L) * N - L所以最终的计算式为:Ispec = Ks * Il * ( dot(V, (2 * dot(N,L) * N – L ) )^NsBlinn-Phong光照模型(修正镜⾯光)Blinn-Phong是⼀个基于Phong模型修正的模型,其公式为:Ispec = Ks * Il * ( dot(N,H) )^Ns其中N是⼊射点的单位法向量,H是光⼊射⽅向L和视点⽅向V的中间向量,通常也称之为半⾓向量(半⾓向量被⼴泛⽤于各类光照模型,原因不但在于半⾓向量蕴含的信息价值,也在于半⾓向量是很简单的计算:H = (L + V) / |L + V| )。
第45卷 第7期 包 装 工 程2024年4月PACKAGING ENGINEERING ·267·收稿日期:2024-01-29基金项目:中铝科技发展基金资助项目(2018KJZD01) 软包装锂电池铝塑膜各向异性及应力模型研究张灵新1,陈伟2*,李小许1,王秀宾2,李昂1,杜金全1,白万真1(1.中铝河南洛阳铝箔有限公司,河南 洛阳 471000; 2.中铝材料应用研究院有限公司苏州分公司,江苏 苏州 215000)摘要:目的 研究铝塑膜的性能各向异性,并构建其与各层基材性能关系的数学模型。
方法 通过拉伸试验系统研究铝塑膜各层基材的各向异性特征及应力应变行为,采用层状复合材料的混合定律,构建铝塑膜的强度与基材强度的关系模型。
结果 聚丙烯膜强度各向异性指数最低为1.5,尼龙膜延伸率各向异性指数最低为−0.8,铝箔的强度和延伸率各向异性指数分别为4.0和−8.7,铝塑膜复合膜的强度和延伸率各向异性指数与铝箔接近,是影响铝塑膜各向异性的关键基材。
结论 基于混合定律采用线性回归分析方法构建的铝塑膜应力模型与实际测试结果吻合良好,在工程领域可以用作铝塑膜基材选型的参考。
关键词:锂电池;铝塑膜;各向异性;混合定律;应力模型中图分类号:TB333 文献标志码:A 文章编号:1001-3563(2024)07-0267-07 DOI :10.19554/ki.1001-3563.2024.07.033Anisotropy and Stress Model of Aluminum-plastic Films for Soft EncapsulatedLithium-ion BatteriesZHANG Lingxin 1, CHEN Wei 2*, LI Xiaoxu 1, WANG Xiubin 2, LI Ang 1, DU Jinquan 1, BAI Wanzhen 1(1. Chinalco Henan Luoyang Aluminum Foil Co., Ltd., Henan Luoyang 471000, China;2. Chinalco Materials Application Research Institute Co., Ltd., Suzhou Branch, Jiangsu Suzhou 215000, China) ABSTRACT: The work aims to study the performance anisotropy of aluminum-plastic films and construct a mathematical model for strength of films with that of the substrate. The anisotropic characteristics and stress-strain behavior of each layer of aluminum-plastic film substrates were studied by tensile test. Based on the mixing law of laminated composites, the relationship model between the strength of aluminum-plastic films and the strength of substrates was constructed. The results showed that the lowest anisotropy index of strength of polypropylene films was 1.5, the lowest anisotropy index of elongation of nylon films was −0.8, and the anisotropy index of strength and elongation of aluminum foils were 4.0 and −8.7, respectively. Moreover, the anisotropy index of strength and elongation of aluminum-plastic laminated composite films was close to that of aluminum foils, which was the key substrate affecting the anisotropy of aluminum-plastic films. The stress model of aluminum-plastic films constructed based on the mixing law and linear regression analysis method is in good agreement with the actual results, indicating that it can be used as a reference for the selection of aluminum-plastic film substrates in the engineering field.KEY WORDS: lithium battery; aluminum-plastic film; anisotropy; mixture law; stress model铝塑复合膜对软包装锂电池的安全性和可靠性至关重要[1]。
等向性机械性质模型(Isotropic Mechanical Model)Moldex3D使用材料的线性弹性性质来计算翘曲的情形,其中所使用的等向性机械性质是杨式模数、波以松比及热膨胀系数。
在Moldex3D的现行版本,这三个参数都被假设为与温度无关。
因此在模拟时建议使用其室温下的性质。
等向性材料的虎克定律以矩阵模型形式可表为:其中εxx,εyy,εzz,εyz,εzx及εxy是应变张量之各分量,σxx,σyy,σzz,σyz,σzx及σxy则是应力张量之各分量,E称做杨式模数,ν称作波以松比,热膨胀系数则用来计算热应力以及等向性的收缩程度。
非等向性的机械性质模型(Anisotropic Mechanical Model)若材料具有非等向性,Moldex3D也能帮助使用者计算非等向性的收缩以及翘曲的程度。
非等向性之机械性质来自于:•分子排向性(此为众所周知的流动诱发式之不等向性)•纤维配向Moldex3D在计算翘曲程度时所需的非等向材料性质如下:1. 沿着流动或纤维方向的模数E12. 沿着流动垂直方向的模数E23. 剪切模数G124. 波以松比值V125. 波以松比值V236. 沿流动或纤维方向之线性热膨胀系数(CLTE)E17. 沿着流动垂直方向的线性热膨胀系数(CLTE)E2我们可藉由标准的拉伸测试中获得沿着流动方向或垂直方向的的杨式模数E1及E2,如下图所示,我们也可依此方法求得波以松比。
流动方向/纤维配向及其横向之定义剪切模数被定义为剪应力与剪应变之比值。
剪切模数之定义若为一个含纤维的材料,在计算非等向之机械性质时,可能会用到长度与直径的比值(L/D)及重量百分比。
此时在计算orthotropic材料的非等向性翘曲时,以上参数将会被导入虎克定律,其中包括三个杨式模数E x、E y、E z、三个波以松比值V yz、V xy、V zx,以及三个剪切模数G yz、G xy、G z,orthotropic材料的统御方程式(Constitutive equation) 为:其中εij与σij分别为应变张量与应力张量。
An Anisotropic Phong BRDF ModelMichael Ashikhmin Peter ShirleyAugust13,2000AbstractWe present a BRDF model that combines several advantages of the various empirical models cur-rently in use.In particular,it has intuitive parameters,is anisotropic,conserves energy,is reciprocal,hasan appropriate non-Lambertian diffuse term,and is well-suited for use in Monte Carlo renderers.1IntroductionPhysically-based rendering systems describe reflection behavior using the bidirectional reflectance distri-bution function(BRDF).For a detailed discussion of the BRDF and its use in computer graphics see the volumes by Glassner[2].At a given point on a surface the BRDF is a function of two directions,one toward the light and one toward the viewer.The characteristics of the BRDF will determine what“type”of material the viewer thinks the displayed object is composed of,so the choice of BRDF model and its parameters is important.We present a new BRDF model that is motivated by practical issues.A full rationalization for the model and comparison with previous models is provided in a seperate technical report[1].The BRDF model described in the paper is inspired by the models of Ward[8],Schlick[6],and Neimann and Neumann[5].However,it has several desirable properties not previously captured by a single model. In particular,it1.obeys energy conservation and reciprocity laws,2.allows anisotropic reflection,giving the streaky appearance seen on brushed metals,3.is controlled by intuitive parameters,4.accounts for Fresnel behavior,where specularity increases as the incident angle goes down,5.has a non-constant diffuse term,so the diffuse component decreases as the incident angle goes down,6.is well-suited to Monte Carlo methods.The model is a classical sum of a“diffuse”term and a“specular”term.ρ(k1,k2)=ρs(k1,k2)+ρd(k1,k2).(1) For metals,the diffuse componentρd is set to zero.For“polished”surfaces,such as smooth plastics,there is both a diffuse and specular appearance and neither term is zero.For purely diffuse surfaces,either the traditional Lambertian(constant)BRDF can be used,or the new model with low specular exponents can be used for slightly more visual realism near grazing angles.The model is controlled by four paramters:•R s:a color(spectrum or RGB)that specifies the specular reflectance at normal incidence.n v= 10000n v= 1000n v= 100n v= 10n u = 10n u = 100n u = 1000n u = 10000Figure1:Metallic spheres for various exponents.•R d:a color(spectrum or RGB)that specifies the diffuse reflectance of the“substrate”under the specular coating.•n u,n v:two phong-like exponents that control the shape of the specular lobe.We now illustrate the use of the model in severalfigures.After that,the remainder of the paper deals with specifying and implementing the model.Figure1shows spheres with R d=0and varying n u and n v.The spheres along the diagonal have n u=n v so have a look similar to the traditional Phong model.Figure2 shows another metallic object.This appearance is achieved by using the“right”mapping of tangent vectors on the surface.Figure3shows a“polished”surface with R s=0.05.This means the diffuse component will dominate for near normal viewing angles.However,as the viewing angle becomes oblique the specular component dominates despite its low near-normal value.Figure4shows the model for a diffuse surface. Note how the ball on the right has highlights near the edge of the model,and how the constant-BRDF ball on the left is more“flat”.The highlights produced by the new model are present in the measured BRDFs some paints,so are desirable for some applications[4].Figure2:A cylinder with the appearance of brushed metal created with the new model with R d=0,R s= 0.9,n u=10,n v=100.Figure3:Three views for n u=n v=400and a red substrate.Figure4:An image with a Lamertian sphere(left)and a sphere with n u=n v=5.After afigure from Lafortune et al.[4].2The ModelThe specular componentρs of the BRDF is:ρs(k1,k2)=(n u+1)(n v+1)8π(n·h)n u cos2φ+n v sin2φ(h·k)max((n·k1),(n·k2))F((k·h))(2)In our implementation we use Schlick’s approximation to Fresnel fraction[6]:F((k·h))=R s+(1−R s)(1−(k·h))5,(3) a·b scalar(dot)product of vectors a and bk1normalized vector to lightk2normalized vector to viewern surface normalu,v tangent vectors that form an orthonormal basis along with n.ρ(k1,k2)BRDFh normalized half-vector between k1and k2p(k)probability density function for reflection sampling raysF(cosθ)Fresnel reflectance for incident angleθTable1:Important terms used in the paperFigure5:Geometry of reflection.Note that k1,k2,and h share a plane,which usually does not include n. where R s is material’s reflectance for the normal incidence.It is not necessary to call trigonometric functions to compute the exponent in Equation2,so the specular BRDF can be written:ρs(k1,k2)=(n u+1)(n v+1)(n·h)(n u(hu)2+n v(hv)2)212F((k·h)).(4)in a It is possible to use a Lambertian BRDF together with our specular term in a way similar to that which is done for most models[6,8].However,we use a simple angle-dependent form of the diffuse component which accounts for the fact that the amount of energy available for diffuse scattering varies due to the dependence of specular term’s total reflectance on the incident angle.In particular,diffuse color of a surface disappears near the grazing angle because the total specular reflectance is close to one in this case.This well-known effect cannot be reproduced with a Lambertian diffuse term and is therefore missed by most reflection models.Another,perhaps more important,limitation of the Lambertian diffuse term is that it must be set to zero to ensure energy conservation in the presence of a Fresnel-weighted term.The diffuse term is:ρd(k1,k2)=28R d23π(1−R s)1−1−(n·k1)251−1−(n·k2)25(5)Note that our diffuse BRDF does not depend on n u and n v.The somewhat unusual leading constant is designed to ensure energy conservation.3Using the BRDF model in a Monte Carlo settingIn a Monte Carlo setting we are interested in the following problem:given k1,generate samples of k2with a distribution which shape is similar to the cosine weighted BRDF.This distribution should be a probability density function(pdf),and we should be able to evaluate it for a given randomly generated k2.The key part of our thinking on this is inspired by discussion by Zimmerman[9]and by Lafortune[3]who point out that greatly undersampling a large value of the integrand is a serious error while greatly oversampling a small value is acceptable in practice.The reader can verify that the densities suggested below have this property.Wefirst generate a half-vector h using the following pdf:p h(h)=(n u+1)(n v+1)2π(n·h)n u cos2φ+n v sin2φ,(6)Figure6:A closeup of the model implemented in a path tracer with9,26,and100samples.To evaluate the rendering equation we need both a reflected vector k2and a probability density function p(k2).Note that if you generate h according to p h(h)and then transform to the resulting k2:k2=−k1+2(k1·h)h,(7) the density of the resulting k2is not p h(k2).This is because of the difference in measures in h and v2 space.So the actual density p(k2)is:p(k2)=p h(h)4(k1·h).(8)Monte Carlo renderers that use this method converge reasonably quickly(Figure6).In an implementation where the BRDF is known to be this model,the estimate of the rendering equation is quite simple as many terms cancel out.Note that it is possible to generate an h vector whose corresponding vector k2will point inside the surface,i.e.(k2·n)<0.The weight of such a sample should be set to zero.This situation corresponds to the specular lobe going below the horizon and is the main source of energy loss in the model.This problem becomes progressively less severe as n u,n v become larger.The only thing left now is to describe how to generate h vectors with pdf of Equation7.We start by generating h with its spherical angles in the range(θ,φ)∈[0,π2]×[0,π2].Note that this is only thefirst quadrant of the hemisphere.Given two random numbers(ξ1,ξ2)uniformly distributed in[0,1],we can chooseφ=arctann u+1n v+1tanπξ12,(9)and then use this value ofφto obtainθaccording tocosθ=(1−ξ2)1u2v2.(10) To sample the entire hemisphere,the standard manipulation whereξ1is mapped to one of four possible functions depending one whether it is in[0,0.25),[0.25,0.5),[0.5,0.75),or[0.75,1.0).For example for ξ1∈[0.25,0.5),findφ(1−4(0.5−ξ1))via Equation9,and then“flip”it about theφ=π/2axis.This ensures full coverage and stratification.For the diffuse term it would be possible to do importance sample with a density close to cosine-weighted BRDF5in a way similar to that described by Shirley et al[7],but we use a simpler approach and generate samples according to cosine distribution.This is sufficiently close to the complete diffuse BRDF to substan-tially reduce variance of the Monte Carlo estimation.To generate samples for the entire BRDF,simply use a weighted average of1and p(k2).References[1]Michael Ashikmin and Peter Shirley.An anisotropic phong light reflection model.Technical ReportUUCS-00-014,Computer Science Department,University of Utah,June2000.[2]Andrew S.Glassner.Principles of Digital Image Synthesis.Morgan-Kaufman,San Francisco,1995.[3]Eric fortune and Yves ing the modified phong BRDF for physically based rendering.Technical Report CW197,Computer Science Department,K.U.Leuven,November1994.[4]Eric fortune,Sing-Choong Foo,Kenneth E.Torrance,and Donald P.Greenberg.Non-linearapproximation of reflectance functions.Proceedings of SIGGRAPH97,pages117–126,August1997.[5]L´a szl´o Neumann,Attila Neumann,and L´a szl´o pact metallic reflectance models.Computer Graphics Forum,18(13):161–172,1999.[6]Christophe Schlick.An inexpensive BRDF model for physically-based puter GraphicsForum,13(3):233—246,1994.[7]Peter Shirley,Helen Hu,Brian Smits,and Eric Lafortune.A practitioners’assessment of light reflectionmodels.In Pacific Graphics,pages40–49,October1997.[8]Gregory J.Ward.Measuring and modeling anisotropic reflputer Graphics,26(4):265–272,July1992.ACM Siggraph’92Conference Proceedings.[9]Kurt Zimmerman.Density Prediction for Importance Sampling in Realistic Image Synthesis.PhDthesis,Indiana University,June1998.。