半导体物理学[第十二章半导体磁和压阻效应]课程复习
- 格式:pdf
- 大小:266.39 KB
- 文档页数:3
半导体物理复习试题及复习资料一、选择题1.与绝缘体相比,半导体的价带电子激发到导带所需要的能量( B )。
A. 比绝缘体的大B.比绝缘体的小C. 和绝缘体的相同2.受主杂质电离后向半导体提供( B ),施主杂质电离后向半导体提供( C ),本征激发向半导体提供( A )。
A. 电子和空穴B.空穴C. 电子3.对于一定的N型半导体材料,在温度一定时,减小掺杂浓度,费米能级会( B )。
A.上移B.下移C.不变4.在热平衡状态时,P型半导体中的电子浓度和空穴浓度的乘积为常数,它和( B )有关A.杂质浓度和温度B.温度和禁带宽度C.杂质浓度和禁带宽度D.杂质类型和温度5.MIS结构发生多子积累时,表面的导电类型与体材料的类型( B )。
A.相同B.不同C.无关6.空穴是( B )。
A.带正电的质量为正的粒子B.带正电的质量为正的准粒子C.带正电的质量为负的准粒子D.带负电的质量为负的准粒子7.砷化稼的能带结构是( A )能隙结构。
A. 直接B. 间接8. 将Si 掺杂入GaAs 中,若Si 取代Ga 则起( A )杂质作用,若Si 取代As 则起( B )杂质作用。
A. 施主B. 受主C. 陷阱D. 复合中心9. 在热力学温度零度时,能量比F E 小的量子态被电子占据的概率为( D ),当温度大于热力学温度零度时,能量比F E 小的量子态被电子占据的概率为( A )。
A. 大于1/2B. 小于1/2C. 等于1/2D. 等于1E. 等于010. 如图所示的P 型半导体MIS 结构的C -V 特性图中,AB 段代表( A ),CD 段代表(B )。
A. 多子积累B. 多子耗尽C. 少子反型D. 平带状态11. P 型半导体发生强反型的条件( B )。
A. ⎪⎪⎭⎫ ⎝⎛=i A S n N q T k V ln 0B. ⎪⎪⎭⎫ ⎝⎛≥i A S n N q T k V ln 20 C. ⎪⎪⎭⎫ ⎝⎛=i D S n N q T k V ln 0 D. ⎪⎪⎭⎫ ⎝⎛≥i D S n N q T k V ln 20 12. 金属和半导体接触分为:( B )。
基本概念题:第一章半导体电子状态1.1 半导体通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。
1.2能带晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。
这些区间在能级图中表现为带状,称之为能带。
1.2能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。
答:能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。
通过该方程和周期性边界条件最终给出E-k关系,从而系统地建立起该理论。
单电子近似:将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。
绝热近似:近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。
1.2克龙尼克—潘纳模型解释能带现象的理论方法答案:克龙尼克—潘纳模型是为分析晶体中电子运动状态和E-k关系而提出的一维晶体的势场分布模型,如下图所示利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。
由此得到的能量分布在k空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。
从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。
1.2导带与价带1.3有效质量有效质量是在描述晶体中载流子运动时引进的物理量。
它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。
其大小由晶体自身的E-k关系决定。
1.4本征半导体既无杂质有无缺陷的理想半导体材料。
1.4空穴空穴是为处理价带电子导电问题而引进的概念。
设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的粒子,称其为空穴。
它引起的假想电流正好等于价带中的电子电流。
《半导体物理学》课程教案大纲一、课程说明(一)课程名称:《半导体物理学》所属专业:物理学(电子材料和器件工程方向)课程性质:专业课学分:学分(二)课程简介、目标与任务:《半导体物理学》是物理学专业(电子材料和器件工程方向)本科生的一门必修课程。
通过学习本课程,使学生掌握半导体物理学中的基本概念、基本理论和基本规律,培养学生分析和应用半导体各种物理效应解决实际问题的能力,同时为后继课程的学习奠定基础。
本课程的任务是从微观上解释发生在半导体中的宏观物理现象,研究并揭示微观机理;重点学习半导体中的电子状态及载流子的统计分布规律,学习半导体中载流子的输运理论及相关规律;学习载流子在输运过程中所发生的宏观物理现象;学习半导体的基本结构及其表面、界面问题。
(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接:本课程的先修课程包括热力学与统计物理学、量子力学和固体物理学,学生应掌握这些先修课程中必要的知识。
通过本课程的学习为后继《半导体器件》、《晶体管原理》等课程的学习奠定基础。
(四)教材与主要参考书:[]刘恩科,朱秉升,罗晋生. 半导体物理学(第版)[]. 北京:电子工业出版社. .[]黄昆,谢希德. 半导体物理学[]. 北京:科学出版社. .[]叶良修.半导体物理学(第版)[]. 上册. 北京:高等教育出版社. .[]. . , ( .), , , .二、课程内容与安排第一章半导体中的电子状态第一节半导体的晶格结构和结合性质第二节半导体中的电子状态和能带第三节半导体中电子的运动有效质量第四节本征半导体的导电机构空穴第五节回旋共振第六节硅和锗的能带结构第七节族化合物半导体的能带结构第八节族化合物半导体的能带结构第九节合金的能带第十节宽禁带半导体材料(一)教案方法与学时分配课堂讲授,大约学时。
限于学时,第节可不讲授,学生可自学。
(二)内容及基本要求本章将先修课程《固体物理学》中所学的晶体结构、单电子近似和能带的知识应用到半导体中,要求深入理解并重点掌握半导体中的电子状态(导带、价带、禁带及其宽度);掌握有效质量、空穴的概念以及硅和砷化镓的能带结构;了解回旋共振实验的目的、意义和原理。
复习题:半导体物理学引言:半导体物理学是研究半导体材料的电学和光学性质的科学学科。
半导体材料由于其特殊的能带结构,介于导体和绝缘体之间。
在半导体物理学中,我们研究电子行为、能带理论、掺杂效应和半导体器件等方面的内容。
本文将通过一系列复习题来回顾半导体物理学的相关知识。
一、电子行为:1. 什么是载流子?在半导体中有哪两种类型的载流子?在半导体中,带有电荷的粒子称为载流子。
一种是带负电荷的电子,另一种是带正电荷的空穴。
2. 什么是能带?能带理论是用来描述什么的?能带是指具有一定能量范围的电子能级分布。
能带理论用于描述电子在半导体中的分布和运动行为。
3. 什么是禁带宽度?它对半导体的导电性质有什么影响?禁带宽度是指能带中能量差最小的范围,该范围内的能级没有允许态。
禁带宽度决定了半导体的导电性能。
能带中存在禁带宽度时,半导体表现出绝缘体的性质;当禁带宽度足够小的时候,允许电子状态穿越禁带,半导体表现出导体的性质。
二、掺杂效应:1. 什么是掺杂?常见的掺杂元素有哪些?掺杂是指向纯净的半导体中引入少量杂质元素,以改变半导体的导电性质。
常见的掺杂元素有磷、锑、硼等。
2. 控制掺杂浓度的方法有哪些?掺杂浓度可以通过掺杂杂质元素的量来控制。
掺杂浓度越高,半导体的导电性越强。
3. P型和N型半导体有什么区别?P型半导体是指通过掺杂三价元素使半导体中存在过剩的空穴,空穴是主要的载流子。
N型半导体是指通过掺杂五价元素使半导体中存在过剩的电子,电子是主要的载流子。
三、半导体器件:1. 什么是PN结?它的主要作用是什么?PN结是由P型半导体和N型半导体组成的结构。
PN结的主要作用是将半导体材料的导电性质从P型区域传导到N型区域,形成电子流和空穴流。
2. 什么是二极管?它的特点是什么?二极管是PN结的一种常见应用。
它具有单向导电性,允许电流从P区域流向N区域,而阻止电流从N区域流向P区域。
3. 什么是晶体管?它的工作原理是怎样的?晶体管是由三个掺杂不同类型的半导体构成的器件。
半导体物理复习归纳一、半导体的电子状态1、金刚石结构(Si、Ge)Si、Ge原子组成,正四面体结构,由两个面心立方沿空间对角线互相平移1/4个空间对角线长度套构而成。
由相同原子构成的复式格子。
2、闪锌矿结构(GaAs)3-5族化合物分子构成,与金刚石结构类似,由两类原子各自形成的面心立方沿空间对角线相互平移1/4个空间对角线长度套构而成。
由共价键结合,有一定离子键。
由不同原子构成的复式格子。
3、纤锌矿结构(ZnS)与闪锌矿结构类似,以正四面体结构为基础,具有六方对称性,由两类原子各自组成的六方排列的双原子层堆积而成。
是共价化合物,但具有离子性,且离子性占优。
4、氯化钠结构(NaCl)沿棱方向平移1/2,形成的复式格子。
5、原子能级与晶体能带原子组成晶体时,由于原子间距非常小,于是电子可以在整个晶体中做共有化运动,导致能级劈裂形成能带。
6、脱离共价键所需的最低能量就是禁带宽度。
价带上的电子激发为准自由电子,即价带电子激发为导带电子的过程,称为本征激发。
7、有效质量的意义a.有效质量概括了半导体内部势场的作用(有效质量为负说明晶格对粒子做负功)b.有效质量可以直接由实验测定c.有效质量与能量函数对于k的二次微商成反比。
能带越窄,二次微商越小,有效质量越大。
8、测量有效质量的方法回旋共振。
当交变电磁场角频率等于回旋频率时,就可以发生共振吸收。
测出共振吸收时电磁波的角频率和磁感应强度,就可以算出有效质量。
为能观测出明显的共振吸收峰,要求样品纯度较高,且实验要在低温下进行。
9、空穴价带中空着的状态被看成带正电的粒子,称为空穴。
这是一种假想的粒子,其带正电荷+q,而且具有正的有效质量m p*。
10、轻/重空穴重空穴:有效质量较大的空穴轻空穴:有效质量较小的空穴11、间接带隙半导体导带底和价带顶处于不同k值的半导体。
二、半导体中的杂质和缺陷能级1、晶胞空间体积计算Si晶胞中有8个硅原子,每个原子看做半径为r的圆球,则8个原子占晶胞空间的百分数:立方体某顶角的圆球中心与距此顶角1/4体对角线长度处的圆球中心间的距离为2r,且等于边长为a的立方体体对角线长(a3)的1/4。
半导体物理导论复习资料半导体物理导论复习资料半导体物理是现代电子学的基础,理解半导体物理的原理对于电子工程师和科学家来说至关重要。
本文将回顾半导体物理的一些重要概念和原理,帮助读者复习和加深对这一领域的理解。
1. 半导体的基本特性半导体是介于导体和绝缘体之间的材料,具有一些独特的物理特性。
首先,半导体的电导率介于导体和绝缘体之间,这意味着它既可以传导电流,又可以阻止电流的流动。
其次,半导体的电导率可以通过控制外界条件(如温度、施加电场等)来调节,这使得半导体具有可调控性和可变性。
2. 禁带和载流子半导体中的电子和空穴是半导体中的两种载流子。
禁带是指半导体中的能带结构,它将电子的能级分成导带和价带。
导带是电子能量较高的能级,而价带是电子能量较低的能级。
禁带宽度是导带和价带之间的能量差,决定了半导体的导电性能。
3. pn结和二极管pn结是由n型半导体和p型半导体结合而成的。
n型半导体中的电子浓度较高,p型半导体中的空穴浓度较高。
当两者结合时,电子和空穴会发生复合,形成一个耗尽层。
耗尽层中没有可自由移动的载流子,因此形成了一个电势垒。
这个电势垒可以阻止电流的流动,从而实现了二极管的整流功能。
4. 势垒高度和反向击穿势垒高度是指pn结中电势垒的高度,它决定了二极管的导电性能。
当外加电压使势垒高度增加时,二极管的导电性能会减弱。
反向击穿是指当外加电压超过一定值时,势垒高度会被突破,电流会快速增加。
这种现象可以用来制作稳压二极管和击穿二极管等电子元件。
5. MOSFET和CMOS技术MOSFET是金属-氧化物-半导体场效应晶体管的缩写,是现代集成电路中最常用的晶体管结构。
MOSFET的导电性能可以通过调节栅极电压来控制,因此具有高度可调控性和低功耗特性。
CMOS技术是一种基于MOSFET的集成电路制造技术,被广泛应用于数字电路和微处理器的制造。
6. 光电效应和光电器件光电效应是指当光照射到半导体材料上时,会激发出电子和空穴,产生电流。
半导体物理知识点梳理简介半导体物理学是研究半导体材料的电子结构、载流子动力学和半导体器件工作原理的学科。
它是现代微电子工业的基础和前提,包含了多种复杂的物理过程和电子器件设计原理。
在集成电路中,半导体物理学的研究对于我们理解电子器件的工作原理和提高器件性能至关重要。
一、半导体材料的电子结构1. 能带能带是指材料中的能量电子集合,可以被电子占据或空出来。
常见的能带包括价带和导带。
价带中的电子与原子核共享一个价电子对,导带则含有未占据的电子。
导带和价带之间的区域称为禁带,其中没有可用的能级,这使得该区域没有自由电子。
禁带宽度决定了材料的导电性质。
2. 牛顿力学与量子力学经典物理学,如牛顿力学,不能完全描述电子在原子中的行为,因此计算价带和导带的能量需要借助量子力学。
量子力学通过考虑波粒二象性和不确定性原理,说明电子存在于这两个能带中,以及它们的位置和能量。
3. 材料的类型半导体凭借其调谐电子运动的能力而成为电子器件的主要材料之一。
半导体材料通常可以划分为晶体(单晶或多晶)和非晶体,前者由规则排列的原子构成,后者则表现为无序空间结构。
二、载流子动力学1. 载流子类型在材料中,载流子是指负电荷(电子)或正电荷(空穴),它们的运动是电流传导的主要过程。
半导体中的载流子种类包括电子和空穴。
这些载流子的输运以及它们的沟通将直接影响材料的电学行为。
2. 拉曼散射与荷质比拉曼散射是一种通过材料中的声子色散特性筛选其材料类型和结构的方法。
这可以帮助确定载流子的荷质比,荷质比是电荷与带负荷的质量之比。
荷质比是半导体的一个关键参数,它决定了载流子的涵盖区域和速度。
3. 面掺杂多数半导体材料中的电子和空穴浓度是非常低的,这导致了它们的电导率较低。
通过面掺杂,半导体的电导率可以得到提高。
面掺杂涉及向材料表面引入杂质原子,这些原子具有带电性质以及能影响材料电荷载流子浓度的能力。
三、半导体器件工作原理1. 篱截型场效应晶体管篱截型场效应晶体管(MESFET)是一种单极型晶体管器件,它是通过在材料中形成门结构,控制源引线到漏引线通道上电子流的芯片。
半导体物理复习提纲基础知识1.导体,绝缘体和半导体的能带结构有什么不同并以此说明半导体的导电机理(两种载流⼦参与导电)与⾦属有何不同导体能带中⼀定有不满带;绝缘体能带中只有满带和空带,禁带宽度较宽⼀般⼤于2eV;半导体T=0 K时,能带中只有满带和空带,T>0 K时,能带中有不满带,禁带宽度较⼩,⼀般⼩于2eV。
(能带状况会发⽣变化)半导体的导带没有电⼦,但其价带中电⼦吸收能量,会跃迁⾄导带,价带中也会剩余空⽳。
在外电场的情况下,跃迁到导带中的电⼦和价带中的空⽳都会参与导电。
⽽⾦属中价带电⼦是⾮满带,在外场的作⽤下直接产⽣电流。
2.什么是空⽳它有哪些基本特征以硅为例,对照能带结构和价键结构图理解空⽳概念。
当满带附近有空状态k’时,整个能带中的电流,以及电流在外场作⽤下的变化,完全如同存在⼀个带正电荷e和具有正有效质量|m n* | 、速度为v(k’)的粒⼦的情况⼀样,这样假想的粒⼦称为空⽳。
3.半导体材料的⼀般特性。
(1)电阻率介于导体与绝缘体之间(2)对温度、光照、电场、磁场、湿度等敏感(3)性质与掺杂密切相关4.费⽶统计分布与玻⽿兹曼统计分布的主要差别是什么什么情况下费⽶分布函数可以转化为玻⽿兹曼函数为什么通常情况下,半导体中载流⼦分布都可以⽤玻⽿兹曼分布来描述麦克斯韦-玻尔兹曼统计的粒⼦是可分辨的;费⽶-狄拉克统计的粒⼦不可分辨,⽽且每个状态只可能占据⼀个粒⼦。
低掺杂半导体中载流⼦遵循玻尔兹曼分布,称为⾮简并性系统;⾼掺杂半导体中载流⼦遵循费⽶分布,称为简并性系统。
费⽶分布:玻尔兹曼分布:空⽳分布函数:(能态E不被电⼦占据的⼏率)当时有,所以,则费⽶分布函数转化为,即玻尔兹曼分布。
半导体中常见费⽶能级位于禁带中,满⾜的条件,因此导带和价带中的所有量⼦态来说,电⼦和空⽳都可以⽤玻尔兹曼分布描述。
5.由电⼦能带图中费⽶能级的位置和形态(如,⽔平、倾斜、分裂),分析半导体材料特性。
靠近费⽶能级的能带上的载流⼦远⼤于远离费⽶能级那边,因此将该能带上的载流⼦称为多数载流⼦简称多⼦。
半导体器件物理复习题1.简述Schrodinger 波动方程的物理意义及求解边界条件。
2.简述隧道效应的基本原理。
3.什么是半导体的直接带隙和间接带隙。
4.什么是Fermi-Dirac 概率函数和Fermi 能级,写出n(E) 、p(E) 与态密度和Fermi 概率函数的关系。
5.什么是本征Ferm 能级?在什么条件下,本征Ferm 能级处于中间能带上。
6.简述硅半导体中电子漂移速度与外加电场的关系。
7.简述Hall 效应基本原理。
解释为什么Hall 电压极性跟半导体类型( N 型或P 型) 有关。
8.定性解释低注入下的剩余载流子寿命。
9.一个剩余电子和空穴脉冲在外加电场下会如何运动,为什么?10.当半导体中一种类型的剩余载流子浓度突然产生时,半导体内的净电荷密度如何变化?为什么?11.什么是内建电势?它是如何保持热平衡的?12.解释p-n 结内空间电荷区的形成机理及空间电荷区宽度与外施电压的关系。
13.什么是突变结和线性剃度结。
14.分别写出p-n 结内剩余少子在正偏和反偏下的边界条件。
15.简述扩散电容的物理机理。
16.叙述产生电流和复合电流产生的物理机制。
17.什么理想肖特基势垒?用能带图说明肖特基势垒降低效应。
18.画出隧道结的能带图。
说明为什么是欧姆接触。
19.描述npn三极管在前向有源模式偏置下的载流子输运过程。
20.描述双极晶体管在饱和与截止之间开关时的响应情况。
21.画出一个n-型衬底的MOS 电容在积聚、耗尽和反型模式下的能带图。
22.什么是平带电压和阈值电压23.简要说明p-沟道器件的增强和耗尽型模式。
24.概述MESFET 的工作原理。
25.结合隧道二极管的I-V 特性,简述其负微分电阻区的产生机理。
26.什么是短沟道效应?阐述短沟道效应产生的原因及减少短沟道效应的方法。
短沟道效应( shortchanneleffect ):当金属- 氧化物- 半导体场效应晶体管( MOSFE)T 的沟道长度L 缩短到可与源和漏耗尽层宽度之和(WS WD)相比拟时,器件将发生偏离长沟道 (也即L 远大于WSW D)的行为,这种因沟道长度缩短而发生的对器件特性的影响,通常称为短沟道效应。
半导体物理学复习整理半导体物理复习整理――电子1402班郑彤杰第一单元1. 电子的共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原子转移到相邻的原子上去,因此,电子将可以在整个晶体中运动。
2. 单电子近似:即假设每个电子是在周期性排列且固定不动的原子核势场及其他电子的平均势场的中运动。
3. 能带论:用单电子近似法研究晶体中电子状态的理论称为能带论。
4. 有效质量:电子受到原子核的周期性势场(这个势场和晶格周期相同)以及其他电子势场综合作用的结果。
5. 禁带:能带结构中能量密度为0的能量区间。
常用来表示导带价带之间能量密度为0的能量区间。
6. 导带:对于被电子部分占满的能带,在外电场的作用下,电子可以从外电场中吸收能量跃迁到未被电子占据的能级去,形成电流,起导电作用。
7. 满带:电子占据了一个能带中的所有状态,称该能带为满带. 8. 价带:最上面的一个满带称为价带。
9. 杂质缺陷:填隙式杂质、替位式杂质。
10. 本征半导体:完全不含缺陷且无晶格缺陷的纯净半导体称为本征半导体。
实际半导体不可能绝对的纯净,本征半导体一般是指导电主要由本征激发决定的纯净半导体。
11. 本征激发:当有能量大于禁带宽度的光子照射到半导体表面时,满带中的电子吸收这个能量,跃迁到导带产生一个自由电子和自由空穴,这一过程称为本征激发。
12. 施主杂质:在半导体中电离时,能够释放电子而产生导电电子并形成正电中心的杂质称为施主杂质。
N型半导体:主要依靠导带电子导电的半导体13. 受主杂质:在半导体中电离时,能够释放空穴而产生导电空穴并形成负电中心的杂质称为受主杂质。
P型半导体:主要依靠价带空穴导电的半导体14. 浅能级杂质:在半导体中,能够提供能量靠近导带的电子束缚态或能量接近价带的空穴束缚态的杂质称为浅能级杂质。
15. 深能级杂质:在半导体中,能够提供能量接近价带的电子束缚态或能量接近导带的空穴束缚态的杂质称为深能级杂质。
1第十二章半导体在磁场中的几种效应§12.1霍耳效应(The Hall Effect )一、霍耳效应一样品受到x 方向的电场(在样品中存在电流),方向的磁场(),于是x E x J z z B 在方向上产生一个横向电场,这一现象就称为霍耳效应。
yy E 霍耳电场与和有关,即x J z B y H x zE R J B =式中比例系数称为霍耳系数,。
H R y H x zE R =J B 二、只有一种载流子的霍耳效应设样品的温度是均匀的,并且认为所有载流子都具有相同的速度,不考虑速度的统计分布。
1、p 型半导体只有一种载流子空穴在的作用下,空穴受洛仑兹力的作用,向方向偏移,使样品的左面z B f qv B =×u r r r y -积累空穴,电位升高,故在样品的方向形成霍耳电场,沿的正方向。
y y E uu ry 空穴在方向同时受到霍耳电场力和洛伦兹力的作用,但其合力应为零,即y;y x z F=0E v B ?=u r又因;x x x x J J =qpv v qp =所以x y z x zJ 1E B J B qp qp==所以,单位为,上式表明霍耳系数与空穴浓度成反比。
H 1R 0pq=>3m /C 2、n 型半导体:H 1R 0nq=-<三、有两种载流子的霍耳效应当在半导体中同时存在电子和空穴时,沿方向的电流密度为:x 。
设产生的霍耳电场沿的正方向。
()x n p xJ q n p E μμ=+y E y平衡时,横向电流为零,包括空穴横向电流和电子横向电流为,()pyJ ()nyJ 所以:。
()()y pnyyJ J J 0=+=但此时空穴和电子电流分别并不为零:空穴:()2pp y p x z yJ =pq E pq E B μμ-电子:()2n n y nx zy J =nq E +nq E B μμ可以得到:22p n y x zp np n E E B p n μμμμ-=+zB xVxJ ydbyE xE LzyE z B xJ y+++++++++---------.z xJ +++++++++---------.ffffyE x E y yE zxJ y++++++++++++------------.luof uuu r2所以()22p nH 2pnp n 1R qp n μμμμ-=?+令,得:n pb μμ=()2H 21p nbR qp nb -=?+分析霍耳系数随温度的变化:对于大多数的半导体,因为电子迁移率一般都大于空穴迁移率,所以下面讨论时都设。
第十二章半导体磁和压阻效应12.1 理论概要与重点分析(1)把通有电流的半导体放在磁场中,在垂直于电流和磁场的方向上会产生横向电场,这个现象称为霍尔效应。
横向电场称为霍尔电场。
霍尔效应的实质是带电粒子在磁场中运动受到洛仑兹力作用的结果。
实验测定表明:霍尔电场Ey与电流密度jx 和磁感应强度Bz成正比,即E y -RHjxBz(12.1)比例系数RH 称为霍尔系数。
对于不同的材料,其弱场霍尔系数RH如表12-1所示。
利用霍尔效应可以判断半导体材料的导电类型,测量半导体的载流子浓度和迁移率。
低温下霍尔效应试验还是研究半导体材料补偿度和杂质电离的有效方法。
利用霍尔效应可制成霍尔器件,且由于霍尔器件可在静止状态下感受磁场,多数载流子工作,响应频率宽、寿命长、可靠性高,因而得到广泛的应用。
(2)在磁场的作用下,半导体的电阻要增大,这种效应称为磁阻效应。
它可分为两种,一种是半导体的电阻率随磁场增大而增大,这种效应称为物理磁阻效应。
另一种磁阻效应与样品的形状有关,不同几何形状的样品,在同样大小的磁场作用下,其电阻不同,这种效应称为几何磁阻效应。
若磁场和外加电场相互垂直时,产生的磁阻效应称为横向磁阻效应。
通常用电阻率的相对改变形容磁阻。
(4)光磁电效应:用能被半导体强烈吸收的光照射,在半导体表面薄层产生光生载流子,电子和空穴均向内部做扩散运动,再把样品置于与入射光垂直的磁场中,在垂直于磁场和载流子扩散方向产生横向电场,这种现象称为光磁电效应。
产生电场的原因是磁场使向同一方向扩散的电子和空穴,分别向横向两端偏转形成的。
光磁电效应,可用来测量短寿命半导体的非子寿命和制作红外探测器。
(5)压阻效应是指应变引起半导体的电阻率变化。
其物理原因在于,应变使半导体能带结构发生变化。
对于导带为多能谷的半导体材料(如n-Si,n-Ge的导带,极值点分别在<100>和<111>的多个对称方向上,极值附近的等能面为多个旋转椭球面),单轴应力引起晶体各向异性应变,使导带中各个等同能谷相对位置发生变化,引起电子在各能谷中的重新分布,从而改变载流子的迁移率,即改变了半导体电阻率。
第十二章半导体磁和压阻效应
12.1 理论概要与重点分析
(1)把通有电流的半导体放在磁场中,在垂直于电流和磁场的方向上会产生横向电场,这个现象称为霍尔效应。
横向电场称为霍尔电场。
霍尔效应的实质是带电粒子在磁场中运动受到洛仑兹力作用的结果。
实验测定表明:霍尔电场Ey与电流密度j
x 和磁感应强度B
z
成正比,即
E
y -R
H
j
x
B
z
(12.1)
比例系数R
H 称为霍尔系数。
对于不同的材料,其弱场霍尔系数R
H
如表12-1所示。
利用霍尔效应可以判断半导体材料的导电类型,测量半导体的载流子浓度和迁移率。
低温下霍尔效应试验还是研究半导体材料补偿度和杂质电离的有效方法。
利用霍尔效应可制成霍尔器件,且由于霍尔器件可在静止状态下感受磁场,多数载流子工作,响应频率宽、寿命长、可靠性高,因而得到广泛的应用。
(2)在磁场的作用下,半导体的电阻要增大,这种效应称为磁阻效应。
它可分为两种,一种是半导体的电阻率随磁场增大而增大,这种效应称为物理磁阻效应。
另一种磁阻效应与样品的形状有关,不同几何形状的样品,在同样大小的磁场作用下,其电阻不同,这种效应称为几何磁阻效应。
若磁场和外加电场相互垂直时,产生的磁阻效应称为横向磁阻效应。
通常用电阻率的相对改变形容磁阻。
(4)光磁电效应:用能被半导体强烈吸收的光照射,在半导体表面薄层产生光生载流子,电子和空穴均向内部做扩散运动,再把样品置于与入射光垂直的磁场中,在垂直于磁场和载流子扩散方向产生横向电场,这种现象称为光磁电效应。
产生电场的原因是磁场使向同一方向扩散的电子和空穴,分别向横向两端偏转形成的。
光磁电效应,可用来测量短寿命半导体的非子寿命和制作红外探测器。
(5)压阻效应是指应变引起半导体的电阻率变化。
其物理原因在于,应变使
半导体能带结构发生变化。
对于导带为多能谷的半导体材料(如n-Si,n-Ge的导带,极值点分别在<100>和<111>的多个对称方向上,极值附近的等能面为多个旋转椭球面),单轴应力引起晶体各向异性应变,使导带中各个等同能谷相对位置发生变化,引起电子在各能谷中的重新分布,从而改变载流子的迁移率,即改变了半导体电阻率。
半导体在液体静压强作用下,晶体对称性不受影响,仅使能带极值发生移动而使禁带宽度发生变化。
禁带宽度的变化引起载流子浓度的变化,因而使电阻率变化。
p型硅中观察到较显著的压阻效应,是由于各向异性应力解除了能带简并,使轻、重空穴带中载流子重新分布。
由于轻、重空穴迁移率不同,重新分布后的总迁移率发生变化,即使空穴总数保持不变,也会使电阻率发生变化。
利用半导体的压阻效应可以制作各种力敏感器件,而得到广泛应用。