解析几何学习知识重点情况总结复习资料
- 格式:doc
- 大小:361.14 KB
- 文档页数:10
解析几何的基本知识点总结解析几何是几何学的一个分支,它利用坐标系和代数方法研究几何问题。
通过对解析几何的基本知识点的总结,我们可以更好地理解和应用解析几何的方法。
本文将就解析几何的基本概念、坐标系、直线和曲线等知识点进行详细阐述。
一、基本概念1. 点:解析几何中的基本单位,用坐标表示,通常用大写字母表示,如点A(x₁, y₁)。
2. 线段:由两点确定的有限线段,在解析几何中用两点的坐标表示,如线段AB:AB = √[(x₂-x₁)²+(y₂-y₁)²]。
3. 中点:线段的中点即为线段两端点的均值,设线段AB的中点为M,则M的坐标为[(x₁+x₂)/2, (y₁+y₂)/2]。
4. 斜率:表示直线斜率的概念,在解析几何中常用字母k表示,直线的斜率为k=(y₂-y₁)/(x₂-x₁)。
5. 角度:两条直线之间的旋转角度,用度数或弧度表示。
二、坐标系1. 笛卡尔坐标系:由水平的x轴和垂直的y轴组成,交点为原点O(0,0)。
在这个坐标系下,点的位置可以用有序数对(x, y)表示。
2. 极坐标系:由原点O和极径、极角两个坐标轴组成,极径表示点到原点的距离,极角表示点与x轴正半轴的夹角。
三、直线与曲线1. 直线:由一次方程表示的线段,在解析几何中用方程的形式表示,如直线方程为y=kx+b。
2. 曲线:不是直线的线段,在解析几何中的表示较为复杂,可以通过方程、参数方程或极坐标方程表示,常见的曲线有圆、椭圆、双曲线、抛物线等。
四、常见图形的解析几何表示1. 圆:圆心为(h, k),半径为r,其方程表示为(x-h)²+(y-k)²=r²。
2. 椭圆:椭圆的中心为(h, k),长轴为2a,短轴为2b,其方程表示为(x-h)²/a²+(y-k)²/b²=1。
3. 双曲线:双曲线的中心为(h, k),两支曲线的焦点分别为(f₁, k)和(-f₂, k),其方程表示为(x-h)²/a²-(y-k)²/b²=1。
解析几何知识点归纳整理解析几何是数学中的一个分支,涉及到空间形状和位置关系的研究。
下面是几何学中常见的重要知识点的归纳整理:1.点、线、面:解析几何中的基本元素包括点、线和面。
点是几何中最基本的概念,没有大小和方向;线是由无数个点连成的,具有长度,没有宽度;面是由无数条线构成的,具有长度和宽度,没有厚度。
2.直线与平面:在解析几何中,直线是由无数个点连成的,具有无限延伸性的线段;平面是由无数个直线连接在一起形成的,具有无限延伸性的平面区域。
3.曲线与曲面:曲线是由一系列连续点所组成的,可以在平面或者空间中弯曲的线;曲面是由一系列连续曲线所组成的,可以在空间中弯曲的平面区域。
4.坐标系:坐标系是解析几何中用来表示点的一种方式。
常见的坐标系包括直角坐标系、极坐标系和球坐标系。
在直角坐标系中,一个点的位置可以通过它在x、y、z三个轴上的坐标来确定。
5.基本图形:解析几何中的一些基本图形包括:线段、射线、角、多边形和圆。
线段是有两个端点的线,定长;射线是有一个起点的线,可以无限延伸;角是由两条射线共享一个端点所形成的;多边形是由多个线段组成的封闭图形;圆是由一条曲线所围成的等距点的集合。
6.距离和长度:距离是一个点到另一个点之间的直线距离;长度是一个线段的大小。
在直角坐标系中,可以通过勾股定理计算距离和长度。
7.相似与全等:相似性是解析几何中一个重要的概念,表示一对图形在形状上相似,但大小不一定相等。
全等性表示一对图形在形状和大小上完全相同。
8.垂直与平行:垂直表示两条线段或者平面之间成直角的关系;平行表示两条直线或者平面之间永不相交的关系。
9.角的性质:解析几何中的角有许多性质。
例如,对顶角是两条互相垂直且相交于一点的直线所形成的角;对称角的度数相等;互补角的和为90度。
10.三角形:三角形是解析几何中的一个重要图形。
三角形有许多性质,包括内角和为180度、中线相交于一点、高相交于底边垂直平分等。
11.四边形:四边形是含有四条边的多边形。
高中数学解析几何知识点总结一、平面解析几何在平面解析几何中,我们主要研究平面上的点、直线、圆、曲线等几何对象。
平面解析几何的基本思想是用代数方法研究几何问题,通过建立坐标系和引入坐标变量的方法,将几何问题转化为代数问题进行研究。
在平面解析几何中,有一些重要的知识点需要掌握,下面我们将逐一进行讲解。
1. 坐标系坐标系是平面解析几何的基本工具,它通过数轴的方式将平面上的点和几何对象进行了定位。
常见的坐标系有直角坐标系和极坐标系两种。
直角坐标系是由水平轴和垂直轴组成的,水平轴称为x轴,垂直轴称为y轴。
平面上的每个点通过它的横坐标x和纵坐标y来确定,就可以唯一确定一个点的位置。
例如,点A(x,y)表示了点A在坐标系中的位置。
极坐标系是以原点O和一条射线作为坐标轴,用点到原点的距离r和与射线的夹角θ来表示点的位置。
在极坐标系中,点的坐标表示为(r,θ)。
2. 直线的方程在直角坐标系中,直线可以用方程y=ax+b或者y=kx+b来表示,其中a、b、k为常数。
当a≠0时,直线的方程为y=ax+b,a称为直线的斜率,b称为直线的截距;当a=0时,直线的方程为y=b,其斜率为0,直线与y轴平行。
另外,直线还可以用斜截式、截距式、两点式等来表示,学生需要灵活掌握不同表示方法,并能够相互转化。
3. 圆的方程在平面解析几何中,圆是一个重要的几何对象,它的方程可以用不同的形式表示。
在直角坐标系中,圆的方程一般写为(x-a)²+(y-b)²=r²,其中(a,b)为圆心的坐标,r为圆的半径。
4. 曲线的方程除了直线和圆之外,学生还需要学习其他曲线的方程,如抛物线、椭圆、双曲线等。
这些曲线都有各自的方程形式,在解析几何中有着重要的应用。
5. 解析几何的基本性质和定理在学习平面解析几何时,学生还需要掌握一些基本的性质和定理,如两点间的距离公式、直线的斜率公式、直线与圆的位置关系、圆与圆的位置关系等。
高中数学解析几何知识点总结大全解析几何是高中数学的重要分支之一,通过运用代数和几何的方法来研究几何图形的性质和变换。
下面是高中数学解析几何的知识点总结,供参考:一、直线与平面的位置关系1.直线与平面的交点个数:直线和平面可以有0个、1个或无数个交点。
2.平面与平面的位置关系:两个平面可以相交、平行或重合。
二、向量及其代数运算1.向量的概念:向量是具有大小和方向的量。
2.向量的表示方法:向量可以用有向线段或坐标表示。
3.向量的加法:向量的加法满足平行四边形法则。
4.向量的数乘:向量的数乘是一个向量与一个实数的乘积。
5.向量的数量积:向量的数量积是两个向量之间的乘积,结果是一个实数。
6.向量的乘法运算法则:分配律、结合律和交换律。
三、直线及其方程1.平面直角坐标系:平面直角坐标系包括坐标轴、坐标原点和相应的正方向。
2.直线的方程:直线可以用一般式、点斜式、两点式或截距式表示。
3.直线的性质:平行、垂直、斜率、倾斜角等。
4.直线的位置关系:两条直线可以相交、平行或重合。
四、曲线及其方程1.圆的方程:圆可以用标准方程、一般方程或截距方程表示。
2.椭圆、双曲线和抛物线的方程:椭圆、双曲线和抛物线可以用一般式表示。
3.曲线的性质:焦点、准线、离心率等概念的理解。
4.曲线的位置关系:两条曲线可以相交、相切或没有交点。
五、空间直线及其方程1.空间直线的方程:空间直线可以用对称式、参数方程或直角坐标式表示。
2.空间直线的位置关系:两条空间直线可以相交、平行或重合。
3.空间直线与平面的位置关系:空间直线可以与平面相交、平行或测度为零。
六、空间曲线及其方程1.空间曲线的方程:空间曲线可以用参数方程或直角坐标式表示。
2.空间曲线与平面的位置关系:空间曲线可以与平面相交、触及或完全包含。
七、立体图形1.点、线、面、体的概念:点是没有长度、宽度和高度的,线是一系列相连的点,面是一系列相连的线,体是一系列相连的面。
2.立体图形的表面积:立方体、长方体、正方体、球体、圆柱体、圆锥体和棱锥体的表面积计算公式。
高中数学解析几何知识点归纳总结
1. 直线与平面的位置关系
- 直线与平面的交点可以有三种情况:交于一点、平行或重合。
- 直线与平面的夹角可以分为三种情况:直线在平面内、直线
与平面垂直或直线在平面外。
- 两个平面的位置关系可以分为三种情况:相交于一直线、平
行或重合。
2. 平面的方程
- 平面的方程有两种形式:点法式和一般式。
- 点法式方程:通过平面上一点和法向量来确定平面方程。
- 一般式方程:由平面的法向量和一个常数项确定平面方程。
3. 直线的方程
- 直线的方程也有两种形式:点向式和一般式。
- 点向式方程:通过直线上一点和方向向量来确定直线方程。
- 一般式方程:由直线的法向量和一个常数项确定直线方程。
4. 平面和直线的距离
- 平面和直线的距离可以使用点到平面的距离公式或点到直线
的距离公式。
5. 直线与直线的位置关系
- 直线与直线的位置关系可以分为三种情况:相交于一点、平
行或重合。
6. 空间中的球面与圆
- 空间中的球面方程与二维平面上的圆方程类似。
- 空间中的球面与圆的方程可以通过中心点和半径来确定。
7. 二次曲线
- 二次曲线包括椭圆、双曲线和抛物线。
- 二次曲线的方程可以通过焦点、直径等要素来确定。
以上是高中数学解析几何的一些主要知识点。
通过研究和掌握
这些知识,你将能够更好地理解和应用解析几何的相关概念和方法。
解析几何学知识点总结一、点、线、面的基本概念1. 点:点是几何学中的基本概念,它没有长、宽、高,只有位置,用来表示物体的位置。
在几何学中,我们经常用坐标系来表示点的位置。
2. 线:线是由一系列无限延伸的点构成的,它没有宽度,只有长度。
除了直线,还有曲线、射线等概念。
3. 面:面是由一系列线构成的,它有长度和宽度,但没有高度。
在几何学中,我们研究的一般是平面,即二维空间中的面。
二、直线和角1. 直线的性质:直线是无限延伸的,没有起点和终点。
直线上的任意两点确定了一条直线,直线是几何学中的基本要素。
2. 角:角是由两条射线共同起点构成的。
角的大小用度来表示,是几何学中重要的角度概念。
角的度数和弧度数可以相互转换,角的正弦、余弦、正切等三角函数也是很重要的。
三、多边形和圆1. 多边形:多边形是由有限个直线段构成的封闭图形,它有顶点、边和面。
在几何学中,我们所研究的多边形一般是指正多边形,它是边相等、角相等的多边形。
多边形的面积和周长是多边形的重要性质。
2. 圆:圆是一种特殊的曲线,是由到一个定点距离相等的所有点构成的。
圆是几何学中的重要图形,它的半径、直径、圆心、圆周长和面积都是圆的重要性质。
四、立体几何1. 立体图形:在几何学中,我们研究的不仅仅是平面图形,还有立体图形。
立体图形是有长度、宽度和高度的,像正方体、长方体、圆柱体、圆锥体和球体等图形都属于立体图形的范畴。
2. 立体图形的体积和表面积:立体图形的体积和表面积是立体图形的重要性质,它们是我们在实际应用中经常要用到的。
五、坐标系和向量1. 坐标系:在几何学中,我们经常用坐标系来表示点的位置。
常见的坐标系有直角坐标系、极坐标系和球坐标系等。
2. 向量:向量是具有大小和方向的物理量,它是几何学中的重要概念。
向量的加法、减法、数乘、数量积和向量积都是向量的重要运算。
这些是几何学中的一些重要知识点,它们涵盖了几何学的基本概念和性质。
几何学是一门非常宝贵的学科,它在很多领域都有着重要的应用价值。
高中数学一轮总复习解析几何重点知识整理解析几何是高中数学中的一门重要的分支,它通过代数方法研究几何问题,是数学与几何相结合的产物。
在高中数学的学习中,解析几何占据着很重要的地位。
本文将为大家总结解析几何的重点知识,并进行整理。
一、直线与圆的方程在解析几何中,直线和圆是最基本的几何图形。
直线的方程可以通过点斜式、两点式、截距式等不同的表达方式来表示。
其中最常用的是点斜式,表示为 y - y₁ = k(x - x₁)。
其中 (x₁, y₁) 是直线上的一点,k 是直线的斜率。
圆的方程有两种形式,一是标准方程:(x - a)² + (y - b)² = r²,其中 (a,b) 是圆心坐标,r 是半径;二是一般方程:x² + y² + Dx + Ey + F= 0。
二、直线与圆的交点直线与圆的交点是解析几何的一个重要概念。
当直线与圆相交时,可以通过解方程的方法求得交点的坐标。
例如,已知直线 L: 2x + y - 3 = 0 和圆 C: x² + y² - 4x - 2y - 8 = 0,求直线 L 与圆 C 的交点坐标。
解:将直线的方程代入圆的方程中,得到 x² + (2x + 3)² - 4x - 2(2x + 3) - 8 = 0。
整理得到 5x² + 10x - 10 = 0,解得 x₁ = 1,x₂ = -2。
将 x 的值代入直线的方程中,得到 y₁ = 1,y₂ = 5。
所以直线 L 和圆 C 的交点坐标为 (1, 1) 和 (-2, 5)。
三、圆与圆的位置关系圆与圆之间的位置关系有三种情况:相离、相切、相交。
当两个圆相离时,它们的半径之和小于两圆之间的距离。
当两个圆相切时,它们的半径之和等于两圆之间的距离。
当两个圆相交时,它们的半径之和大于两圆之间的距离。
四、直线与平面的位置关系直线与平面之间的位置关系有两种情况:平行和相交。
解析几何基础要点汇总
1. 基本概念
- 解析几何是研究空间中点、直线、平面的性质和相互关系的数学分支。
- 点是解析几何的基本元素,用坐标表示。
- 直线是由两个不同的点确定的,可以通过斜率和截距等方式表示。
- 平面是由三个不共线的点确定的,可以通过法向量和点法式方程表示。
2. 点的坐标表示
- 在二维空间中,点的坐标表示为 (x, y)。
- 在三维空间中,点的坐标表示为 (x, y, z)。
3. 直线的方程
- 一般式方程:Ax + By + C = 0,其中 A、B、C 为常数。
- 斜截式方程:y = mx + c,其中 m 为斜率,c 为截距。
- 点斜式方程:y - y1 = m(x - x1),其中 (x1, y1) 为直线上的一点,m 为斜率。
4. 平面的方程
- 一般式方程:Ax + By + Cz + D = 0,其中 A、B、C、D 为常数。
- 点法式方程:A(x - x0) + B(y - y0) + C(z - z0) = 0,其中 (x0, y0, z0) 为平面上的一点,(A, B, C) 为平面的法向量。
5. 相关性质和定理
- 两点间距离公式:d = sqrt((x2 - x1)^2 + (y2 - y1)^2 + (z2 -
z1)^2)。
- 点到直线的距离公式:d = |Ax0 + By0 + C| / sqrt(A^2 + B^2)。
- 点到平面的距离公式:d = |Ax0 + By0 + Cz0 + D| / sqrt(A^2 + B^2 + C^2)。
以上是解析几何的基础要点汇总,希望对您的学习有所帮助。
高三解析几何总结知识点解析几何是高中数学中的一个重要分支,通过运用坐标系和代数方法,研究几何图形的性质和变换规律。
在高三阶段,解析几何是帮助学生巩固和拓展几何知识的重要内容。
下面将对高三解析几何的知识点进行总结,并以例题进行说明。
一、直线的方程1. 一般式方程:Ax + By + C = 02. 点斜式方程:y - y₁ = k(x - x₁)3. 两点式方程:(y - y₁)/(x - x₁) = (y₂ - y₁)/(x₂ - x₁)例题:已知直线L过点A(3,-2),斜率为2,求直线L的方程。
解:利用点斜式方程,代入已知条件可得:y - (-2) = 2(x - 3)化简得:y + 2 = 2x - 6转化为一般式方程:2x - y + 8 = 0所以直线L的方程为2x - y + 8 = 0。
二、直线的位置关系1. 平行关系:两条直线的斜率相同。
2. 垂直关系:两条直线的斜率之积为-1。
3. 直线的交点:联立两条直线的方程,求解方程组得到交点坐标。
例题:已知直线L₁的方程为3x - y + 5 = 0,直线L₂过点B(1, 4)且与L₁垂直,求直线L₂的方程。
解:根据L₁的一般式方程,可以得到L₁的斜率为3。
由于L₂与L₁垂直,故L₂的斜率为-1/3。
利用点斜式方程可得:y - 4 = -1/3(x - 1)化简得:3y - 12 = -x + 1转化为一般式方程:x + 3y - 13 = 0所以直线L₂的方程为x + 3y - 13 = 0。
三、直线的距离和垂足1. 点到直线的距离:利用点到直线的距离公式,d = |Ax₀ + By₀ + C|/√(A² + B²)2. 直线的垂足:垂直于直线的直线与给定直线的交点。
例题:已知直线L的方程为2x - 3y + 6 = 0,点P(4, -2),求点P到直线L的距离和直线L的垂足的坐标。
解:根据点到直线的距离公式,代入已知条件可得:d = |2(4) - 3(-2) + 6|/√(2² + (-3)²)化简得:d = 4/√13所以点P到直线L的距离为4/√13。
《解析几何》知识点复习1解析几何是数学中的一个重要分支,它通过代数方法来研究几何图形的性质。
下面我们来系统地复习一下解析几何的一些关键知识点。
一、坐标系坐标系是解析几何的基础,它为我们描述点的位置提供了一种精确的方式。
1、直角坐标系直角坐标系也称为笛卡尔坐标系,由两条互相垂直的数轴组成,分别称为 x 轴和 y 轴。
坐标轴的交点称为原点,坐标用有序数对(x, y) 来表示。
2、极坐标系在极坐标系中,一个点的位置由极径和极角来确定。
极径表示点到极点的距离,极角表示极轴与线段的夹角。
二、直线直线是解析几何中最简单也是最基本的图形之一。
1、直线的方程(1)点斜式:已知直线上一点(x₁, y₁) 且直线的斜率为 k,则直线方程为 y y₁= k(x x₁) 。
(2)斜截式:如果直线斜率为 k 且在 y 轴上的截距为 b,则直线方程为 y = kx + b 。
(3)两点式:已知直线上两点(x₁, y₁) 和(x₂, y₂),则直线方程为(y y₁)/(y₂ y₁) =(x x₁)/(x₂ x₁) 。
(4)截距式:如果直线在 x 轴和 y 轴上的截距分别为 a 和 b,则直线方程为 x/a + y/b = 1 。
2、直线的位置关系(1)平行:两条直线斜率相等。
(2)垂直:两条直线斜率的乘积为-1 。
3、点到直线的距离公式点(x₀, y₀) 到直线 Ax + By + C = 0 的距离为:d =|Ax₀+By₀+ C| /√(A²+ B²) 。
三、圆圆是一种常见的几何图形。
1、圆的方程(1)标准方程:(x a)²+(y b)²= r²,其中(a, b) 为圆心坐标,r 为半径。
(2)一般方程:x²+ y²+ Dx + Ey + F = 0 ,其中 D²+ E² 4F> 0 时表示圆。
2、圆与直线的位置关系通过判断圆心到直线的距离 d 与半径 r 的大小关系来确定:(1)d > r ,相离。
数学解析几何考点梳理数学解析几何是高中数学的重要组成部分,考试中常常出现的一个大模块。
在解析几何中,我们研究几何图形与代数关系之间的联系,通过代数的方法来解决几何问题。
解析几何考点较多,本文将对常见的解析几何考点进行梳理和总结。
一、平面几何基础知识回顾在学习解析几何之前,我们首先需要回顾一些平面几何的基础知识。
这包括点、线、向量等的定义与性质。
比如,我们需要了解点的坐标表示方法,如(x, y)表示平面上的一个点;线的方程表示形式,如一般式、点斜式等;向量的定义及其运算法则,如加法、数乘等。
这些基础知识在后续的解析几何学习中起着重要的作用。
二、直线的方程与性质直线是解析几何中的重要图形,研究直线的方程与性质是解析几何的核心内容之一。
常见的直线方程有一般式方程、点斜式方程、两点式方程等。
我们需要了解不同方程形式之间的转换关系,并能根据要求求解直线的方程。
此外,还需要掌握直线与坐标轴的交点求解方法,以及直线的斜率和与坐标轴的夹角等性质。
三、曲线的方程除了直线,解析几何还研究了各种曲线的方程。
常见的曲线包括圆、椭圆、抛物线和双曲线等。
对于这些曲线,我们需要了解它们的定义、性质以及其与坐标轴的交点求解方法。
此外,还需要学会根据给定的条件确定曲线的方程,以及根据方程确定曲线的形状和位置等。
四、点、线、面的位置关系解析几何中研究了点、线、面的位置关系。
其中,点到线的距离及其相关性质是考试中常见的考点之一。
我们需要学会求解点到直线的距离,并能根据给定的条件确定点与直线的位置关系。
此外,还需要了解点到平面的距离的计算方法,以及点与平面之间的位置关系等。
五、向量及其运算向量是解析几何的重要工具,涉及到向量的定义、运算及其性质的学习。
我们需要了解向量的加法、减法、数量积和向量积等运算法则,以及向量的模、方向角和共线性等基本性质。
此外,还需要掌握向量之间的运算规律,并能根据给定条件解决相关的几何问题。
六、平面的方程在解析几何中,研究了平面的方程。
高中数学解析几何知识点总结一、基本概念1. 点、直线和平面•点:在平面上,点是最基本的几何对象,可以用坐标表示。
在空间中,点可以用三维坐标表示。
•直线:由无数个点连成的无限延伸的轨迹,可以由两个不重合的点唯一确定。
•平面:由无数点在同一平面上组成。
2. 基本图形•线段:连接两点的线段,有起点和终点,可以用线段的长度表示。
•射线:一个起点和一个终点在同一条直线上的线段,有起始点但没有终结点。
•角:由两条半直线和公共端点组成,以顶点为中心点,夹在两条半直线之间。
二、坐标系与向量1. 坐标系•笛卡尔坐标系:直角坐标系,是一个由两条垂直的坐标轴组成的平面,用于表示点的位置。
•极坐标系:以一个点为极点,在此点设一根射线作为极轴,并规定每一个点到该射线的距离和与该射线正方向所成角度来表示该点的坐标。
2. 向量•向量的定义:向量是有大小和方向的量,表示一段膨胀或者收缩的箭头。
•向量的运算:向量可以做加法和乘法运算,具备平移、缩放和旋转的特性。
•向量的表示:向量可以用有序数组、列矩阵或坐标表示。
三、直线与圆1. 直线的方程•点斜式方程:通过已知点和斜率来表示直线的方程。
•斜截式方程:通过截距和斜率来表示直线的方程。
•两点式方程:通过两个已知点来表示直线的方程。
•一般式方程:直线的一般方程为Ax + By + C = 0。
2. 圆的方程•标准方程:圆的标准方程为(x−a)2+(y−b)2=r2,其中(a,b)为圆心坐标,r为半径长度。
•一般方程:圆的一般方程为x2+y2+Dx+Ey+F=0。
四、曲线与曲面1. 二次曲线•椭圆:由平面上到两个定点的距离之和为常数的点的轨迹组成。
•抛物线:由平面上到一个定点的距离与到一条定直线的距离相等的点的轨迹组成。
•双曲线:有两个定点F1和F2称为焦点,对于任意一点P的到两个焦点的距离之差是常数。
2. 二次曲面•椭球面:由空间中到两个定点的距离之和为常数的点的轨迹组成。
•抛物面:由空间中到一个定点的距离与到一条定直线的距离相等的点的轨迹组成。
高考解析几何的知识点总结高考数学考试中,解析几何是一个重要的考点。
解析几何是数学中的一个分支,主要研究平面和空间中点、线、面的几何特性。
在解析几何的学习过程中,掌握一些基本的知识点是非常关键的。
本文将对高考解析几何的知识点进行总结,帮助考生复习备考。
一、直线与曲线的方程1. 直线的方程:直线的一般方程为Ax+By+C=0,其中A、B、C为常数,A和B不同时为0。
当A或B等于0时,直线的方程可以化简为其他形式。
2. 直线的斜截式方程:直线的斜率为k,与y轴的截距为b,直线的方程可以表示为y=kx+b。
斜截式方程是直线方程中的一种常见形式。
3. 直线的点斜式方程:直线上一点的坐标为(x₁, y₁),直线的斜率为k,直线的方程可以表示为y-y₁=k(x-x₁)。
点斜式方程是直线方程中的另一种常见形式。
4. 曲线的方程:常见的曲线方程有:圆的方程、椭圆的方程、抛物线的方程、双曲线的方程等。
每种曲线都有其特定的形式和性质,考生需要了解并掌握。
二、直线与曲线的交点1. 直线与直线的交点:两条直线的方程相交解得到交点的坐标。
2. 直线与圆的交点:直线与圆的交点有无穷多个、一个或者没有交点,取决于直线与圆的位置关系和方程。
3. 直线与椭圆的交点:直线与椭圆的交点有无穷多个、一个或者没有交点,取决于直线与椭圆的位置关系和方程。
4. 直线与抛物线的交点:直线与抛物线的交点有无穷多个、一个或者没有交点,取决于直线与抛物线的位置关系和方程。
5. 直线与双曲线的交点:直线与双曲线的交点有无穷多个、一个或者没有交点,取决于直线与双曲线的位置关系和方程。
三、平面与空间几何1. 平面的方程:平面的一般方程为Ax+By+Cz+D=0,其中A、B、C、D为常数,A、B、C不全为0。
平面的法向量为(A,B,C),平面上的点满足方程Ax+By+Cz+D=0。
2. 平面与直线的位置关系:平面与直线可以相交、平行或重合,取决于平面与直线的位置关系和方程。
直线的方程1、直线的方程:类型直线方程方向向量d法向量n斜率k截距x轴/y轴/两点式x x1y y1x2x1y2y1(x2x1,y2y1)(y2y1,x1x2)y2y1x2x1点方向式点法向式点斜式截距式斜截式x xy yu va(x x) b(y y) 0(u,v)(v, u)vuab//(b, a)(1,k)( m,n)(1,k)(B, A)(a,b)(k, 1)(n,m)(k, 1)(A,B)//y yk(x x)x y1m ny kx bAx By C 0knm//m/nbCBkAB一般式C A注意:(1)点法向式方程和一般式方程可以表示所有的直线;(2)两点式方程和点方向式方程不能表示垂直于x轴或垂直于y轴的直线;(3)点斜式方程和斜截式方程不能表示垂直于x轴的直线;(4)截距式方程不能表示经过原点的直线.2、直线的倾斜角和斜率:(1)直线的倾斜角为平面直角坐标系中直线与x轴正半轴的夹角.取值范围: [0, );(2)直线的斜率:tan , [0,) (, )22k不存在,2;k 0 0k 2 0 0k tan 在[0, )和 k 不存在 = 2(2, )上单调递增.2k 0 2 y 2 y 1(3)若直线过点(x x ,x 1 x 21,y 1),(x 2,y 2),则该直线的斜率k 2 x 1,k R .不存在,x 1 x 23、两条直线的位置关系:已知l 1:a 1x b 1y c 1 0,l 2:a 2x b 2y c 2 0,则(1)系数法:①l 1 l 2 a 1a 2 b 1b 2 0;特别地,若l 1的斜率为k 1,l 2的斜率为k 2,l 1 l 2 k 1 k 2 1;②l 1与l 2相交 a 1b 2 a 2b 1;③l 1与l 2重合 a 1:b 1:c 1 a 2:b 2:c 2;④l 与l a 1:b 1 a 2:b 212平行 a .1:c 1 a 2:c 2或b 1:c 1 b 2:c 2(2)向量法:已知l 的法向量为 n11 (a 1,b 1),l 2的法向量为n 2 (a 2,b 2),则①l l12 n 1 n 20 a 1a 2 b 1b 2 0;特别地,若l 1的斜率为k 1,l 2的斜率为k 2,则l 1 l 2 k 1 k 2 1;②l l1与2相交 n 1与n 2不平行 a 1b 2 a 2b 1;③l 1与l 2平行或重合 n 1与n 2平行 a 1b 2 a 2b 1.(3)行列式法:已知Da 1b 1a ,Db 1xc 12b 2c 2b ,D y a 1c 12a 2c ,则21l 1与l2相交 D 0;②l1与l2重合 D D x D y 0;则③1与2平行 l l D 0.D x、D y 不全为零4、两条相交直线l 1:a 1x b 1y c 1 0和l 2:a 2x b 2y c 2 0的夹角 :(1)若l 1、l 2的法向量分别为n 1 (a 1,b 2)、n 2 (a 2,b 2),且l 1、l 2的方向向量分别为d 1、d 2,则n n 2cos 1n 1 n 2a 1a 2b 1b 2a 12 b 12 a 22 b 22d 1 d 2 或cos, [0,];2d 1 d 2(2)若l 1、l 2的斜率分别为k 1、k 2,且l 1到l 2的角为 1,l 2到l 1的角为 2,则tank k 1k k 2k 1 k 2, [0,);tan 1 2,tan 2 1.1 k 1k 21 k 1k 21 k 1k 225、点到直线的距离公式:(1)点P (x 0,y 0)到直线l :Ax By C 0的距离为dAx 0 By 0 CA B22;(2)直线l 1:Ax By C 1 0与直线l 2:Ax By C 2 0的距离为dC 1 C 2A B22.6、直线l :Ax By C 0同侧/异侧:(1)Ax 0 By 0 C 0(A 0) P (x 0,y 0)在直线l :Ax By C 0(A 0)的右侧;Ax 0 By 0 C 0(A 0) P (x 0,y 0)在直线l :Ax By C 0(A 0)的左侧.(2)点M (x 1,y 1)、N (x 2,y 2)在直线l 同侧 (Ax 1 By 1 C )(Ax 2 By 2 C ) 0;点M (x 1,y 1)、N (x 2,y 2)在直线l 异侧 (Ax 1 By 1 C )(Ax 2 By 2 C ) 0.7、点关于直线的对称问题:点直线P (x 0,y 0)x 轴P (x 0, y 0)y 轴P ( x 0,y 0)y xP (y 0,x 0)y xP ( y 0, x 0)x mP (2m x 0,y 0)y n P (x 0,2n y 0)对称点补充:①点P(x0,y)关于直线y x b的对称的点为P (yb,xb);②点P(x0,y)关于直线y x b的对称的点为P (b y,b x);A(n y) B(m x)③点P(x0,y)关于直线Ax By C 0的对称点P (m,n)满足 m x.n yA B C 022或者P (m,n),其中 8、三线共点问题:三条互不平行的直线l1:a1x b1y c10,直线l2:a2x b2y c20,直线l3:a3x b3y c30共m x0 2AD Ax By C,D 022.A Bn y0 2BDa1点的充要条件是a2b1b2b3c1c20.c3a39、直线系方程:具有某一个共同性质的一簇直线称为直线系.(1)平行直线系:①斜率为k0(常数)的直线系:,例:y 2x b;y kx b(b为参数)②平行于直线A0x By 0的直线系:Ax By C 0(C为参数).(2)过已知点的直线系:①以斜率k作为参数的直线系:y y0 k(x x),直线过定点(x,y);②以斜率k作为参数的直线系:y kx b0,直线过定点(0,b).③过两条直线l1:A1x B1y C10,l2:A2x B2y C20的交点的直线系:A 1x B1y C1(A2x B2y C2) 0( 为参数).注意:对于①②,过定点且平行于y轴或与y轴重合的直线不在直线系内;对于③,其中直线l2不在直线系内.10、定直线上动点与两定点距离和差问题:(1)定直线上动点与两定点距离和:问题已知定直线l上动点P,两个定点A、B,求PA PB的取值范围.取值范围A、B在l的解答步骤同侧 A B,AB, ①作点A关于l的对称点A ;②联结A B,交l于M;③点M为最小值状态点.①联结AB交l于M;②点M为最小值状态点.异侧(2)定直线上动点与两定点距离差:已知定直线l上动点P,两个定点A、B,点A、B到l的距离分别为d1、d2,问题直线AB与直线l的夹角为 ,求PA PB的取值范围.A、B在l的d1与d2的大小关系d1d2取值范围解答步骤①联结AB并延长交l于M;②点M为最大值状态点./①联结BA并延长交l于M;②点M为最小值状态点.①作点A关于l的对称点A ;②联结A B并延长交l于M;③点M为最大值状态点./①作点A关于l的对称点A ;②联结BA 并延长交l于M;2AB cos ,ABAB,ABAB,AB cos同侧d1 d2d 1 d2d 1 d2A B cos ,A BA B,A BA B,AB cos异侧d1d2d1d2点M为最小值状态点.曲线的方程(一)曲线的方程概论1、轴对称的两个曲线:曲线对称轴曲线F(x,y) 0x轴F(x, y) 0y轴y x y x x m y n F( x,y) 0F(y,x) 0F( y, x) 0F(2m x,y) 0F(x,2n y) 0补充:①曲线F (x ,y ) 0关于y x b 对称的曲线方程为F (y b ,x b ) 0;②曲线F (x ,y ) 0关于y x b 对称的曲线方程为F (b y ,b x ) 0.2、中心对称的两个曲线:曲线对称中心曲线F (x ,y ) 03、轴对称的曲线:曲线对称轴条件(m ,n )F (2m x ,2n y ) 0F (x ,y ) 0y x F (y ,x ) F (x ,y )补充:y x F ( y , x ) F (x ,y )x mF (2m x ,y ) F (x ,y )y nF (x ,2n y ) F (x ,y )a b对称。
解析几何基础知识1.平行与垂直若直线l 1和l 2有斜截式方程l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,则: (1)直线l 1∥l 2的充要条件是: k 1=k 2且b 1≠b 2 (2)直线l 1⊥l 2的充要条件是:k 1·k 2=-12.三种距离(1)两点间的距离平面上的两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式|P 1P 2|=x 1-x 22+y 1-y 22.特别地,原点(0,0)与任意一点P (x ,y )的距离|OP |=x 2+y 2.(2)点到直线的距离:点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2(3)两条平行线的距离两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B23、圆的方程的两种形式①.圆的标准方程(x -a )2+(y -b )2=r 2,方程表示圆心为(a ,b ),半径为r 的圆. ②.圆的一般方程对于方程x 2+y 2+Dx +Ey +F =0(1)当D 2+E 2-4F >0时,表示圆心为③⎝ ⎛⎭⎪⎫-D 2,-E 2,半径为12D 2+E 2-4F 的圆;(2)当D 2+E 2-4F =0时,表示一个点⎝ ⎛⎭⎪⎫-D 2,-E2;(3)当D 2+E 2-4F <0时,它不表示任何图形.4、直线与圆的位置关系①.直线与圆的位置关系有三种:相离、相切、相交.判断直线与圆的位置关系常见的有:几何法:利用圆心到直线的距离d 和圆半径r 的大小关系d <r ⇔相交;d =r ⇔相切;d >r ⇔相离 ②.直线与圆相交直线与圆相交时,若l 为弦长,d 为弦心距,r 为半径,则有r 2=d 2+⎝ ⎛⎭⎪⎫l 22,即l =2r 2-d 2,求弦长或已知弦长求解问题,一般用此公式.5、两圆位置关系的判断两圆(x -a 1)2+(y -b 1)2=r 21(r >0),(x -a 2)2+(y -b 2)2=r 22(r 2>0)的圆心距为d ,则 1.d >r 1+r 2⇔两圆外离;2.d =r 1+r 2⇔两圆外切;3.|r1-r2|<d<r1+r2(r1≠r2)⇔两圆相交_;4.d=|r1-r2|(r1≠r2)⇔两圆内切;5.0≤d <|r 1-r 2|(r 1≠r 2)⇔两圆内含6.椭圆一、椭圆的定义和方程 1.椭圆的定义平面内到两定点F 1、F 2的距离的和等于常数2a (大于|F 1F 2|=2c )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦点.定义中特别要注意条件2a >2c ,否则轨迹不是椭圆;当2a =2c 时,动点的轨迹是线段;当2a <2c 时,动点的轨迹不存在。
抛物线的标准方程、图象及几何性质:0>p1、定义:2、几个概念:① p 的几何意义:焦参数p 是焦点到准线的距离,故p 为正数; ② 焦点的非零坐标是一次项系数的14;③ 方程中的一次项的变量与对称轴的名称相同,一次项的系数符号决定抛物线的开口方向。
④ 通径:2p3、如:AB 是过抛物线)0(22>=p px y 焦点F 的弦,M 是AB 的中点,l 是抛物线的准线,l MN ⊥,N 为垂足,l BD ⊥,l AH ⊥,D ,H 为垂足,求证:(1)DF HF ⊥; (2)BN AN ⊥; (3)AB FN ⊥;(4)设MN 交抛物线于Q ,则Q 平分MN ; (5)设),(),,(2211y x B y x A ,则221p y y -=,22141p x x =; (6)pFB FA 2||1||1=+; (7)D O A ,,三点在一条直线上(8)过M 作AB ME ⊥,ME 交x 轴于E ,求证:||21||AB EF =,||||||2FB FA ME ⋅=;1、 双曲线的定义:平面内与两个定点21,F F 的距离的差的绝对值等于常数(小于||21F F )的点的轨迹。
第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数)1(>e e 的点的轨迹。
两个定点为双曲线的焦点,焦点间距离叫做焦距;定直线叫做准线。
常数叫做离心率。
注意: a PF PF 2||||21=-与a PF PF 2||||12=-(||221F F a <)表示双曲线的一支。
||221F F a =表示两条射线;||221F F a >没有轨迹;2、 双曲线的标准方程①焦点在x 轴上的方程:22221x y a b -=(a>0,b>0); ②焦点在y 轴上的方程:22221y x a b-= (a>0,b>0);③当焦点位置不能确定时,也可直接设椭圆方程为:mx 2-ny 2=1(m ·n<0); ④双曲线的渐近线:改1为0,分解因式则可得两条渐近线之方程. 3、双曲线的渐近线:①求双曲线12222=-b y a x 的渐近线,可令其右边的1为0,即得02222=-b y a x ,因式分解得到。
一、直线与方程基础:1、直线的倾斜角α: [0,)απ∈2、直线的斜率k :2121tan y y k x x α-==-;注意:倾斜角为90°的直线的斜率不存在。
3、直线方程的五种形式: ①点斜式:00()y y k x x -=-; ②斜截式:y kx b =+; ③一般式:0Ax By C ++=; ④截距式:1x ya b+=; ⑤两点式:121121y y y y x x x x --=-- 注意:各种形式的直线方程所能表示和不能表示的直线。
4、两直线平行与垂直的充要条件:1111:0l A x B y C ++=,2222:0l A x B y C ++=,1l ∥2l 12211221A B A B C B C B =⎧⇔⎨≠⎩;1212120l l A A B B ⊥⇔+= .5、相关公式:①两点距离公式:11(,)M x y ,22(,)N x y ,MN =②中点坐标公式:11(,)M x y ,22(,)N x y , 则线段MN 的中点1122(,)22x y x y P ++; ③点到直线距离公式: 00(,)P x y ,:0l Ax By C ++=, 则点P 到直线l的距离d =;④两平行直线间的距离公式:11:0l Ax By C ++=,22:0l Ax By C ++=, 则平行直线1l 与2l之间的距离d =⑤到角公式:(补充)直线1111:0l A x B y C ++=到直线2222:0l A x B y C ++=的角为θ,(0,)(,)22ππθπ∈U ,则2112tan 1k k k k θ-=+⋅ .(两倾斜角差的正切)二、直线与圆,圆与圆基础:1、圆的标准方程:222()()x a y b r -+-=; 确定圆的两个要素:圆心(,)C a b ,半径r ;2、圆的一般方程:220x y Dx Ey F ++++=,(2240D E F +->);3、点00(,)P x y 与圆222:()()C x a y b r -+-=的位置关系: 点00(,)P x y 在圆内⇔ 22200()()x a y b r -+-<; 点00(,)P x y 在圆上⇔ 22200()()x a y b r -+-=;点00(,)P x y 在圆外⇔ 22200()()x a y b r -+->;4、直线:0l Ax By C ++=与圆222:()()C x a y b r -+-=的位置关系: 从几何角度看:令圆心(,)C a b 到直线:0l Ax By C ++=的距离为d , 相离⇔d r >;相切⇔=d r ; 相交⇔0d r ≤<;若直线:0l Ax By C ++=与圆222:()()C x a y b r -+-=相交于两点M ,N ,则弦长MN = 从代数角度看:联立:0l Ax By C ++=与圆222:()()C x a y b r -+-=, 消去y (或x )得一元二次方程,24b ac ∆=-, 相离⇔0∆<; 相切⇔0∆=; 相交⇔0∆>;相交时的弦长1212MN x x y y =-=- . 5、圆与圆的位置关系: 相离,外切,相交,内切,内含 .圆2221111:()()O x x y y r -+-=;圆2222222:()()O x x y y r -+-=, 根据这三个量之间的大小关系来确定:12r r -,12O O ,12r r +; 相离⇔1212O O r r >+; 外切⇔1212O O r r =+; 相交⇔121212r r O O r r -<<+; 内切⇔1212O O r r =-; 内含⇔12120O O r r ≤<-;6、两圆2221111:()()O x x y y r -+-=①;圆2222222:()()O x x y y r -+-=②若相交,则相交弦所在的直线方程的求法:交轨法: ①式-②式,整理化简即可得到相交弦所在直线方程 .三、椭圆:1、(第一)定义:12122PF PF a F F +=>;2、椭圆标准方程及离心率:焦点在x 轴上的椭圆标准方程为:22221(0)x y a b a b +=>>;:a 长半轴;b :短半轴;:c 半焦距 .椭圆中a ,b ,c 的关系:222a b c =+; 椭圆的离心率(0,1)ce a=∈ . 3、弦长公式:直线:l y kx b =+与椭圆2222:1()x y C m n m n+=≠交于两点11(,)M x y ,22(,)N x y ,则相交时的弦长1212MN x x y y =-=- . 弦长公式是由两点距离公式与两点斜率公式推导出来,故适用性比较广。
4、中点弦结论(点差法):椭圆2222:1()x y C m n m n+=≠上的两点11(,)M x y ,22(,)N x y ,弦MN 的中点1212(,)22x x y y P ++, 则22MN OP n k k m⋅=- .5、焦点三角形面积:椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为1F 、2F ,点P 是椭圆C 上除左、右端点外的一点,令12F PF θ∠=,则:122tan2PF F S b θ∆=⋅ .该公式是由三角形面积公式、椭圆第一定义、余弦定理结合三角恒等变换推导出来。
6、直线与椭圆位置关系:联立:0l Ax By C ++=与椭圆2222:1()x y C m n m n+=≠,消去y (或x )得一元二次方程,24b ac ∆=-, 相离⇔0∆<; 相切⇔0∆=; 相交⇔0∆>;7、与点坐标相关的面积公式:(0,0)O ,11(,)A x y ,22(,)B x y ,点O ,A ,B 不在一条直线上,则:122112OAB S x y x y ∆=-. 该公式是由三角形面积公式、余弦定理结合三角恒等式推导出。
四、双曲线:(类比椭圆来学习双曲线)1、定义:12122PF PF a F F -=<;2、双曲线标准方程及离心率、渐近线方程:焦点在x 轴上的双曲线标准方程为:22221(0,0)x y a b a b -=>>;:a 实半轴;b :虚半轴;:c 半焦距 .双曲线中a ,b ,c 的关系:222c a b =+;双曲线的离心率(1,)ce a=∈+∞ ;焦点在x 轴上的双曲线的渐近线方程为by x a=±; 焦点到渐近线的距离d b = .焦点在y 轴上的双曲线相关性质可以类比。
3、弦长公式:直线:l y kx b =+与双曲线2222:1(0,0)x y C a b a b-=>>交于两点11(,)M x y ,22(,)N x y ,则相交时的弦长1212MN x x y y =-=- . 4、中点弦结论(点差法):双曲线2222:1(0,0)x y C a b a b-=>>上的两点11(,)M x y ,22(,)N x y ,弦MN 的中点1212(,)22x x y y P ++, 则22MN OPb k k a⋅= . 5、焦点三角形面积:双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点分别为1F 、2F ,点P 是双曲线C 上除左、右端点外的一点,令12F PF θ∠=,则:122tan2PF F b S θ∆=.6、直线与双曲线位置关系:①当直线l 与双曲线C 的其中一条渐近线重合时,显然直线l 与双曲线C 无交点; ②当直线l 与双曲线C 的其中一条渐近线平行时,有且仅有一个交点, 此时联立直线方程与双曲线方程,会得到一个一次方程(二次项系数为0); ③当直线l 与双曲线C 的渐近线既不平行也不重合时,此时联立直线方程与双曲线方程,消去y (或x )得一元二次方程,24b ac ∆=-,相离⇔0∆<;相切⇔0∆=; 相交⇔0∆>;五、抛物线:1、定义:P l PF d -= (到定点的距离等于到定直线的距离的这样的点的轨迹即为抛物线).2、标准方程:22(0)y px p =>(开口朝右的抛物线,开口朝其它方向的抛物线方程及其它性质可以类比。
) 焦点(,0)2p F ,准线:2pl x =-,离心率1e =. 3、常见性质: ① 普通的弦长公式:直线y kx b =+与抛物线22(0)y px p =>相交于两点11(,)M x y ,22(,)N x y ,12y y - .(2F 的特殊弦长公式及12x x 与12y y :(i )若弦MN 过焦点(,0)2p F ,则弦长1222sin pMN x x p α=++=(α为倾斜角); (ii )2124p x x =,212y y p =- .③过抛物线2:2(0)C y px p =>的顶点(0,0)O 作两条互相垂直的射线OM 、ON 分别与抛物线C 交于两点M ,N ,弦MN 与x 轴交于点P ,则(2,0)P p ,即:4OP OF =.反之亦然,即:若4OP OF =,则90MON ∠=︒.4、抛物线中过焦点弦的其它性质(补充,作为了解,切记不能死记硬背。
如死记硬背,如下知识点不如不用掌握。
可以尝试证明。
)设MN 是过抛物线22(0)y px p =>焦点F 的弦,11(,)M x y ,22(,)N x y , 如图(抛物线图2), 则:①22sin MON p S α∆=; ②112MF NF p+=; ③以MN 为直径的圆与准线相切; ④90PFQ ∠=︒;⑤以MF 或NF 为直径的圆与y 轴相切 . 5、直线与抛物线的位置关系:①若直线与抛物线的对称轴平行或重合,则有一个交点;②若直线与抛物线的对称轴不平行,也不垂直,则根据判别式∆的符号来确定交点个数;③若直线与抛物线的对称轴垂直,画图数形结合很容易判断交点个数。
圆锥曲线大题常见题型(归纳总结): 题型一、求点的轨迹问题: 常见方法:①直接法:(设出所求点(,)P x y ,根据题意列出等式,建立起y 与x 的关系。
) 如椭圆的标准方程的求出,本身就是利用这种方法。
②几何定义法:根据题意画出图形,通过已知条件及所学知识(如三角形中位线、圆与圆内切与外切,直线与圆相切的等价条件)得出所求点(,)P x y 满足圆的几何定义或椭圆、双曲线、抛物线的定义,从而求出点的轨迹方程;③伴随动点转化法: 该类题型的特征往往是: 其中一个动点如点00(,)Q x y 的轨迹方程是已知的,另有一个定点A 或多个定点,所求动点(,)P x y 与定点A 和动点00(,)Q x y 有着一定关系。