排列组合概率与算法(精选)
- 格式:ppt
- 大小:3.64 MB
- 文档页数:50
一、排列组合排列组合是管综数学中常见的题型,也是非常重要的知识点。
排列组合主要研究从一组元素中选取一定数量的元素,并按一定顺序排列或组合的数学方法。
排列组合的应用非常广泛,例如在统计学、概率论、计算机科学等领域都有着广泛的应用。
排列组合主要包括排列和组合两种。
排列是指从一组元素中选取一定数量的元素,并按一定顺序排列。
排列的计算公式为:P(n, r) = n(n-1)(n-2)...(n-r+1)其中,n为元素总数,r为选取元素的数量。
组合是指从一组元素中选取一定数量的元素,而不考虑元素的顺序。
组合的计算公式为:C(n, r) = frac{P(n, r)}{r!}其中,n为元素总数,r为选取元素的数量,r!表示r的阶乘。
二、概率概率是管综数学中另一个重要的知识点。
概率主要研究随机事件发生的可能性。
概率的计算公式为:P(E) = frac{n(E)}{n(U)}其中,P(E)表示事件E发生的概率,n(E)表示事件E发生的次数,n(U)表示样本空间中所有可能事件的次数。
概率的应用也非常广泛,例如在统计学、金融学、保险学等领域都有着广泛的应用。
三、排列组合和概率在管综考试中的应用排列组合和概率是管综数学中非常重要的知识点,也是管综考试中经常考查的题型。
排列组合和概率的应用非常广泛,例如在统计学、金融学、保险学等领域都有着广泛的应用。
因此,掌握排列组合和概率的知识对于管综考试的成功非常重要。
排列组合和概率在管综考试中的应用主要包括以下几个方面:* 计算排列和组合的数量。
* 计算事件发生的概率。
* 分析排列和组合的规律。
* 解决排列和组合的应用问题。
四、排列组合和概率的学习方法排列组合和概率是管综数学中比较难的知识点,因此需要掌握一定的学习方法才能学好排列组合和概率。
排列组合和概率的学习方法主要包括以下几个方面:* 理解排列组合和概率的基本概念。
* 掌握排列组合和概率的计算公式。
* 熟悉排列组合和概率的应用场景。
数学中的排列组合与概率计算排列组合与概率计算是数学中重要的概念和工具,广泛应用于各个领域,包括统计学、物理学、计算机科学等。
本文将介绍排列组合与概率计算的基本概念和方法,并探讨它们在实际问题中的应用。
一、排列组合的基本概念1.1 排列排列是从一组元素中选取若干元素按一定顺序排列的方式。
对于n 个不同的元素,从中选取m个元素进行排列,可以表示为P(n,m)。
排列的计算公式为:P(n,m) = n! / (n-m)!其中,n!表示n的阶乘,即n! = n × (n-1) × (n-2) × … × 2 × 1。
1.2 组合组合是从一组元素中选取若干元素不考虑顺序的方式。
对于n个不同的元素,从中选取m个元素进行组合,可以表示为C(n,m)。
组合的计算公式为:C(n,m) = n! / (m! × (n-m)!)二、概率计算的基本原理概率是用来描述事件发生可能性的数值,它的取值范围在0到1之间,0表示不可能发生,1表示一定会发生。
概率计算基于排列组合的概念和原理,通过对事件的样本空间和事件的发生情况进行计数和分析,来得出事件发生的概率。
2.1 样本空间样本空间是指一个随机试验的所有可能结果的集合。
例如,掷一枚普通的硬币,它的样本空间包括正面和反面两个可能的结果。
2.2 事件事件是样本空间的子集,表示我们关心的某种结果。
例如,掷一枚硬币出现正面是一个事件。
2.3 概率概率是事件发生的可能性。
对于一个随机试验和事件,概率的计算公式为:P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A的发生情况数,n(S)表示样本空间的元素个数。
三、排列组合与概率计算的应用排列组合和概率计算在各个领域都有广泛的应用。
下面以几个具体的例子说明它们的具体应用。
3.1 组合在概率计算中的应用在扑克牌游戏中,计算一个牌型的概率就可以使用组合的概念。
掌握简单的排列组合和概率计算排列组合和概率计算是数学中非常重要的概念和方法,它们在实际生活和各个领域中都有广泛的应用。
本文将介绍简单的排列组合和概率计算的概念、原理和应用,并提供一些练习题供读者巩固所学知识。
1. 排列的概念和计算方法排列是指从给定的一组对象中,选取若干个对象按照一定的顺序排列组合的方式。
在排列中,每个对象只能使用一次。
例如,有3个不同的字母A、B、C,从中选取2个字母排列,可以得到以下6种排列:AB、AC、BA、BC、CA、CB。
计算排列的方式为:使用阶乘的方法,即对于给定的n个对象中,选取r个对象排列,计算公式为P(n, r) = n!/(n-r)!,其中n!表示n的阶乘。
2. 组合的概念和计算方法组合是指从给定的一组对象中,选取若干个对象按照任意顺序排列组合的方式。
在组合中,每个对象只能使用一次。
例如,有3个不同的字母A、B、C,从中选取2个字母组合,可以得到以下3种组合:AB、AC、BC。
计算组合的方式为:使用阶乘的方法,即对于给定的n个对象中,选取r个对象组合,计算公式为C(n, r) = n!/(r!(n-r)!)。
3. 概率的概念和计算方法概率是指某个事件发生的可能性大小。
概率的计算方法可以通过排列组合的方式得到。
对于一个随机事件A,其概率的计算公式为P(A) = 事件A发生的总数/总的可能发生的事件数。
例如,从一副扑克牌中取出5张牌,计算其中4张是红心牌的概率。
首先计算红心牌的总数,扑克牌中共有52张牌,其中红心总数为13张,因此红心牌的总数为C(13, 4)。
然后计算总的可能取牌的事件数,即从52张牌中取出5张牌,其计算公式为C(52, 5)。
最后,将红心牌的总数除以总的可能取牌的事件数即可得到概率。
4. 应用案例排列组合和概率计算在现实生活中有许多应用。
以下是几个常见的案例:a. 彩票中奖概率计算:彩票中奖概率的计算就是应用了排列组合和概率计算的原理。
通过计算选中的号码在所有可能的号码组合中所占的比例,得到中奖的概率大小。
排列组合与概率原理及解题技巧一、基础知识1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。
2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。
3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,mn A =n(n-1)…(n-m+1)=)!(!m n n -,其中m,n ∈N,m ≤n,注:一般地0n A =1,0!=1,nn A =n!。
4.N 个不同元素的圆周排列数为nA n n =(n-1)!。
5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。
从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用mn C 表示:.)!(!!!)1()1(m n m n m m n n n C m n -=+--=6.组合数的基本性质:(1)m n n m n C C -=;(2)11--+=n nm n m n C C C ;(3)kn k n C C kn =--11;(4)n nk k n n nnnC C C C 2010==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)kn m n m k k n C C C --=。
排列与组合综合算式的排列组合计算排列与组合是概率与组合数学中常见的计算方式,用于解决排列和组合问题。
在计算排列与组合时,我们可以利用排列组合公式或者数学原理来进行计算,下面将具体介绍排列与组合综合算式的排列组合计算方法。
一、排列与组合的概念1. 排列:从n个元素中选取m个元素并按特定顺序排列,称为排列。
排列的计算公式为:P(n,m) = n! / (n-m)!2. 组合:从n个元素中选取m个元素,并不考虑其顺序,称为组合。
组合的计算公式为:C(n,m) = n! / (m! * (n-m)!)其中,n!表示n的阶乘,即n! = n * (n-1) * (n-2) * ... * 1。
二、排列与组合综合算式的计算方法对于排列与组合综合算式的计算,可以通过一系列具体的例子来说明。
例1:从A、B、C、D、E中取出3个字母,有多少种排列方式?解:根据排列的定义和计算公式,可以得到排列的计算方法为P(5,3) = 5! / (5-3)! = 5! / 2! = 60。
因此,从A、B、C、D、E中取出3个字母的排列方式有60种。
例2:从1、2、3、4、5中取出3个数字,有多少种组合方式?解:根据组合的定义和计算公式,可以得到组合的计算方法为C(5,3) = 5! / (3! * (5-3)!) = 5! / (3! * 2!) = 10。
因此,从1、2、3、4、5中取出3个数字的组合方式有10种。
通过以上两个例子,我们可以看到排列与组合的计算方法可以很方便地解决排列与组合问题。
在实际应用中,排列与组合常常用于解决概率、统计和组合优化等问题,具有广泛的应用领域。
三、排列与组合的应用1. 概率计算:排列与组合可以用于计算事件发生的概率。
例如,从1、2、3、4、5中取出3个数字,其中至少包含一个偶数的概率是多少?通过计算组合的方式,可以得到解答。
2. 组合优化:排列与组合可以用于解决组合优化问题,例如制定车辆调度、货物装箱等问题。
概率与排列组合问题的求解思路概率与排列组合是初中数学中的重要内容,也是中学生常常遇到的难点。
在解决这类问题时,我们需要掌握一些基本的思路和方法。
本文将通过具体的例子,详细介绍概率与排列组合问题的求解思路,帮助中学生和他们的父母更好地理解和应用这些知识。
一、概率问题的求解思路概率问题是我们在日常生活中经常遇到的,比如抛硬币、掷骰子等。
在解决概率问题时,我们需要明确事件的总数和有利事件的总数,从而计算出概率。
举个例子,假设有一个装有10个红球和5个蓝球的袋子,从中随机取出一个球。
求取到红球的概率。
解题思路:1. 确定事件的总数:袋子中共有15个球,所以事件的总数为15。
2. 确定有利事件的总数:袋子中有10个红球,所以有利事件的总数为10。
3. 计算概率:概率等于有利事件的总数除以事件的总数,即10/15=2/3。
通过上述例子,我们可以看到解决概率问题的关键在于确定事件的总数和有利事件的总数,并进行相应的计算。
二、排列组合问题的求解思路排列组合问题是数学中的经典问题,涉及到对一组元素进行排列或组合的方式。
在解决排列组合问题时,我们需要根据问题的具体要求,选择合适的方法进行求解。
举个例子,假设有5个人参加比赛,其中有3个奖项,求获奖的可能性。
解题思路:1. 确定问题的类型:根据题目要求,这是一个组合问题,因为我们只关心获奖的人,而不关心他们获得奖项的顺序。
2. 确定元素的总数和要选择的个数:参赛人数为5人,要选择的个数为3个。
3. 使用组合公式进行计算:组合公式为C(n,m)=n!/(m!(n-m)!),其中n为元素的总数,m为要选择的个数。
代入数据计算得到C(5,3)=10。
4. 得出结论:获奖的可能性有10种。
通过上述例子,我们可以看到解决排列组合问题的关键在于确定问题的类型,选择合适的方法进行计算,并根据具体的要求得出结论。
综上所述,概率与排列组合问题的求解思路需要掌握一些基本的方法和技巧。
在解决概率问题时,我们需要确定事件的总数和有利事件的总数,并进行相应的计算;在解决排列组合问题时,我们需要确定问题的类型,选择合适的方法进行计算,并根据具体的要求得出结论。
概率与排列组合事件的排列与组合计算概率与排列组合是数学中的重要概念之一,它们在实际生活和各个学科中都有广泛的应用。
本文将探讨概率与排列组合事件的排列与组合计算方法,介绍其定义、公式以及应用案例。
通过对这些知识的学习,我们能够更好地理解和应用概率与排列组合,提高问题解决能力。
一、概率的基本概念和计算方法概率是研究随机事件发生的可能性的数学方法。
在概率计算中,我们关注事件的发生与否,用一个数值来表示事件发生的可能性大小。
概率的计算方法包括古典概率和统计概率两种方式。
1.1 古典概率古典概率又称为理论概率,它是指在具有相同可能性的基本事件中,某个事件发生的概率。
计算古典概率的方法是利用事件的排列与组合。
1.2 统计概率统计概率又称为实验概率,它是通过实验或观察得到的频率进行估计。
统计概率的计算方法是通过大量实验或观察,得到事件发生的频率,从而估计出概率。
二、排列与组合的基本概念和计算方法排列与组合是排列数学中的两个重要概念,它们用于计算事件的不同排列与组合情况。
2.1 排列排列是从n个不同的元素中取出m个元素进行排列,其中n≥m。
排列的计算方法是通过先后顺序进行排列,即需要考虑元素的顺序。
2.2 组合组合是从n个不同的元素中取出m个元素进行组合,其中n≥m。
组合的计算方法是不考虑元素的顺序,只考虑元素的选择。
三、概率与排列组合的应用案例概率与排列组合的应用非常广泛,以下是几个典型的应用案例。
3.1 抽奖活动中奖概率的计算在抽奖活动中,我们可以利用概率计算的方法来计算某个人获奖的概率。
假设有10个人参加抽奖,共有3个奖品,我们可以通过排列的计算方法计算出中奖概率。
3.2 出生日期相同的概率计算在一个班级或者一个团体中,我们可以利用概率计算的方法来计算两人生日相同的概率。
假设一个班级有30个学生,我们可以通过组合的计算方法计算出生日相同的概率。
3.3 排队的排列计算在排队的场景中,我们可以利用排列的计算方法来计算不同的排队方式。
排列组合与概率计算在概率论和统计学中,排列组合是一种重要的数学工具,用于计算事件发生的可能性。
排列组合问题可以分为排列问题和组合问题两种类型。
本文将分别介绍排列和组合的概念,并探讨如何应用排列组合来计算概率。
一、排列排列是指从一组元素中选取若干个元素按照一定的顺序进行排列的过程。
排列问题中,元素的顺序是关键因素,不同的顺序会产生不同的排列结果。
对于给定的n个元素中选取r个元素进行排列,可以使用以下的排列公式来计算不同的排列可能性:P(n,r) = n! / (n-r)!其中,n! 表示n的阶乘,即n! = n * (n-1) * (n-2) * … * 2 * 1。
举例来说,假设有5个不同的球放入5个不同的盒子中,问有多少种放法?这就是一个排列问题。
根据排列公式可得:P(5,5) = 5! / (5-5)! = 5! / 0! = 120 / 1 = 120所以,共有120种不同的放法。
二、组合组合是指从一组元素中选取若干个元素进行组合的过程。
组合问题中,元素的顺序不是关键因素,只有元素的选择与否才会影响组合结果。
对于给定的n个元素中选取r个元素进行组合,可以使用以下的组合公式来计算不同的组合可能性:C(n,r) = n! / ((n-r)! * r!)举例来说,假设有9个不同的球,选取其中3个球,问有多少种不同的组合?这就是一个组合问题。
根据组合公式可得:C(9,3) = 9! / ((9-3)! * 3!) = 9! / (6! * 3!) = 84所以,共有84种不同的组合方式。
三、排列组合在概率计算中有着广泛的应用。
在计算事件的概率时,可以利用排列组合的原理来计算出事件发生的可能性。
例如,假设有一副标准扑克牌,从中抽取5张牌,问其中恰好有2张红心和3张黑桃的概率是多少?首先,我们需要确定总的样本空间,即抽取5张牌的不同排列数量。
根据排列公式,总共有:P(52,5) = 52! / (52-5)! = 52! / 47! = 2598960其次,我们需要确定符合条件的事件,即恰好有2张红心和3张黑桃的不同排列数量。
排列组合相关的概率
在概率理论中,排列和组合都与计算事件发生的可能性有关。
排列是指从一组元素中选取一部分元素进行排列的方式。
排列考虑元素的顺序。
假设有n个元素,要从中选取r个元素进行排列,则排列的总数可以表示为P(n, r)。
P(n, r) = n! / (n - r)!
其中,"!"表示阶乘运算,即将一个正整数n与小于n的正整数连乘。
排列的顺序对结果产生影响。
组合是指从一组元素中选取一部分元素进行组合的方式。
组合不考虑元素的顺序。
同样假设有n个元素,要从中选取r个元素进行组合,则组合的总数可以表示为C(n, r)。
C(n, r) = n! / (r!(n - r)!)
下面是一些排列组合相关的例子:
1. 排列的例子:
- 有5个人参加比赛,选取其中3个人获得前三名的排名情况,共有P(5, 3) = 60种可能性。
2. 组合的例子:
- 有10个苹果,从中选取其中4个苹果放入篮子,共有C(10, 4) = 210种组合方式。
在实际的概率计算中,排列和组合常常用于确定事件发生的可能性,从而帮助我们预测和分析各种情况的概率。
数学中的排列组合与概率计算数学是一门既抽象又具有实际应用的学科,其中排列组合与概率计算是其重要组成部分。
排列组合是研究对象的选择、排列和组合方式,而概率计算则关注于事件的可能性。
本文将从理论与实际应用两方面介绍数学中的排列组合与概率计算。
一、排列组合的基本概念排列和组合是数学中与选择和排序有关的概念。
排列表示从一组对象中选择若干个对象,并按照一定的顺序进行排列;组合则表示从一组对象中选择若干个对象,但不考虑其顺序。
1. 排列在排列中,我们关心的是选取对象的顺序。
例如,从A、B、C三个字母中选取两个字母进行排列,可能的排列结果有AB、AC、BA、BC、CA、CB共计6种情况(记作P(3,2)=6)。
排列的计算公式为:P(n,m) = n! / (n-m)!其中,n代表对象总数,m代表选取的对象数,n!表示n的阶乘。
2. 组合在组合中,我们关心的是选取对象而不考虑其顺序。
例如,从A、B、C三个字母中选取两个字母进行组合,可能的组合结果有AB、AC、BC共计3种情况(记作C(3,2)=3)。
组合的计算公式为:C(n,m) = n! / ((n-m)! * m!)其中,n代表对象总数,m代表选取的对象数。
二、概率计算的基本原理概率是研究事件发生的可能性的数学理论。
利用排列组合的方法,我们可以计算事件发生的概率。
1. 事件与样本空间事件是指我们关注的某种结果,样本空间是指所有可能结果的集合。
例如,投掷一个骰子,事件A可以是出现奇数点数,样本空间S可以是{1, 2, 3, 4, 5, 6}。
2. 概率计算概率是事件发生的可能性。
概率的计算公式为:P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A发生的次数,n(S)表示样本空间S中可能事件发生的总次数。
三、排列组合与概率的应用排列组合与概率计算在实际生活中有广泛的应用。
以下以两个具体例子介绍其应用。
1. 抽奖活动假设在一个抽奖活动中,有10位幸运观众,其中要从中抽取3位中奖者。
高中数学公式大全排列组合与概率计算公式高中数学公式大全:排列组合与概率计算公式一、排列组合1. 排列公式排列是指从一个有限元素集合中选取若干元素按照一定的顺序进行排列的方法。
当从n个不同元素中选取r个元素进行排列时,排列数可以用以下公式表示:P(n, r) = n! / (n-r)!其中,P(n, r)表示从n个元素中选取r个元素进行排列的总数,n!表示n的阶乘。
2. 组合公式组合是指从一个有限元素集合中选取若干元素,不考虑元素的顺序进行组合的方法。
当从n个不同元素中选取r个元素进行组合时,组合数可以用以下公式表示:C(n, r) = n! / [r! * (n-r)!]其中,C(n, r)表示从n个元素中选取r个元素进行组合的总数。
二、概率计算1. 概率公式概率是指某个事件在所有可能事件中发生的可能性大小。
一般用P(A)表示事件A的概率。
当事件 A、B 互斥且独立时,可以使用以下概率公式:P(A ∪ B) = P(A) + P(B)其中,P(A ∪ B)表示事件 A 或事件 B 发生的概率,P(A)和P(B)分别表示事件 A 和事件 B 发生的概率。
2. 条件概率公式条件概率是指在已知事件 B 发生的条件下,事件 A 发生的概率。
可以使用以下条件概率公式计算:P(A|B) = P(A ∩ B) / P(B)其中,P(A|B)表示在事件 B 发生的条件下,事件 A 发生的概率,P(A ∩ B)表示事件 A 和事件 B 同时发生的概率,P(B)表示事件 B 发生的概率。
3. 乘法定理乘法定理是指在一系列独立事件中,它们同时发生的概率等于每个事件发生的概率的乘积。
可以使用以下乘法定理计算:P(A ∩ B) = P(A) * P(B)其中,P(A ∩ B)表示事件 A 和事件 B 同时发生的概率,P(A)和P(B)分别表示事件 A 和事件 B 发生的概率。
4. 加法定理加法定理是指当两个事件互斥时,它们其中一个事件发生的概率等于两个事件发生概率的和。
在高中数学中,排列组合和概率是一个重要的概念。
排列是指从一组物品中取出若干个物品,按一定顺序排列起来的结果。
如,从A、B、C三个物品中取出两个物品,按顺序排列起来,则有3种排列方法:AB、AC、BC。
组合是指从一组物品中取出若干个物品,不考虑顺序的结果。
如,从A、B、C三个物品中取出两个物品,不考虑顺序,则有3种组合方法:AB、AC、BC。
关于排列组合的基本公式,通常有如下几条:
从n个物品中取出m(m≤n)个物品,按顺序排列起来的方法数为A_nm=n(n-1)(n-2)⋯(n-m+1),其中“⋯”表示乘积。
从n个物品中取出m(m≤n)个物品,不考虑顺序的方法数为C_nm=A_nm/m!=n!/(m!(n-m)!)
概率是一种用来度量某件事情发生的可能性的数字。
通常表示为P(A),其中A表示某件事情。
概率的取值范围是0到1之间的实数,0表示事情不可能发生,1表示事情必定发生。
运用排列组合知识求概率的计算
例题2:若一对黑色兔子的后代中有黑色和白色兔子,那么,在完全
显性遗传中,
⑴.第一只是黑色,第二只是黑色,第三只是黑色,第四只是白色的概率是多少?
⑵.三黑一白的概率是多少?
⑶.两黑两白的概率是多少?
分析:根据题意,作为亲代的两只兔子都是杂合子,即Bb×Bb。
那么,其后代中出现黑色个体的概率是3/4,出现白色的概率是1/4。
也就是说,每出现一只黑色兔子的概率都是3/4,每出现一只白色兔子的概率都是1/4。
解:
⑴.第一只是黑色,第二只是黑色,第三只是黑色,第四只是白色的概率是多少?
⑵.三黑一白的概率是多少?
例题3:如果,一对正常的夫妇生了一个白化病且红绿色盲的儿子。
提示:能否注意到有这样的比例:
不患病:只白化病:只红绿色盲:白化病且红绿色盲=9:3:3:1
例题4:人的肤色的深浅取决于显性基因的数目,假如决定肤色与Aa、Bb两对等位基因(独立遗传)有关,
且,显性基因的数量越多,肤色越深。
预计,基因型为AaBb的夫妇所生孩子的肤色表现的可能性。
解:。
大学数学概率论排列组合七大方法
大学数学概率论排列组合七大方法
导语:考研数学概率复习,排列组合的方法大家必须掌握,下面就由小编为大家带来大学数学概率论排列组合七大方法,大家一起去看看怎么做吧!
1.元素分析法
【例】求7人站一队,甲必须站在当中的不同站法。
【解析】要求甲必须站在当中,因此只需对其它6人全排列即可,不同的站法共有几种。
2.位置分析法
【例】求7人站一队,甲、乙都不能站在两端的不同站法。
【解析】先站在两端的位置有几种站法,再站其它位置有几种站法,因此所有不同的站法共有几种站法。
3.间接法
【例】求7人站一队,甲、乙不都站两端的不同站法。
【解析】考虑对立事件为甲乙都站在两端,共有几种站法;7人站成一队所有的站法共几种,所以甲乙不都站两端的不同站法共几种。
4.捆绑法
【例】求7人站一队,甲、乙、丙三人都相邻的不同站法。
【解析】先将甲、乙、丙看成一个人,即相当于5个人站成一队,有几种站法,再对这三个人全排列即得所有的不同站法共几种。
5.插空法
【例】求7人站一队,甲、乙两人不相邻的不同站法。
【解析】先将其它五人全排列,然后将甲、乙两人插入所产生的6个空中即可,共几种不同的站法。
6.留出空位法
【例】求7人站一队,甲在乙前,乙在丙前的不同站法。
【解析】由于甲、乙、丙三人的`顺序一定,因此只要其余4人站好,这7个人就站好了,不同的站法共有几种。
7.单排法
【例】求9个人站三队,每排3人的不同站法。
【解析】由于对人和对位置都无任何的要求,因此,相当于9个人站成一排,不同的站法显然共有几种。