噪声测量三种方法
- 格式:doc
- 大小:97.00 KB
- 文档页数:6
噪声系数的测量方法噪声系数是指放大器输入信号与输出信号之间的信噪比的比值。
在电子系统中,噪声系数是衡量放大器噪声性能的重要指标。
下面将介绍几种常用的测量噪声系数的方法。
1.级联噪声法:级联噪声法是最常用的测量噪声系数的方法之一、它利用级联放大器的总噪声系数计算出前面的放大器的噪声系数。
具体的步骤如下:a.在待测放大器之前设置一个已知的参考放大器,并测量此参考放大器的噪声系数。
b.将待测放大器与参考放大器级联,并测量级联放大器的总输入输出电压和噪声功率。
c.利用总放大器的输入输出电压和已知的参考放大器的噪声系数计算出内嵌放大器的噪声系数。
2.可变增益噪声法:可变增益噪声法是另一种测量噪声系数的常用方法。
它通过调整放大器的增益,使其与一个已知参考噪声源声压相等,从而测量出待测放大器的噪声系数。
具体的步骤如下:a.在待测放大器的输入端接入一个参考噪声源,并调整其声压使其与待测放大器的输出噪声相等。
b.测量参考噪声源的声压和待测放大器的输入输出电压。
c.利用已知的参考噪声源的噪声功率和声压计算出待测放大器的噪声功率和噪声系数。
3.热噪声法:热噪声法是一种常用的测量噪声系数的方法,特别适用于宽频带和高频段的放大器。
热噪声法利用了热噪声在环境温度下的特性,通过直接测量输出噪声电压和环境温度来计算噪声系数。
具体的步骤如下:a.测量放大器的输出噪声电压并记录。
b.测量环境温度并记录。
c.利用热噪声公式计算出放大器的噪声功率。
d.利用输入信号和已知的电阻值计算出放大器的输入信号功率。
e.利用已知的输入信号功率和噪声功率计算出放大器的噪声系数。
除了上述传统的测量方法之外,还有一些新的测量噪声系数的方法正在不断涌现,如矢量分析器法、差分噪声法、噪声大师法等。
这些方法在特定的应用场景下有着更高的测量精度和更广的测量范围。
总结起来,测量噪声系数的常用方法有级联噪声法、可变增益噪声法、热噪声法等。
根据不同的应用场景和要求,选择合适的方法来测量噪声系数,有助于评估放大器的噪声性能,进而提高信号传输的质量。
噪声检测方法1.简易级检测常用普通声级计(也叫噪音计)检测设备的噪音。
现场检测时,首先估算设备尺寸,然后确定测点的位置。
设被检测的设备最大尺寸为D,其测试点的位置如下:D<1米时,测试点离设备表面为30厘米。
D—1米时,测试点离设备表面为1米。
D>1米时,测试点离设备表面为3米。
一般设备,要选4个测试点,大型设备测6个点。
测试高度一般为:小设备为设备高度的2/3处;中设备为设备高度的1/2处;大设备为设备高度的1/8处。
一般来说,测试环境要求有时不易满足,这时测试仅起到估计作用。
添加背景噪声的限值和修正。
2.工程级检测此方法利用规定的时间计权和通过倍频程来进行计算A计权值。
根据噪声源的特性及工作环境来选择测量点和测量频率范围。
3.精密级检测此方法要求在可控制声学环境下测量,如消音室、半消声室等的实验室条件下。
在测量表面上所有传声器位置和测试频率范围内的每个频带,背景噪声级应比被测声源工作是的声压级低10dB。
测试时的空气温度范围是15~30℃。
注:温度范围限定是为了保证对于不同噪声源的噪声测试时其偏差小于0.2dB。
在空气温度范围是15~30℃,湿度的最大修正量近似为0.04dB,可以忽略不计。
每次测量前,应采用1级准确度的声校准器来校准传声器,条件允许时,在测量频率范围内一个或多个频率上进行整个测量系统的校验。
被测声源安装在支架或硬平面(地面或墙壁)上,且处于消声室中心位置。
确保被测声源的辅助部件(电缆线)不向消声室辐射显著的声能;尽可能至于消声室外。
声源按操作规范运行。
传声器应垂直指向测量表面。
传声器的位置放于距中心点距离为大于0.5m。
且测试4个方向,前、后、左、右,高度为声源设备的1/2处。
对中心频率等于或小于160Hz的频带,测量时间至少为30s,对A计权声压级和中心频率等于或大于200Hz的频带,测量时间至少为10s。
数据应至少在声源的5个周期上进行平均:A.被测声源运行时的A计权声压级;B.由背景噪声产生的A计权声压级。
第三章噪声测量方法
噪声测量方法是衡量环境噪声污染水平的客观技术手段,是环境保护工作的重要组成部分。
它可以帮助评估噪声对环境的影响,以便采取必要的管理措施。
本章将详细介绍噪声测量方法的基本原理和技术参数,并结合噪声源的不同特性讨论不同的测量方法。
1、噪声测量方法的基本原理
噪声测量方法基于声学原理,通过检测和测量其中一特定时间和空间范围内的声音,获取其声音压力声能量强度水平的信息,从而提供一个定量的结果。
噪声测量的常用参数有快速推移(Fast Transient,RMS)、最大值(Max)、短时平均值(Short-Time Average)和等效值(Equivalent, LEQ),等。
这些参数代表了一段时间内的特定环境的噪声污染水平,以及由此产生的大体声环境特征。
2、噪声测量方法的技术参数
快速推移(RMS)指标有助于识别噪声源的类型,可在高频应变简短且突变性的信号分布中进行分析。
它分析了带宽范围内不同频率范围的声能量分布,从而了解噪声源的特性。
最大值(Max)指标可以检测到噪声源的极端强度,以及环境中的突变性噪声。
短时平均值(Short-Time Average)指标给出的是其中一段时间内的环境噪声强度,可以反映噪声的时域和频域特性。
测试噪音的方法
1.声学分析仪:使用声学分析仪可以测量噪声水平和频谱,以确定噪音的来源和强度。
这种设备可以通过将微小的声音信号传感器放置在不同位置来进行测试,并通过计算机软件分析测量结果。
2.声级计:声级计是一种能够测量声音强度的设备。
通过将声级计放置在噪声污染源的附近,可以测量噪音的强度和频率。
3.噪音地图:噪音地图是一种可视化噪声污染的方法,可以使用地图和颜色编码来显示噪声水平和源的位置。
这种方法可以帮助环境和城市规划师更好地理解噪声的影响,并采取相应的措施来降低噪声水平。
4.人类听感评价:人类听感评价是一种主观的测试方法,需要被测试者对噪声产生的影响进行描述和评估。
这种方法可以通过问卷调查或实地观察来实现,并可以帮助确定噪声对人类健康和生活质量的影响。
5.振动测试:振动测试是一种用于测量机器、设备和结构的振动水平的方法。
这种测试可以帮助识别机器或设备中可能产生噪音的部件,并采取相应的措施来减少噪音水平。
总之,测试噪音的方法可以根据需要和实际情况选择不同的技术和设备,以准确测量噪音水平和来源,并采取相应的措施来降低噪音水平。
- 1 -。
噪声测量的方法和注意事项噪声是现代工业和日常生活中不可避免的问题,它会对人类的健康和生活造成影响。
因此,对噪声的测量和控制具有重要的意义。
本文将介绍噪声测量的方法和注意事项。
噪声测量的方法噪声的测量需要准确的设备和专业的技能。
通常采用噪声计来测量噪声水平。
以下是常用的噪声测量方法:1. A计权:这种方法是通过滤波器对声音进行调整,使其符合人类听力的响应模式。
A计权常用于测量城市环境中的噪声等级。
2. C计权:C计权是用于低频声音测量的另一种滤波方法。
它更适用于测量机器噪声等低频噪声。
3. 谱分析:这种方法可以分析噪声在不同频率下的强度,通常采用傅里叶变换技术,并用频谱图来表示。
4. 时间均值:该方法是将一段时间内的测量值取平均值,以获得一个更精确的结果。
5. 峰值:这种方法仅记录最高峰值,通常用于极端噪音事件的测量,如飞机起飞时的噪音。
注意事项噪声测量需要遵循一定的规范和安全措施,以下是一些注意事项:1. 测量人员需要穿着防护装备以确保安全。
在工作场所的高噪声环境中,工人应该佩戴耳塞或耳罩来保护耳朵。
2. 测量环境对噪声测量结果会产生影响。
任何噪声测量都应在没有风或其他干扰因素的环境中进行。
3. 在进行噪声测量时,需要确保仪器的精确度和准确性。
为此,仪器应该定期校准和维护。
4. 噪声测量应该在一个合适的地点进行,以避免噪音污染。
例如,测量汽车噪音应该在一个不会受到其他车辆干扰的地点进行。
5. 测量人员需要遵守测量过程中的安全规定和标准,如佩戴耳塞、不待在噪音高峰期间等。
6. 测量结果需要正确地记录下来,包括噪声来源、测量时间、地点、测量结果等信息,以备将来参考。
结论综上所述,噪声是一个值得关注的话题,它会对人们的生活和健康产生影响。
噪声测量是控制噪声的重要手段,但需要遵循一定的规范和注意事项。
通过正确的噪声测量方法和安全措施,我们可以更好地了解噪声并在必要时采取控制措施,创造一个更安全、更健康的工作和生活环境。
电机噪声频谱测量方法
电机噪声频谱测量方法有多种,常见的方法包括:
1. 频谱分析法:使用频谱分析仪测量电机输出的噪声信号的频谱特性。
将电机的输出信号经过
放大、滤波等预处理后,通过频谱分析仪得到其频谱图,从而分析出各个频率段的噪声特性。
2. 快速傅里叶变换(FFT)方法:将电机输出的噪声信号进行FFT变换,得到其频谱图。
该方
法可以实时测量信号的频谱,在实际应用中被广泛采用。
3. 声学测量法:使用声学测量仪器(例如声级计、麦克风等)对电机的噪声进行直接测量,得
到声压级。
通过分析声压级的变化,可以评估电机在不同频率范围内的噪声水平。
4. 振动测量法:利用振动测量仪器(例如加速度计、振动传感器等)对电机的振动进行测量,
并通过分析振动信号的频谱特性来评估噪声水平。
5. 视觉测量法:利用高速摄像机或激光干涉仪对电机运行时的振动和噪声进行直接观测和测量,通过对图像或干涉图的分析来评估噪声水平。
需要根据具体的测量目的和条件选择合适的测量方法。
在实际应用中,常常结合多种方法进行
综合评估。
噪声检测标准及方法噪声作为环境质量的一项重要指标,对人们的生活和健康产生着直接影响。
因此,为了维护良好的生活环境,我们需要对噪声进行检测和评估。
本文将介绍噪声检测的标准和方法,帮助读者了解如何进行噪声检测并了解相关的标准和指导。
一、噪声检测标准1. 国际标准国际标准化组织(ISO)制定了一系列关于噪声的标准,其中最常用的是ISO 1996-1《噪声评估方法》和ISO 1996-2《噪声评估方法:车辆噪声测量》。
这些标准规定了噪声测量的方法、听觉权重和评估准则。
在噪声检测中,我们可以参考这些国际标准,将测量结果与标准值进行比较,从而对噪声水平进行评估。
2. 国家标准各个国家也制定了相应的噪声监测标准,用于指导本国的噪声监测工作。
以中国为例,现行的噪声检测标准主要包括GB/T 3096-2008《城市区域环境噪声排放标准》和GB 3785-2008《城市噪声环境质量标准》。
这些标准根据当地的环境和生活条件制定,与国际标准有所不同,需要在具体的检测中参考。
3. 行业标准不同行业也会制定自己的噪声检测标准,用于指导相关行业中噪声的控制和管理。
例如,建筑行业的噪声检测标准主要参考《建筑施工噪声测量规范》(JGJ81-2002)和《居住环境噪声规定》(GB10070-2000)。
这些行业标准针对不同行业的噪声污染特点,提供了更加详细的检测方法和评估指标。
二、噪声检测方法1. 直接测量法直接测量法是最常用的噪声检测方法之一。
通过使用噪声仪器,我们可以在感兴趣的区域内进行实时的噪声测量。
噪声仪器通常包括一个麦克风和一台数据记录仪,可以记录噪声的强度和频率分布。
通过直接测量法,我们可以得到准确的噪声水平,为噪声控制提供可靠的数据。
2. 等效连续声级法等效连续声级法是一种常用的噪声检测方法,适用于长时间和复杂噪声的测量。
该方法通过将噪声时间历程进行加权平均,计算得到等效连续声级。
这种方法可以有效地反映噪声的整体特征,并与人类听觉进行相关。
住宅噪声测量方法
住宅噪声测量通常使用以下几种方法:
1. 声级计:使用专业的声级计测量室内或室外的噪声水平。
声级计是一种能够测量声音强度的仪器,可以以分贝为单位显示噪声水平。
2. 频谱分析仪:使用频谱分析仪可以对噪声进行频率分析,确定不同频率的噪声水平。
这对于确定噪声来源和采取相应的控制措施非常有帮助。
3. 噪声日志:居民可以记录噪声的具体时间、强度和来源等信息。
这种方法被广泛用于长期监测和记录噪声情况,以便后期分析和处理。
4. 直接测量:通过放置噪声传感器或麦克风在特定位置,直接测量噪声水平。
这种方法可以准确测量特定位置的噪声水平,但可能需要较长时间的监测。
5. 主观评价:根据居民的主观感受,通过问卷调查或面谈等方式进行噪声评估。
这种方法可以提供居民对噪声的感受和影响的信息,但结果可能有一定的主观性。
以上方法可以单独使用或结合使用,以得出准确的住宅噪声水平和评估结果。
同时,还可以根据具体情况采取各种噪声控制措施,如隔音设施、噪声屏障等,以降低住宅噪声对居民的影响。
车间噪声测定引言概述:车间噪声是指在工业车间中由机器设备和工作过程产生的噪声。
噪声对工人的健康和工作效率都有着重要影响。
因此,进行车间噪声测定是非常必要的。
本文将从测定方法、测定标准、测定设备、测定频率和测定结果分析等五个方面详细介绍车间噪声测定的相关内容。
一、测定方法:1.1 直接测量法:直接测量法是通过在车间内设置噪声测量仪器,直接测量噪声水平。
这种方法简单直接,可以准确获取车间噪声水平,但需要注意选择合适的位置和高度,以确保测量结果的准确性。
1.2 感觉评价法:感觉评价法是通过人工感觉来评价车间噪声水平。
可以通过问询工人或者专家的主观感受来判断噪声水平。
这种方法适合于初步判断车间噪声水平,但受个体差异和主观因素的影响较大,不适合于精确测量。
1.3 间接测量法:间接测量法是通过测量噪声源的声功率或者声压级,然后根据传播路径和衰减规律计算车间内的噪声水平。
这种方法适合于复杂车间环境,可以准确计算车间噪声水平,但需要准确的噪声源数据和复杂的计算过程。
二、测定标准:2.1 国家标准:根据国家相关法规和标准,车间噪声应该控制在一定范围内,以保护工人的健康。
例如,中国的《车间环境噪声卫生标准》规定了车间噪声的限值要求。
在进行车间噪声测定时,可以参考国家标准来评估车间噪声水平是否符合要求。
2.2 行业标准:不同行业对车间噪声的要求可能有所不同。
例如,对于食品加工行业,由于对产品质量和卫生要求较高,对车间噪声的限制可能更为严格。
在进行车间噪声测定时,可以参考所属行业的标准来评估车间噪声水平是否符合要求。
2.3 国际标准:国际标准组织也制定了一系列关于噪声测量和控制的标准。
例如,国际标准化组织(ISO)的ISO 1999标准提供了关于工作场所噪声对工人健康影响的评估方法。
在进行车间噪声测定时,可以参考国际标准来进行比较和评估。
三、测定设备:3.1 声级计:声级计是测量噪声水平的常用设备,它可以测量声压级和频率特性。
噪声系数测量的三种方法本文介绍了测量噪声系数的三种方法:增益法、Y系数法和噪声系数测试仪法。
这三种方法的比较以表格的形式给出。
前言在无线通信系统中,噪声系数(NF)或者相对应的噪声因数(F)定义了噪声性能和对接收机灵敏度的贡献。
本篇应用笔记详细阐述这个重要的参数及其不同的测量方法。
噪声指数和噪声系数噪声系数有时也指噪声因数(F)。
两者简单的关系为:NF = 10 * log10 (F)定义噪声系数(噪声因数)包含了射频系统噪声性能的重要信息,标准的定义为:从这个定义可以推导出很多常用的噪声系数(噪声因数)公式。
下表为典型的射频系统噪声系数:Category MAXIMProductsNoiseFigure*ApplicationsOperatingFrequencySystemGainLNA MAX2640 0.9dB Cellular, ISM 400MHz ~1500MHz15.1dBLNA MAX2645 HG: 2.3dB WLL 3.4GHz ~ 3.8GHz HG: 14.4dB LG: 15.5dB WLL 3.4GHz ~ 3.8GHz LG: -9.7dBMixer MAX2684 13.6dB LMDS, WLL 3.4GHz ~ 3.8GHz 1dB Mixer MAX9982 12dB Cellular, GSM 825MHz ~ 915MHz 2.0dB ReceiverSystemMAX2700 3.5dB ~ 19dB PCS, WLL 1.8GHz ~ 2.5GHz <80dBReceiver System MAX210511.5dB~15.7dBDBS, DVB950MHz ~2150MHz<60dB*HG=高增益模式,LG=低增益模式噪声系数的测量方法随应用的不同而不同。
从上表可看出,一些应用具有高增益和低噪声系数(低噪声放大器(LNA)在高增益模式下),一些则具有低增益和高噪声系数(混频器和LNA在低增益模式下),一些则具有非常高的增益和宽范围的噪声系数(接收机系统)。
因此测量方法必须仔细选择。
本文中将讨论噪声系数测试仪法和其他两个方法:增益法和Y系数法。
使用噪声系数测试仪噪声系数测试/分析仪在图1种给出。
图1.噪声系数测试仪,如Agilent公司的N8973A噪声系数分析仪,产生28VDC脉冲信号驱动噪声源(HP346A/B),该噪声源产生噪声驱动待测器件(DUT)。
使用噪声系数分析仪测量待测器件的输出。
由于分析仪已知噪声源的输入噪声和信噪比,DUT的噪声系数可以在内部计算和在屏幕上显示。
对于某些应用(混频器和接收机),可能需要本振(LO)信号,如图1所示。
当然,测量之前必须在噪声系数测试仪中设置某些参数,如频率范围、应用(放大器/混频器)等。
使用噪声系数测试仪是测量噪声系数的最直接方法。
在大多数情况下也是最准确地。
工程师可在特定的频率范围内测量噪声系数,分析仪能够同时显示增益和噪声系数帮助测量。
分析仪具有频率限制。
例如,Agilent N8973A可工作频率为10MHz至3GHz。
当测量很高的噪声系数时,例如噪声系数超过10dB,测量结果非常不准确。
这种方法需要非常昂贵的设备。
增益法前面提到,除了直接使用噪声系数测试仪外还可以采用其他方法测量噪声系数。
这些方法需要更多测量和计算,但是在某种条件下,这些方法更加方便和准确。
其中一个常用的方法叫做“增益法”,它是基于前面给出的噪声因数的定义:在这个定义中,噪声由两个因素产生。
一个是到达射频系统输入的干扰,与需要的有用信号不同。
第二个是由于射频系统载波的随机扰动(LNA,混频器和接收机等)。
第二种情况是布朗运动的结果,应用于任何电子器件中的热平衡,器件的可利用的噪声功率为:P NA= kTΔF,这里的k=波尔兹曼常量(1.38*10-23焦耳/ΔK),T=温度,单位为开尔文ΔF = 噪声带宽(Hz)在室温(290ΔK)时,噪声功率谱密度P NAD = -174dBm/Hz.因而我们有以下的公式:NF = P NOUT - ( -174dBm/Hz + 20 * log10(BW) + Gain )在公式中,P NOUT是已测的总共输出噪声功率,-174dBm/Hz是290°K时环境噪声的功率谱密度。
BW是感兴趣的频率带宽。
Gain是系统的增益。
NF是DUT的噪声系数。
公式中的每个变量均为对数。
为简化公式,我们可以直接测量输出噪声功率谱密度(dBm/Hz),这时公式变为:NF = P NOUTD + 174dBm/Hz - Gain为了使用增益法测量噪声系数,DUT的增益需要预先确定的。
DUT的输入需要端接特性阻抗(射频应用为50Ω,视频/电缆应用为75Ω)。
输出噪声功率谱密度可使用频谱分析仪测量。
增益法测量的装置见图2。
图2.作为一个例子,我们测量MAX2700噪声系数的。
在指定的LNA增益设置和V AGC下测量得到的增益为80dB。
接着,如上图装置仪器,射频输入用50Ω负载端接。
在频谱仪上读出输出噪声功率谱密度为-90dBm/Hz。
为获得稳定和准确的噪声密度读数,选择最优的RBW(解析带宽)与VBW(视频带宽)为RBW/VBW=0.3。
计算得到的NF为:-90dBm/Hz + 174dBm/Hz - 80dB = 4.0dB.只要频谱分析仪允许,增益法可适用于任何频率范围内。
最大的限制来自于频谱分析仪的噪声基底。
在公式中可以看到,当噪声系数较低(小于10dB)时,(P OUTD - Gain)接近于-170dBm/Hz,通常LNA的增益约为20dB。
这样我们需要测量-150dBm/Hz的噪声功率谱密度,这个值低于大多数频谱仪的噪声基底。
在我们的例子中,系统增益非常高,因而大多数频谱仪均可准确测量噪声系数。
类似地,如果DUT的噪声系数非常高(比如高于30dB),这个方法也非常准确。
Y因数法Y因数法是另外一种常用的测量噪声系数的方法。
为了使用Y因数法,需要ENR (冗余噪声比) 源。
这和前面噪声系数测试仪部分提到的噪声源是同一个东西。
装置图见图3:图3.ENR头通常需要高电压的DC电源。
比如HP346A/B噪声源需要28VDC。
这些ENR头能够工作在非常宽的频段(例如HP346A/B 为10MHz至18GHz),在特定的频率上本身具有标准的噪声系数参数。
下表给出具体的数值。
在标识之间的频率上的噪声系数可通过外推法得到。
表1:噪声头的ENRHP346A HP346BFrequency (Hz) NF (dB) NF (dB)1G 5.39 15.052G 5.28 15.013G 5.11 14.864G 5.07 14.825G 5.07 14.81开启或者关闭噪声源(通过开关DC电压),工程师可使用频谱分析仪测量输出噪声功率谱密度的变化。
计算噪声系数的公式为:在这个式子中,ENR为上表给出的值。
通常ENR头的NF值会列出。
Y是输出噪声功率谱密度在噪声源开启和关闭时的差值。
这个公式可从以下得到:ENR噪声头提供两个噪声温度的噪声源:热温度时T=TH(直流电压加电时)和冷温度T=290°K.。
ENR噪声头的定义为:冗余噪声通过给噪声二极管加偏置得到。
现在考虑在冷温度T=290°K时与在热温度T=T H时放大器(DUT)功率输出比:Y=G(Th+Tn)/G(290+Tn)=(Th/290+Tn/290)/(1+Tn/290).这就是Y因数法,名字来源于上面的式子。
根据噪声系数定义,F=Tn/290+1,F是噪声因数(NF=10*log(F)),因而,Y=ENR/F+1。
在这个公式中,所有变量均是线性关系,从这个式子可得到上面的噪声系数公式。
我们再次使用MAX2700作为例子演示如何使用Y因数法测量噪声系数。
装置图见图3。
连接HP346A ENR 到RF的输入。
连接28V直流电压到噪声源头。
我们可以在频谱仪上监视输出噪声功率谱密度。
开/关直流电源,噪声谱密度从-90dBm/Hz变到-87dBm/Hz。
所以Y=3dB。
为了获得稳定和准确的噪声功率谱密度读数,RBW/VBW设置为0.3。
从表2得到,在2GHz时ENR=5.28dB,因而我们可以计算NF的值为5.3dB。
总结在本篇文章讨论了测量射频器件噪声系数的三种方法。
每种方法都有其优缺点,适用于特定的应用。
下表是三种方法优缺点的总结。
理论上,同一个射频器件的测量结果应该一样,但是由于射频设备的限制(可用性、精度、频率范围、噪声基底等),必须选择最佳的方法以获得正确的结果。
SuitableAdvantage DisadvantageApplicationsSuper low NF Convenient, very accuratewhen measuring super low(0-2dB) NF.Expensive equipment, frequencyrange limitedVery high Gain or very high NF Easy setup, very accurate atmeasuring very high NF,suitable for any frequencyrangeLimited by Spectrum Analyzernoise floor. Can't deal withsystems with low gain and lowNF.Wide range of NF Can measure wide range ofNF at any frequencyregardless of gainWhen measuring Very high NF,error could be large.。