3-4数据仓库设计-物理模型设计
- 格式:ppt
- 大小:189.00 KB
- 文档页数:46
onedata建模方法论(原创版4篇)《onedata建模方法论》篇1OneData 是一种数据建模方法论,旨在帮助企业构建高质量的数据仓库。
该方法论包括以下主要内容:1. 数据仓库定义:OneData 将数据仓库定义为一个集成的、稳定的、易于访问的数据存储库,用于支持企业管理、决策和分析需求。
2. 数据建模流程:OneData 提出了一套完整的数据建模流程,包括需求分析、概念设计、逻辑设计、物理设计和实施等阶段。
在每个阶段,都有相应的方法和工具支持。
3. 数据模型设计:OneData 强调数据模型设计的重要性,提出了一些设计原则,如实体完整性、属性完整性、参照完整性和数据一致性等。
OneData 还提供了一些数据模型设计工具,如ER 图、数据字典和数据流图等。
4. 数据仓库实现:OneData 提供了一些数据仓库实现的技术和工具,如数据清洗、数据转换、数据加载、数据存储和数据查询等。
OneData 还强调了数据仓库的性能和安全性的重要性。
5. 数据仓库管理:OneData 提供了一些数据仓库管理方法和工具,如数据质量管理、数据备份和恢复、数据安全和数据审计等。
OneData 还强调了数据仓库的可用性和可扩展性的重要性。
《onedata建模方法论》篇2OneData 是一种数据仓库建模方法论,其核心思想是将数据仓库视为一个企业级的数据中心,通过建立一套完整的数据模型来实现数据的统一管理和运营。
OneData 方法论主要包括以下方面:1. 数据仓库概念模型设计:该阶段主要通过业务领域模型的设计,将企业的业务需求转化为数据模型,包括数据实体的定义、属性的设计以及实体之间的关系等。
2. 数据仓库逻辑模型设计:该阶段主要通过数据模型的逻辑设计,将概念模型转化为具体的数据表结构,包括数据表的定义、表之间的关系、索引的设计等。
3. 数据仓库物理模型设计:该阶段主要通过数据模型的物理设计,将逻辑模型转化为具体的数据存储结构,包括数据分区、数据备份、数据恢复等。
2022年武汉工程大学邮电与信息工程学院计算机应用技术专业《数据库概论》科目期末试卷A(有答案)一、填空题1、若事务T对数据对象A加了S锁,则其他事务只能对数据A再加______,不能加______,直到事务T释放A上的锁。
2、使某个事务永远处于等待状态,得不到执行的现象称为______。
有两个或两个以上的事务处于等待状态,每个事务都在等待其中另一个事务解除封锁,它才能继续下去,结果任何一个事务都无法执行,这种现象称为______。
3、关系数据库中基于数学的两类运算是______________和______________。
4、设某数据库中有作者表(作者号,城市)和出版商表(出版商号,城市),请补全如下查询语句,使该查询语句能查询作者和出版商所在的全部不重复的城市。
SELECT城市FROM作者表_____SELECT城市FROM出版商表;5、采用关系模型的逻辑结构设计的任务是将E-R图转换成一组______,并进行______处理。
6、完整性约束条件作用的对象有属性、______和______三种。
7、安全性控制的一般方法有____________、____________、____________、和____________视图的保护五级安全措施。
8、数据仓库主要是供决策分析用的______,所涉及的数据操作主要是______,一般情况下不进行。
9、关系规范化的目的是______。
10、在RDBMS中,通过某种代价模型计算各种查询的执行代价。
在集中式数据库中,查询的执行开销主要包括______和______代价。
在多用户数据库中,还应考虑查询的内存代价开销。
二、判断题11、在SELECT语句中,需要对分组情况满足的条件进行判断时,应使用WHERE子句。
()12、概念模型是对现实世界的第二层抽象。
()13、有了外模式/模式映象,可以保证数据和应用程序之间的物理独立性。
()14、在关系运算中,投影是最耗时的操作。
数据仓库模型的设计数据仓库模型的设计大体上可以分为以下三个层面的设计151:.概念模型设计;.逻辑模型设计;.物理模型设计;下面就从这三个层面分别介绍数据仓库模型的设计。
2.5.1概念模型设计进行概念模型设计所要完成的工作是:<1>界定系统边界<2>确定主要的主题域及其内容概念模型设计的成果是,在原有的数据库的基础上建立了一个较为稳固的概念模型。
因为数据仓库是对原有数据库系统中的数据进行集成和重组而形成的数据集合,所以数据仓库的概念模型设计,首先要对原有数据库系统加以分析理解,看在原有的数据库系统中“有什么”、“怎样组织的”和“如何分布的”等,然后再来考虑应当如何建立数据仓库系统的概念模型。
一方面,通过原有的数据库的设计文档以及在数据字典中的数据库关系模式,可以对企业现有的数据库中的内容有一个完整而清晰的认识;另一方面,数据仓库的概念模型是面向企业全局建立的,它为集成来自各个面向应用的数据库的数据提供了统一的概念视图。
概念模型的设计是在较高的抽象层次上的设计,因此建立概念模型时不用考虑具体技术条件的限制。
1.界定系统的边界数据仓库是面向决策分析的数据库,我们无法在数据仓库设计的最初就得到详细而明确的需求,但是一些基本的方向性的需求还是摆在了设计人员的面前:. 要做的决策类型有哪些?. 决策者感兴趣的是什么问题?. 这些问题需要什么样的信息?. 要得到这些信息需要包含原有数据库系统的哪些部分的数据?这样,我们可以划定一个当前的大致的系统边界,集中精力进行最需要的部分的开发。
因而,从某种意义上讲,界定系统边界的工作也可以看作是数据仓库系统设计的需求分析,因为它将决策者的数据分析的需求用系统边界的定义形式反映出来。
2,确定主要的主题域在这一步中,要确定系统所包含的主题域,然后对每个主题域的内容进行较明确数据仓库建模技术在电信行业中的应用的描述,描述的内容包括:. 主题域的公共码键;. 主题域之间的联系:. 充分代表主题的属性组。
数据库建模:概念模型,逻辑模型和物理模型概念模型设计 , 逻辑模型设计 , 物理模型设计是数据库及数据仓库模型设计的三个主要步骤1. 概念模型概念模型就是在了解了⽤户的需求 , ⽤户的业务领域⼯作情况以后 , 经过分析和总结 , 提炼出来的⽤以描述⽤户业务需求的⼀些概念的东西 ;如销售业务中的客户和定单 , 还有就是商品 , 业务员 , ⽤ USE CASE 来描述就是 : 业务员与客户就购买商品之事签定下定单 , 概念模型使⽤ E-R 图表⽰ , E-R 图主要是由实体 , 属性和联系三个要素构成的 , 该阶段需完成 :1. 该系统的商业⽬的是什么 , 要解决何种业务场景2. 该业务场景中 , 有哪些⼈或组织参与 , ⾓⾊分别是什么3. 该业务场景中 , 有哪些物件参与 ,4. 此外需要具备相关⾏业经验 , 如核⼼业务流程 , 组织架构 , ⾏业术语5. 5w1h , who , what , when , where , why, how2. 逻辑模型逻辑模型是将概念模型转化为具体的数据模型的过程 , 即按照概念结构设计阶段建⽴的基本 E-R 图 , 按选定的管理系统软件⽀持的数据模型(层次/⽹状/关系/⾯向对象) , 转换成相应的逻辑模型 , 这种转换要符合关系数据模型的原则 ;还以销售业务为例 : 客户信息基本上要包括 : 单位名称 , 联系⼈ , 联系电话 , 地址等属性商品信息基本上要包括 : 名称 , 类型 , 规格 , 单价等属性定单信息基本上要包括 : ⽇期和时间属性 ; 并且定单要与客户 , 业务员和商品明细关联 , 该阶段需完成 :1. 分多少个主题 , 每个主题包含的实体2. 每个实体的属性都有什么3. 各个实体之间的关系是什么4. 各个实体间是否有关系约束3. 物理模型物理模型就是针对上述逻辑模型所说的内容 , 在具体的物理介质上实现出来 , 系统需要建⽴⼏个数据表 : 业务员信息表 , 客户信息表 , 商品信息表 , 定单表 ; 系统要包括⼏个功能 : 业务员信息维护 , 客户信息维护 , 商品信息维护 , 建⽴销售定单 ; 表 , 视图 , 字段 , 数据类型 , 长度 , 主键, 外键 , 索引 , 约束 , 是否可为空 , 默认值 , 该阶段需完成 :1. 类型与长度的定义2. 字段的其他详细定义 , ⾮空 , 默认值3. 却准详细的定义 , 枚举类型字段 , 各枚举值具体含义4. 约束的定义 , 主键 , 外键这三个过程 , 就是实现⼀个数据库设计的三个关键的步骤 , 是⼀个从抽象到具体的⼀个不断细化完善的分析 , 设计和开发的过程 ;。
数据仓库设计方案【正文】一、引言数据驱动的决策已经成为企业中不可或缺的一部分。
为了有效地管理和分析海量的数据,数据仓库设计方案应运而生。
本文将介绍数据仓库的概念、设计原则和关键步骤,帮助企业构建高效可靠的数据仓库。
二、数据仓库概述数据仓库是指将各类数据整合、清洗、转化并存储于统一的数据存储区域,旨在为决策支持系统提供准确可靠的数据服务。
其设计方案需要考虑多个方面,包括数据源、数据的抽取与转换、数据建模和数据的加载等。
三、数据仓库设计原则1. 一致性:数据仓库应该保持与源系统的数据一致性,确保决策所依据的数据准确无误。
2. 高性能:数据仓库需要具备高性能的查询和分析能力,以满足用户对数据的实时性和响应性要求。
3. 安全性:严格管理数据仓库的访问权限,确保敏感数据的安全性和隐私保护。
4. 可扩展性:数据仓库需要具备良好的扩展能力,能够适应数据量的增长和业务需求的变化。
5. 可维护性:数据仓库的设计应该具备良好的可维护性,便于数据的更新、维护和监控。
四、数据仓库设计步骤1. 需求分析:明确数据仓库的功能和目标,分析业务需求和数据源的特点,为后续的设计提供指导。
2. 数据抽取与转换:根据需求分析的结果,选择合适的数据抽取方式,并进行数据的清洗、转换和集成。
3. 数据建模:根据业务需求和数据源的特点,设计数据仓库的物理和逻辑模型,并建立相应的维度表和事实表。
4. 数据加载:将清洗和转换后的数据加载到数据仓库中,并进行合理的存储和索引,以便进行后续的查询和分析。
5. 数据质量控制:定期监控数据仓库的数据质量,并进行必要的修复和优化,确保数据准确无误。
6. 安全管理:建立合适的权限控制机制,确保数据仓库的安全性和合规性。
五、数据仓库设计工具和技术1. ETL工具:ETL(Extract-Transform-Load)工具可以帮助实现数据的抽取、转换和加载,实现数据仓库的数据集成和清洗。
2. 数据建模工具:数据建模工具可以辅助设计数据仓库的物理和逻辑模型,提供建模、维护和文档化的功能。
概念数据模型设计与逻辑数据模型设计、物理数据模型设计是数据库及数据仓库模型设计的三个主要步骤。
在数据仓库领域有一个概念叫conceptual data model,中文一般翻译为“概念数据模型”。
概念数据模型是最终用户对数据存储的看法,反映了最终用户综合性的信息需求,它以数据类的方式描述企业级的数据需求,数据类代表了在业务环境中自然聚集成的几个主要类别数据。
概念数据模型的内容包括重要的实体及实体之间的关系。
在概念数据模型中不包括实体的属性,也不用定义实体的主键。
这是概念数据模型和逻辑数据模型的主要区别。
概念数据模型的目标是统一业务概念,作为业务人员和技术人员之间沟通的桥梁,确定不同实体之间的最高层次的关系。
在有些数据模型的设计过程中,概念数据模型是和逻辑数据模型合在一起进行设计的。
在数据仓库领域有一个概念叫logical data model,中文一般翻译为“逻辑数据模型”。
逻辑数据模型反映的是系统分析设计人员对数据存储的观点,是对概念数据模型进一步的分解和细化。
逻辑数据模型是根据业务规则确定的,关于业务对象、业务对象的数据项及业务对象之间关系的基本蓝图。
逻辑数据模型的内容包括所有的实体和关系,确定每个实体的属性,定义每个实体的主键,指定实体的外键,需要进行范式化处理。
逻辑数据模型的目标是尽可能详细的描述数据,但并不考虑数据在物理上如何来实现。
逻辑数据建模不仅会影响数据库设计的方向,还间接影响最终数据库的性能和管理。
如果在实现逻辑数据模型时投入得足够多,那么在物理数据模型设计时就可以有许多可供选择的方法。
在数据仓库领域有一个概念叫physical data model,中文一般翻译为“物理数据模型”。
物理数据模型是在逻辑数据模型的基础上,考虑各种具体的技术实现因素,进行数据库体系结构设计,真正实现数据在数据库中的存放。
物理数据模型的内容包括确定所有的表和列,定义外键用于确定表之间的关系,基于用户的需求可能进行发范式化等内容。
数据是信息的载体,信息是有价值有意义的数据。
数据库用于事务处理数据仓库用于决策分析数据仓库是面向主题的、集成的、稳定的,不同时间的数据集合,用于支持经营管理中决策制定过程。
数据仓库是一种管理技术,旨在通过通畅、合理、全面的信息管理,达到有效的决策支持。
数据仓库特点:(1)数据仓库是面向主题的(2)数据仓库是集成的(3)数据仓库是稳定的(4)数据仓库是随时间变化的(5)数据仓库的数据量很大(6)数据仓库软、硬件要求较高两者区别数据库:面向应用数据是详细的保持当前数据数据是可更新的对数据的操作是重复的操作需求是事先可知的一个操作存取一个记录数据非冗余操作比较频繁查询基本是原始数据事务处理需要的是当前数据很少有复杂的计算支持事务处理数据仓库:面向主题数据是综合的和历史的保存过去和现在的数据数据不更新对数据的操作是启发式的操作需求是临时决定的一个操作存取一个集合数据时常冗余操作相对不频繁查询基本是经过加工的数据决策分析需要过去和现在的数据有很多复杂的计算支持决策分析联机事物处理(On Line Transaction Processing,OLTP)是在网络环境下的事务处理工作,以快速的响应和频繁的数据修改为特征,使用户利用数据库能够快速地处理具体的业务。
OLTP是用户的数据可以立即传送到计算中心进行处理,并在很短的时间内给出处理结果。
也称为实时系统(Real time System)。
E.F.Codd在1993年提出了多维数据库和多维分析的概念,即联机分析处理(On Line Analytical Processing,OLAP)概念。
关系数据库是二维数据(平面),多维数据库是空间立体数据。
OLAP专门用于支持复杂的决策分析操作,侧重对分析人员和高层管理人员的决策支持,OLAP可以应分析人员的要求快速、灵活地进行大数据量的复杂处理,并且以一种直观易懂地形式将查询结果提供给决策制定人OLTP数据库数据细节性数据当前数据经常更新一次性处理的数据量小对响应时间要求高面向应用,事务驱动OLAP数据仓库数据综合性数据历史数据不更新,但周期性刷新一次处理的数据量大响应时间合理面向分析,分析驱动数据字典与元数据数据字典是描述数据库中各类数据的集合,包括:(1) 数据项(2) 数据结构(3) 数据流(4) 数据存储(5) 处理过程数据字典是数据库的元数据。
东北财经大学管理信息系统课后题答案第一章管理信息系统的基本概念1、何为数据?何为信息?信息和数据有何区别?所谓数据是由原始事实组成的。
要表示数据通常有三个方面事情要做:数据名称、数据类型、数据长度。
当原始事实按照具有一定意义的方式组织和安排在一起时,它就成了信息。
信息是按一定的规则组织在一起的数据集合,是对数据进行处理而产生的。
这种组织规则和方式具有超出数据本身以外的额外价值。
2、什么叫系统?有哪几类系统?请分别对各类系统进行举例说明?系统是由相互联系、相互作用的多个元素(部件)有机集合而成的,能够执行特定功能的综合体。
概念系统是最抽象的系统逻辑系统是再概念系统的基础上构造出的原理上可行得通的系统实在系统也可以叫物理系统,它是完整的系统,是客观存在的并可以实际运行的系统3、什么是系统方法?什么是系统观点?说出系统方法解决问题的主要步骤?所谓系统方法,就是按照事物本身的系统性把对象放在系统的形式中加以考察的一种方法,是一种立足整体、统筹兼顾、使整体与部分辩证地统一起来的科学方法。
所谓系统观点,就是不着眼于个别要素的优良与否,而是把一个系统内部的各个环节、各个部分,把一个系统的内部和外部环境都看成是相互联系、相互影响、相互制约着的综合体,从整体上追求系统的功能最优。
系统方法解决问题的主演步骤:①定义问题:列出一个或一组希望达到的目标②列出资源和约束:供选择的技术或手段以及每个系统所需的“成本”或资源③给出方案:一个或一组数学模型④评估被选方案⑤选择最佳方案并实施⑥总结解决方案的有效性4、什么是信息系统?信息系统是一系列相互关联的可以输入、处理、输出数据和信息,并提供反馈、控制机制以实现某个目标的元素或组成部分的集合。
5、什么叫管理?如何理解管理信息系统的概念?其主要特征是什么?管理是人有目的、有意识的实践活动,是管理者在一定的条件下,为了实现预定目标,对各种资源和实践环节进行规划安排、优化控制的总称。
数仓模型层说明书一、简介数据仓库模型层,也称为数仓模型层,是数据仓库架构中的核心组成部分。
它负责将原始数据转化为有组织、有意义的信息,以便进行数据分析和业务决策。
本说明书将详细描述数仓模型层的构成、功能和设计原则。
二、数仓模型层构成数仓模型层通常由以下三个层次构成:1. 物理层:这一层主要负责存储和管理原始数据。
它包括各种数据源(如数据库、数据文件等)和数据存储介质(如硬盘、SSD等)。
2. 逻辑层:这一层是数仓模型的核心,负责将物理层的数据转化为逻辑视图。
它包括数据模型(如星型模型、雪花模型等)和元数据(描述数据的数据)。
3. 应用层:这一层提供数据服务,支持各种数据分析和业务应用。
它包括报表、仪表盘、数据挖掘工具等。
三、数仓模型层功能数仓模型层的主要功能包括:1. 数据整合:将来自不同数据源的数据整合到一个统一的数据仓库中,消除数据冗余和冲突。
2. 数据清洗:对数据进行清洗和转换,确保数据的准确性和一致性。
3. 数据建模:通过建立逻辑模型,将数据组织成有意义的结构,便于分析和查询。
4. 数据安全:提供数据访问控制和安全保障,确保数据的机密性和完整性。
5. 数据服务:提供各种数据服务和应用,支持业务分析和决策。
四、数仓模型层设计原则在进行数仓模型层设计时,应遵循以下原则:1. 面向主题:设计时应以业务需求为导向,将数据按照主题进行组织,如销售、库存等。
2. 层次分明:物理层、逻辑层和应用层应层次分明,避免数据的冗余和冲突。
3. 灵活性:设计时应考虑未来的业务变化和扩展,保持模型的灵活性和可扩展性。
4. 性能优化:通过对数据的合理组织和索引,优化查询性能,提高数据处理效率。
5. 安全性:确保数据的安全性和隐私保护,控制对数据的访问和操作。
6. 标准化:遵循统一的数据标准和规范,保证数据的准确性和一致性。
7. 可维护性:设计时应考虑维护的便利性,降低维护成本。
8. 最佳实践:参考业界最佳实践,不断优化和完善数仓模型层的设计。