SPSS解释结构模型(ISM)——研究系统结构关系情况
- 格式:docx
- 大小:482.99 KB
- 文档页数:6
SPSS结构方程式模型使你的数据更会说话——结构方程式模型在市场调查中的应用内容提要:在IDC日常市场研究工作中一些高级数据分析方法得不到应有的问题普遍存在。
而结构方程式模型作为一种实证性的数据分析技术已经发展的相当完备了,它广泛运用于市场调查的各个方面,成为提供市场营销战略策略的有力工具。
这种实证性统计方法的运用可以提高数据分析结果的有效性和科学性。
希望通过介绍结构方程式模型的建构原IDC同事们能对此项技术有一定了解。
结构方程式理,并通过一个具体研究案例的介绍使IDC公司中较为常见的是利用SPSS软件进行相关数字变中包括了主要的分析方法,在量分析。
由于篇幅有限,本文只介绍一些基本定义,详细的介绍请参看文章后面的参考书目。
一、结构方程式模型及其建构原理结构方程式模型(Structural Equation Modeling,简称SEM)或称为因果关系模型、协方差结构模型,或者直接称为LISRLE模型,这主要是因为LISREL是用来分析结构方程式模型的早期最流行的软件。
它是一种建立、估计和检验因果关系模型的多元统计分析技术。
它包含了回归分析(multiple regression)、因子分析(factor analysis)、路径分析(path analysis)和多元方差分析(multivariate analysis of variance)等一系列多元统计分析方法,是一种非常通用的、线性的、借助于理论进行假设检验的统计建模技术。
这一模型和方法由K.Joreskog与其合作者在70年代提出并逐步改进和完善,到90年代初期开始得到了广泛的应用。
随着SEM理论和分析软件的不断发展和完善,结构方程式模型不仅在市场研究中成为分析数据、检验理论的好工具,而且在心理学、社会学、计量经济学、管理学、行为科学和传播学等领域都得到了广泛的应用。
结构方程式模型本质上是利用联立方程求解。
我们希望的是模型拟合的再生数据尽可能接近原始数据,如果真是这样的话,假设的因果关系结构与变量间的相互关联模式就是拟合的或是一致的。
3.2 解释结构模型系统是由许多具有一定功能的要素(如设备、事件、子系统等)所组成的,各要素之间总是存在着相互支持或相互制约的逻辑关系。
在这些关系中,又可以分为直接关系和间接关系等。
为此,开发或改造一个系统时,首先要了解系统中各要素间存在怎样的关系,是直接的还是间接的关系,只有这样才能更好地完成开发或改造系统的任务。
要了解系统中各要素之间的关系,也就是要了解和掌握系统的结构,建立系统的结构模型。
结构模型化技术目前已有许多种方法可供应用,其中尤以解释结构模型法(Interpretative Structural Modeling,简称ISM)最为常用。
3.2.1 结构模型概述一、解释结构模型的概念解释结构模型(ISM)是美国华费尔特教授于1973年作为分析复杂的社会经济系统有关问题的一种方法而开发的。
其特点是把复杂的系统分解为若干子系统(要素),利用人们的实践经验和知识,以及电子计算机的帮助,最终将系统构造成一个多级递阶的结构模型。
ISM属于概念模型,它可以把模糊不清的思想、看法转化为直观的具有良好结构关系的模型,应用面十分广泛。
从能源问题等国际性问题到地区经济开发、企事业甚至个人范围的问题等,都可应用ISM来建立结构模型,并据此进行系统分析。
它特别适用于变量众多、关系复杂且结构不清晰的系统分析,也可用于方案的排序等。
所谓结构模型,就是应用有向连接图来描述系统各要素间的关系,以表示一个作为要素集合体的系统的模型,图3-1所示即为两种不同形式的结构模型。
图3-1两种不同形式的结构模型结构模型一般具有以下基本性质:(1)结构模型是一种几何模型。
结构模型是由节点和有向边构成的图或树图来描述一个系统的结构。
节点用来表示系统的要素,有向边则表示要素间所存在的关系。
这种关系随着系统的不同和所分析问题的不同,可理解为“影响”、“取决于”、“先于”、“需要”、“导致”或其他含义。
(2)结构模型是一种以定性分析为主的模型。
ISM(解释结构模型)一、ISM的起源与发展解释结构模型(ISM)由美国J.华费尔特教授于1973年作为分析复杂的社会经济系统有关问题开发的一种方法,它在计算机的帮助下,利用有向图和结构矩阵,分析所有涉及的构成要素间的层级的直接或间接联系,把要素间各种凌乱的关系变成一个层级清楚的多层级的递阶的结构模型。
ISM模型主要有三个方面的特征,一是可用MATLAB和excel实现算法,避免了人为运算的复杂性;二是将系统内凌乱的不清楚的各要素生成一个层级清楚的结构模型,这也是ISM的主要功能;三是综合了定性分析和定量分析这两种研究方法,既有人类的认识与实践也有量化的数据分析。
之后也有GISM(博弈解释结构模型)、FISM(模糊解释结构模型)、VISM(虚解释结构模型)等发展,广泛应用于系统结构分析、教学资源内容结构和学习资源设计与开发研究、教学过程模式的探索等方面。
二、模型实施步骤(1)抽样要素,分析各要素间的逻辑关系可通过查阅文献、头脑风暴、专家调查(德尔菲法)、问卷调查等方式抽样要素。
(2)建立邻接矩阵和可达矩阵邻接矩阵是根据各相邻要素的逻辑关系排列成矩阵,公式为:可达矩阵是用矩阵形式反映各要素之间通过一定路径可以到达的程度,可利用布尔代数规则实现,布尔算法公式为:11)()()(+-+=+≠+=k k k I A I A I A M(3)对可达矩阵进行层级划分对可达矩阵 M 进行分解,得到可达集)(S R 和前因集)(i S A ,若满足)()()(i i i S R S A S R = ,则iS 为最高层要素集。
找到最高层要素集后,在可达矩阵中划去其对应的行和列,然后再从剩余的可达矩阵中继续寻找最高层要素;依次类推,即得各层次所包含的要素集和分层后的可达矩阵。
(4)建立系统的结构模型和解释结构模型得到各层级后根据各要素的逻辑关系建立结构模型,并以此建立相应的解释结构模型。
三、教学应用(1)研究某一教学问题影响因素(教学效果、学生学情、学习绩效、教学评价……)(2)学习资源的设计与开发(教学内容的层级划分:概念图、教学序列的设计:教学计划大纲)(3)某一教学系统的结构分析(校园网、校园文化、在线教学平台等建设问题)参考文献:[1]李慧.基于ISM 模型的现代远程教育系统的结构分析[J].现代教育技术,2011(09):79-83.[2]张静,王欢.基于ISM的在线教育平台学习者持续学习行为的影响因素研究[J].中国电化教育,2018(10):123-130.。
3.2解释结构模型系统是由许多具有一定功能的要素(如设备、事件、子系统等)所组成的,各要素之间总是存在着相互支持或相互制约的逻辑关系。
在这些关系中,又可以分为直接关系和间接关系等。
为此,开发或改造一个系统时,首先要了解系统中各要素间存在怎样的关系,是直接的还是间接的关系,只有这样才能更好地完成开发或改造系统的任务。
要了解系统中各要素之间的关系,也就是要了解和掌握系统的结构,建立系统的结构模型。
结构模型化技术目前已有许多种方法可供应用,其中尤以解释结构模型法(InterpretativeStructuralModeling,简称ISM)最为常用。
3.2.1结构模型概述一、解释结构模型的概念解释结构模型(ISM)是美国华费尔特教授于1973年作为分析复杂的社会经济系统有关问题的一种方法而开发的。
其特点是把复杂的系统分解为若干子系统(要素),利用人们的实践经验和知识,以及电子计算机的帮助,最终将系统构造成一个多级递阶的结构模型。
ISM属于概念模型,它可以把模糊不清的思想、看法转化为直观的具有良好结构关系的模型,应用面十分广泛。
从能源问题等国际性问题到地区经济开发、企事业甚至个人范围的问题等,都可应用ISM来建立结构模型,并据此进行系统分析。
它特别适用于变量众多、关系复杂且结构不清晰的系统分析,也可用于方案的排序等。
所谓结构模型,就是应用有向连接图来描述系统各要素间的关系,以表示一个作为要素集合体的系统的模型,图3-1所示即为两种不同形式的结构模型。
图3-1两种不同形式的结构模型结构模型一般具有以下基本性质:(1)结构模型是一种几何模型。
结构模型是由节点和有向边构成的图或树图来描述一个系统的结构。
节点用来表示系统的要素,有向边则表示要素间所存在的关系。
这种关系随着系统的不同和所分析问题的不同,可理解为“影响”、“取决于”、“先于”、“需要”、“导致”或其他含义。
(2)结构模型是一种以定性分析为主的模型。
SPSS解释结构模型(ISM)——研究系统结构关系情况
解释结构模型(ISM)是一种系统分析方法,用于得到要素之间的复杂相互关系和层次。
其思想是先通过调查或者技术手段找出问题的组成要素或影响因素,然后通过矩阵模型分析各要素之间的联系,得到一个多级递阶结构模型。
比如现在我们要分析旅游社的萧条原因,发现可能跟如下要素有关:疫情影响、价格过高、旅游套餐不合理、导游质量不行、景区质量下滑、气候问题。
使用解释结构模型对其进行分析。
1. 矩阵中有哪些要素由研究问题的目标抽象确定,一般希望要素较为精炼,没有冗余重复的要素。
2. 判断要素之间的两两因果关系,如要素1对要素2是否存在影响、要素2对要素1是否存在影响,存在影响则赋值为1。
要素自身的因果关系则无需判断,故对角线的值固定为0。
其中,因果关系的判断可以根据ISM小组讨论结果、或者采用德尔菲方法确定。
邻接矩阵是表示顶点之间相邻关系的矩阵(是有向图的矩阵描述),从行的方向看,如果值为1,则代表行名的元素对列名的元素有影响。
(如图中,第一行第三/五列的值为1,则代表疫情影响对旅游套餐不合理和景区质量下滑有影响。
)
分析步骤
1.由研究问题的目标抽象确定模型中的要素和要素之间的关系,最终得到邻接矩阵。
要素之间的关系可以通过实际调研,组建ISM小组进行讨论、或者采用德尔菲法等方法进行确定。
2.计算邻接相乘矩阵,再通过不断自乘直至矩阵不再发生变化,得到可达矩阵。
3.通过可达矩阵进行模型的层级分解,最终得到模型的层级情况。
一般认为顶层为系统的最终目标,而下面各层分别为上一层的原因。
4.层次划分完毕后,再通过绘制有向连接图,更直观的表示模型的层次结构。
软件操作
Step1:选择解释结构模型(ISM);
Step2:增加要素或者减少要素;
Step3:输入邻接矩阵的值(注:邻接矩阵的值只能为0/1);
Step4:点击【开始分析】进入分析;
输出结果分析
输出结果1:邻接矩阵
上表展示了模型的邻接矩阵,邻接矩阵即为初始输入矩阵。
它是由要素之间的关系抽象而成的
输出结果2:邻接相乘矩阵
上表展示了模型的邻接相乘矩阵,是得到可达矩阵的中间计算过程,通过连续乘以邻接相乘矩阵直到矩阵不发生变化来得到可达矩阵。
邻接相乘矩阵是使用连乘法计算可达矩阵的中间步骤,一般不分析输出结果2。
输出结果3:可达矩阵
上表展示了模型的可达矩阵,邻接矩阵代表要素之间直接的关系,而可达矩阵代表要素之间的传递是否会带来间接的影响关系。
可达矩阵的每一行为该要素能够到达的情况,如对第一行分析时疫情影响是可以通过通路达到要素旅游套餐不合理/导游质量不行/景区质量下滑的。
输出结果4:抽取过程
上表展示了模型的层级分解过程。
在每次抽取时,如果发现可达集合与可达集合与先行集合的交集一致,则可以抽取出要素集合进行层次划分。
先行集合的获取方法为可达矩阵的列包含的值,然后比较可达矩阵和先行集合的交集与可达集合,如果一致则可以抽出作为一层。
输出结果5:层次情况
上表展示了模型的层级情况,一般认为顶层为系统的最终目标,而下面各层分别为上一层的原因。
输出结果6:层次结构图
上表展示了模型的层次结构图,层次划分完毕后,通过绘制有向连接图,可以更直观的表示模型的层次结构。
注意事项
解释结构模型的邻接矩阵为非赋权图,故只能输入0和1,输入其他非零值将会变为1。
输出结果6的层次结构图可以拖动,从而得到更适合展示的结果。